
Using FORTRAN 
at the NIH 
Computer Center 

September 1998 
 

National Institutes of Health 
Center for Information Technology 
NIH Computer Center 
12 South Drive MSC 5607 
Bethesda, Maryland 20892-5607 

Publication No. CIT183 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using FORTRAN at the NIH Computer Center – September 1998 



 

Using FORTRAN at the NIH Computer Center (9/98)  i 

 
Table of Contents 

 
1 INTRODUCTION........................................................................................................... 1 

1.1 Procedure Names........................................................................................................... 2 

2 DCB INFORMATION FOR FORTRAN DATA SETS .............................................. 4 
2.1 DCB Information for SYSOUT Data Sets .................................................................... 4 
2.2 DCB Information for Other FORTRAN Data Sets....................................................... 4 

3 FORTRAN PUBLICATIONS........................................................................................ 6 

4 FORTRAN COMPILER OPTIONS ............................................................................. 7 

5 COMPILING AND RUNNING FORTRAN PROGRAMS........................................ 9 
5.1 Using the Compiler ....................................................................................................... 9 
5.2 Using the Binder.......................................................................................................... 10 
5.3 Creating and Using Object Modules ........................................................................... 12 
5.4 Using the Loader ......................................................................................................... 14 

6 STORING AND USING PROGRAMS IN USER LIBRARIES............................... 16 
6.1 Storing Programs in Single-Member User Libraries................................................... 16 
6.2 Storing Programs in Multi-Member User Libraries.................................................... 19 
6.3 Using Programs from User Libraries .......................................................................... 21 
6.4 Link-editing from a User Library................................................................................ 22 

7 PROGRAMMING AND RUNNING TIPS................................................................. 25 
7.1 Coding in FORTRAN ................................................................................................. 25 
7.2 Using Data Set Reference Numbers............................................................................ 26 
7.3 Writing Efficient Programs ......................................................................................... 26 
7.4 Increasing I/O Efficiency ............................................................................................ 27 
7.5 Data Formats for Inter-Language Communication ..................................................... 28 
7.6 Dynamic Data Set Allocation...................................................................................... 35 

 



 

ii  Using FORTRAN at the NIH Computer Center (9/98) 
 



 

Using FORTRAN at the NIH Computer Center (9/98)  1 

1 INTRODUCTION 
This manual describes the use of the FORTRAN programming language at the NIH 
Computer Center. This manual is intended to give programmers the FORTRAN information 
they need in order to create new programs and to maintain programs running on the MVS 
South System. The information in this manual should be used in conjunction with the NIH 
Computer Center User’s Guide, Batch Processing and Utilities at NIH, and the manuals 
described in Section 3 of this publication. 
 
The FORTRAN programming language receives full (Level 1) support. Questions on 
FORTRAN should be directed to the Technical Assistance and Support Center (TASC), 
either by phone at (301) 594-3278 or by submitting a Problem Tracking Report (PTR). There 
are several methods of submitting a PTR: 
 
�� World Wide Web 

Users with NIHnet or Internet connections can submit a PTR through the World Wide 
Web. To access the PTR system, connect to: 

 
http://datacenter.cit.nih.gov/ptr.html 

 
�� Electronic Mail 

PTRs can also be submitted to the Computer Center by sending electronic mail to the 
WYLBUR initials PTR or the Internet address PTR@CU.NIH.GOV. Mailed PTRs must 
have a valid SUBJECT header containing the submitter’s name and telephone number, 
and be of the form 

 
Subject: PTR FROM name TELEPHONE phone-number 

 
For example: 

 
Subject: PTR FROM Tom Jones TELEPHONE 6-1111 

 
�� ENTER PTR 

Users can submit a PTR is through WYLBUR’s ENTER PTR command.  

 
Changes that affect the use of the FORTRAN language will be fully tested and pre-
announced through the Interface newsletter. For a full description of Level 1 support, see the 
NIH Computer Center User’s Guide. 
 
FORTRAN is a programming language that receives widespread use in scientific, 
engineering, and biomedical applications that involve mathematical computations. The IBM 
VS FORTRAN Version 2 compiler is used at the NIH Computer Center. 
 



 

2  Using FORTRAN at the NIH Computer Center (9/98) 
 

There is a Federal Information Processing Standard (FIPS) for this language. Certain special 
features and extensions of the language fall outside the FIPS standard. Programs written 
using only FIPS approved features can be transported more readily between federal 
installations and different vendors’ mainframes. Federal policy encourages the use of features 
within FIPS standards. For FORTRAN, the ANSI standard has been adopted as the FIPS 
standard. FORTRAN statements not conforming to the ANSI X3.9-1978 standard are clearly 
identified in the VS FORTRAN Version 2 Language and Library Reference, SC26-4221. In 
addition, the compiler option FIPS(F) may be specified to flag FORTRAN statements not 
defined in the current standard. 
 

1.1 Procedure Names 

Note: the Binder now performs the link-editing functions previously performed by 
the Linkage Editor. 

 
The procedure names used in this manual are: 
 
 

FORVCOMP 
FORVOBJ 
FORVLKGO 
FORVLDGO 
FORVLKMM 
FORVLKSM 
FORVCALL 

 
Each procedure name follows the pattern: 
 

lllvffff 
 

where  “lll” is the language prefix (FOR for FORTRAN) 
 “v” is the version (V for VS FORTRAN) 
 “ffff”  is the function 

 
The meaning of each function is given below: 
 

COMP compilation only 
 

OBJ compile and store object module 
 

LKGO use the Binder (formerly the Linkage Editor) and execute program 
 

LDGO use the Loader and execute program 
 

LKMM use the Binder to store a link-edited load module into an existing 



 

Using FORTRAN at the NIH Computer Center (9/98)  3 

multi-member PDS 
 

LKSM use the Binder to store a link-edited load module into a new single-
member PDS 
 

CALL execute a fully link-edited load module 
 
In the examples throughout this manual, the following conventions apply: 
 

“aaaa” the account number 
 

“iii”  the programmer’s registered initials 
 

“dsname” name of data set 
 

“progname” name of program stored in partitioned data set (PDS) 
 

“fileser”  volume serial number of disk where data set is located; required only 
if the data set is not cataloged 
 

“primary” primary quantity requested in the SPACE parameter 
 

“blocks” number of directory blocks 
 

“stepname” name of step which executes the procedure; should be unique within 
a job 
 

“ddname” user-supplied ddname; should be unique within job step 
 



 

4  Using FORTRAN at the NIH Computer Center (9/98) 
 

2 DCB INFORMATION FOR FORTRAN DATA SETS 
These sections list DCB (Data Control Block) characteristics for FORTRAN data sets. 
 

2.1 DCB Information for SYSOUT Data Sets 
Listed below are the default record formats and blocksizes for all SYSOUT data sets in the 
VS FORTRAN procedures: 
 
PROCEDURE 
NAME 
 

STEP NAME DD NAME DEFAULT 
RECFM/BLKSIZE 

FORVCOMP COMP SYSTERM VA 244
  SYSPRINT VBA 141
  SYSUDUMP VBA 1632
FORVLKGO LOAD SYSPRINT FA 121
  SYSUDUMP VBA 1632
 GO FT06F001 UA 133
  FT07F001 F 80
  FT15F001 UA 133
  FT16F001 F 80
FORVOBJ COMP SYSTERM VA 244
  SYSPRINT VBA 141
  SYSUDUMP VBA 1632
FORVLKSM LOAD SYSPRINT FA 121
  SYSUDUMP VBA 1632
FORVLKMM LOAD SYSPRINT FA 121
  SYSUDUMP VBA 1632
FORVCALL GO FT06F001 UA 133
  FT07F001 F 80
  FT15F001 UA 133
  FT16F001 F 80
FORVLDGO GO SYSLOUT FBSA 121
  FT06F001 UA 133
  FT07F001 F 80
  FT15F001 UA 133
  FT16F001 F 80

Figure 1. SYSOUT DCB Information for VS FORTRAN Procedures 
 

2.2 DCB Information for Other FORTRAN Data Sets 
VS FORTRAN supplies default DCB characteristics for all data sets it accesses, i.e. 
FT00F001-FT99F001. Besides the SYSOUT data sets whose DCBs are specifically provided 
by the VS FORTRAN procedures, the remaining data sets will use the FORTRAN-supplied 



 

Using FORTRAN at the NIH Computer Center (9/98)  5 

defaults unless overridden by the user’s own JCL. The defaults are given in the following 
figure. 
 

SEQUENTIAL DATA SETS DIRECT ACCESS DATA SETS DDNAME 
RECFM* LRECL** BLK-

SIZE 
BUFNO RECFM LRECL or 

BLKSIZE 
BUFNO 

FT05F001 
and 
FT07F001 

F 80 80 2 F 2 

FT06F001 UA 133 133 2 F 2 
ALL 
OTHERS 

U   800 2 F 

The value 
specified as 
the 
maximum 
size of a 
record in 
the OPEN 
statement 

2 

*   For records not under FORMAT control, the default is VS. 
** For records not under FORMAT control, the default is 4 less than shown. 

Figure 2. DCB Information for FORTRAN Data Sets 
 



 

6  Using FORTRAN at the NIH Computer Center (9/98) 
 

3 FORTRAN PUBLICATIONS 
The CIT Technical Information Office distributes general information, technical and vendor 
publications and certain software to the user community. Using FORTRAN at the NIH 
Computer Center is one of the many publications available online through the World Wide 
Web at: 
 

http://datacenter.cit.nih.gov/cfb.pub.txt.html 
 
Users may order publications in the following ways: 
 
�� Using the World Wide Web, visit: 

http://livewire.nih.gov/publications/publications.asp 
 

and select the option for ordering publications online. Some publications may not be 
available through this ordering system.  

 
�� Sign on to WYLBUR and use the ENTER PUBWARE command to order publications.  

�� If you cannot order a publication online, you may place an order by visiting TASC in 
Building 12A or by telephone. 

 
The following manuals relevant to VS FORTRAN can be ordered: 
 
VS FORTRAN Version 2 Programming Guide for CMS & MVS, SC26-4222 

This publication provides information on how to design, debug, test, and execute 
FORTRAN Version 2 programs. It is not intended as a reference manual. 

 
VS FORTRAN Version 2: Language and Library Reference, SC26-4221 

This publication describes each syntactic element available in FORTRAN 77 and the 
types of subprograms in the VS FORTRAN Version 2 Library. It also contains 
library, execution-time, and operator messages. There is information about the 
method used in the library to compute a mathematical function and the effect of an 
argument error on the accuracy of the answer returned. 

 
Interface 

This is a series of technical notes for users, published by the Computer Center. All 
changes to Computer Center standards and facilities are announced in this 
publication. 

 



 

Using FORTRAN at the NIH Computer Center (9/98)  7 

4 FORTRAN COMPILER OPTIONS 
The default options specified when using Computer  Center cataloged procedures for the VS 
FORTRAN compiler are listed below. 
 

CHARLEN(500) Specifies the maximum length of any CHARACTER 
variable, CHARACTER array element, or CHARACTER 
function. 
 

FLAG(I)  All levels of diagnostic messages, including information, 
will be written. 
 

FIXED  The input source program is in fixed format. 
 

GOSTMT  Internal sequence numbers will be generated for a calling 
sequence to a subprogram. 
 

LANGLVL(77)  The input source program is written in the current 
FORTRAN language.  
 

LINECOUNT(60) Number of lines per page of compiler listing.  
 

NAME(MAIN)  The main program name is MAIN; available only with 
LANGLVL(66). 
 

MAP  Produces table of source program names and statement 
labels. 
 

OBJECT  Object module will be produced. 
 

SDUMP(ISN) Symbolic dump information is available. Execution time 
option ABSDUMP must be specified to generate the 
output. 
 

SOURCE  Source listing will be produced. 
 

SRCFLG  Error messages will be inserted in the source listing. 
 

TERMINAL  Error messages and compiler diagnostics will be written on 
the output data set; a summary of error messages will be 
printed. 
 

XREF  Produces a cross reference listing. 
 



 

8  Using FORTRAN at the NIH Computer Center (9/98) 
 

Additional compile-time options generated are:  
 

AUTODBL(NONE) 
CI(no default number) 
DC(no default name) 
IL(DIM) 
NOFIPS 
NOIL 
NOLIST 
NOOPTIMIZE. 
NORENT 
NOSXM 
NOSYM 
NOTEST 
NOTRMFLG 

 
The standard batch execution-time options generated for the VS FORTRAN compiler are:  
 

NOABSDUMP 
NOAUTOTASK 
SPIE 
STAE 
XUFLOW. 

 
For detailed explanations of these options, see chapter 10 of the VS FORTRAN Version 2: 
Programming Guide for CMS & MVS, SC26-4222. 
 
If any options are to be changed, the new values must appear in the options list on the EXEC 
statement. The OPTIONS symbolic parameter should be used in place of the PARM 
parameter. Use of the OPTIONS symbolic parameter is illustrated in the examples later in 
this manual. 
 
For those who must override or augment the cataloged procedures, the stepnames used in the 
procedure are given in each section. 
 



 

Using FORTRAN at the NIH Computer Center (9/98)  9 

5 COMPILING AND RUNNING FORTRAN PROGRAMS 
The procedures in this section are used to compile, link-edit (using the Binder), and execute 
FORTRAN programs. 
 

5.1 Using the Compiler 
The COMP procedure provides the user with a one-step procedure to compile FORTRAN 
source code for diagnostic messages; and, if compilation is successful, to prepare the input 
for further processing (e.g., the LKGO procedure). This procedure stores the output of the 
compiler into a temporary data set to be used later in the job and then deleted. 
 
Symbolic Parameters for FORVCOMP 
 

Required Value to be supplied 
 

None None 
Optional Value to be supplied 

 
OPTIONS=parms  Compiler parameters 
CORE=nnnnK  Region for the COMP step; 2500K is the 

default 
LIBNAME=‘aaaaiii.dsname’  Dsname of first user-defined library for 

compiler input 
LIBDISK=fileser  Volume for first library; required only if the 

data set is not cataloged 
LIBSTOR=type  Unit name for first library; FILE is the 

default 
ALTNAME=‘aaaaiii.dsname’  Dsname of second user-defined library for 

compiler input 
ALTDISK=fileser  Volume for second library; required only if 

the data set is not cataloged 
ALTSTOR=type  Unit name for second library; FILE is the 

default 
 
The internal stepname for the FORVCOMP procedure is COMP. 
 

Example 1: 
To compile a VS FORTRAN program. 

 
//stepname EXEC FORVCOMP 
//COMP.SYSIN DD * 
   (source program) 

 



 

10  Using FORTRAN at the NIH Computer Center (9/98) 
 

Example 2: 
To compile a VS FORTRAN program with high-level optimization and produce an 
assembly listing. 

 
//stepname EXEC FORVCOMP,OPTIONS=‘OPT(3),LIST’ 
//COMP.SYSIN DD * 
  (source program) 

 

5.2 Using the Binder 
 

Note: the Binder now performs the link-editing functions previously performed by 
the Linkage Editor. 

 
The LKGO procedure performs the following functions: 
 
�� link-edits the program to prepare a load module for execution 

�� executes the load module 
 
The LKGO procedure provides the user with the DD statements needed to use the printer 
(FT06F001 or FT15F001). The ddname SYSIN may be used in place of FT05F001. All VS 
FORTRAN execution-time error messages are written to the DD statement FT06F001; 
because of a local system standard, this should not be overridden. The user must provide JCL 
for any additional I/O units (data sets) used. Section 6.4 discusses specifying user-defined 
libraries with LKGO. 
 
Programs that need large amounts of storage (e.g.  for  large arrays), can benefit from the use 
of 31-bit addressing to access the extended address space. See Example 5 below. 
 
There must be one GO.ddname DD statement describing each data set used. DD statements 
to override ddnames within the procedure must precede those for ddnames to be added to the 
procedure. See the manual Batch Processing and Utilities at NIH for a description of the 
format of DD statements. 
 
Symbolic Parameters for FORVLKGO 
 

Required Value to be supplied 
 

None None 
 

Optional Value to be supplied 
 

OPTIONS=parms  Binder parameters 
CORE=nnnnK  Region for GO step; 4096K is the default 



 

Using FORTRAN at the NIH Computer Center (9/98)  11 

LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined library 
LIBDISK=fileser  Volume for first library; required only if the data set 

is not cataloged 
LIBSTOR=type  Unit name for first library; FILE is the default 
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library 
ALTDISK=fileser  Volume for second library; required only if the data 

set is not cataloged 
ALTSTOR=type  Unit name for second library; FILE is the default 

 
The stepname within the FORVLKGO cataloged procedure is LOAD for the link-edit step 
and GO for the run step. 
 

Example 3: 
To compile the VS FORTRAN main program and its subroutines, and execute it. The 
execution-time parameter ABSDUMP causes all program variables to be printed out 
if the program ends abnormally. 

 
//stepname EXEC FORVCOMP 
//COMP.SYSIN  DD  * 
   (source program) 
//stepname EXEC FORVLKGO,PARM.GO=ABSDUMP 
//GO.ddname  DD  etc. (as many as needed) 
//GO.SYSIN  DD  *  (if needed) 
   (data) 

 

Example 4: 
To compile the VS FORTRAN main program and subroutines and execute it. The 
OPTIONS parameter in the compile step requests an Assembler language listing. The 
OPTIONS parameter in the run step requests the Binder option XREF. The CORE 
parameter supplies a larger region size for the GO step. 

 
//stepname EXEC FORVCOMP,OPTIONS=LIST 
//COMP.SYSIN  DD  * 
   (source program) 
//stepname EXEC FORVLKGO,CORE=nnnnK,OPTIONS=XREF 
//GO.ddname  DD  etc. (as many as needed) 
//GO.SYSIN  DD  *  (if needed) 
   (data) 

 

Example 5:   
To compile, link-edit, and execute an existing program. The OPTIONS parameter in 
the compile step specifies dynamic common and names the COMMON areas to be 
located above the line in the 31-bit address area. The OPTIONS parameter in the run 
step requests the Binder option AMODE=31 to indicate that the load module should 



 

12  Using FORTRAN at the NIH Computer Center (9/98) 
 

use 31-bit addresses and therefore be able to address any storage location (either 
above or below the line). 

 
//stepname  EXEC  FORVCOMP 
//    OPTIONS=‘DC(ABIG1,BBIG1)’ 
//COMP.SYSIN   DD * 
      COMMON /ABIG1/ AARRAY(200,100,50), 
     X      BARRAY(500,1000) 
      COMMON /BBIG1/ AMATRX(10000,250),BMATRX(300), 
     X      CMATRX(50,500) 
         . 
 (rest of source program) 
         . 
//stepname EXEC FORVLKGO,OPTIONS=‘AMODE=31’ 
//GO.ddname  DD  etc. (as many as needed) 
//GO.SYSIN  DD  *  (if needed) 
  (data) 

 

5.3 Creating and Using Object Modules 
The OBJ procedure is used to compile source code and store the resultant object module into 
a sequential data set. The output of this procedure must be processed by the Binder before it 
can be run. The LKGO procedure may be used to link-edit and execute the object module(s) 
created by an OBJ procedure. 
 
Symbolic Parameters for FORVOBJ 
 

Required  
 

Value to be supplied 

NAME=‘aaaaiii.dsname’ 
 

Dsname of object module to be stored 

Optional 
 

Value to be supplied 

DISK=fileser  Required only for a data set written to a dedicated 
disk 

STORAGE=type  Unit name for the object module; FILE is the default 
OPTIONS=parms  Compiler parameters 
CORE=nnnnK  Region for the COMP step; 2500K is the default 
STATUS=status  NEW is the default; use OLD to replace an existing 

data set 
SIZE=primary  Primary space allocation for object module; default is 

1000 
UNITS=type  Allocation units for object module; the default is 

blocks of 1024 bytes 
LIBNAME=‘aaaaiii.dsname’  Dsname of first user-defined library for compiler 

input 
LIBDISK=fileser  Volume for first library; required only if the data set 



 

Using FORTRAN at the NIH Computer Center (9/98)  13 

is not cataloged 
LIBSTOR=type  Unit name for first library; FILE is the default 
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library for compiler 

input 
ALTDISK=fileser  Volume for second library; required only if the data 

set is not cataloged 
ALTSTOR=type  Unit name for second library; FILE is the default 

 
The internal stepname for the FORVOBJ procedure is COMP. 
 

Example 6: 
To compile a VS FORTRAN program and save the object module. 

 
//stepname EXEC FORVOBJ,NAME=‘aaaaiii.dsname’ 
//COMP.SYSIN  DD  * 
  (source program) 

 

Example 7: 
To compile a VS FORTRAN program, save the object module into an existing data 
set. Former contents will be destroyed. 

 
//stepname EXEC FORVOBJ,STATUS=OLD, 
//  NAME=‘aaaaiii.dsname’ 
//COMP.SYSIN  DD  * 
  (source program) 

 
To execute a program which has been stored by an OBJ procedure, use the LKGO procedure. 
The user must supply a //LOAD.SYSLIN DD statement describing the data set containing the 
program which was compiled and saved. 
 

Example 8:   
To compile a VS FORTRAN program, save the object module, link-edit, and run. 
The object module saved as “aaaaiii.dsname1” from the OBJ procedure is used as 
input for the link-edit step. 

 
//stepname EXEC FORVOBJ,NAME=‘aaaaiii.dsname1’ 
//COMP.SYSIN  DD  * 
   (source program) 
//stepname EXEC FORVLKGO 
//LOAD.SYSLIN DD DSN=aaaaiii.dsname1,DISP=SHR 
//GO.ddname  DD  etc. (as many as needed) 
//GO.SYSIN  DD  *  (if needed) 
   (data) 

 



 

14  Using FORTRAN at the NIH Computer Center (9/98) 
 

Example 9:   
To execute a VS FORTRAN main program and subroutines that have been created as 
separate data sets by the OBJ procedure. The user must supply a DD statement for 
each data set that contains a program or subroutine and make sure the main program 
is defined first. 

 
//stepname EXEC FORVLKGO 
//LOAD.SYSLIN DD DSN=aaaaiii.dsname1, 
//   DISP=SHR 
//  DD  DSN=aaaaiii.dsname2,DISP=SHR 
//  DD  DSN=aaaaiii.dsname3,DISP=SHR 
//GO.ddname  DD  etc. (as many as needed) 
//GO.SYSIN  DD  *  (if needed) 
   (data) 

 

Example 10:   
To execute a VS FORTRAN program where the main program is to be compiled and 
the subroutines have been stored by the OBJ procedure in two data sets. These data 
sets will be concatenated with the data set created by the COMP step. 

 
//stepname EXEC FORVCOMP 
//COMP.SYSIN DD * 
   (source program) 
//stepname EXEC FORVLKGO 
//LOAD.SYSLIN DD 
// DD DSN=aaaaiii.dsname1,DISP=SHR 
// DD DSN=aaaaiii.dsname2,DISP=SHR 
//GO.ddname  DD  etc. (as many as needed) 
//GO.SYSIN  DD  *  (if needed) 
   (data) 

 

5.4 Using the Loader 
The LDGO procedure combines the link-edit and run steps into one. The Loader will accept 
object modules and load modules. It will also search libraries defined by the SYSLIB DD 
statement within the procedure if unresolved external references remain after processing the 
primary input defined by the SYSLIN DD statement within the procedure. It provides the 
user with the DD statements needed to use the printer (FT06F001 or FT15F001). The 
ddname SYSIN may be used in place of FT05F001. All FORTRAN execution-time error 
messages are written to the DD statement FT06F001; because of a local system standard, this 
should not be overridden. The user must provide JCL for any additional I/O units (data sets) 
used. 
 
The LDGO procedure should be used during the early stages of program development 
(debugging); it is particularly recommended for the development of small and medium-sized 



 

Using FORTRAN at the NIH Computer Center (9/98)  15 

programs. Using LDGO is often more economical than using LKGO, but a dump from a 
LDGO run may not be sufficient to resolve a problem. If so, the job may have to be rerun 
using the Binder (LKGO). 
 
Additional technical information on the use of the Loader is given in the manual Batch 
Processing and Utilities at NIH. 
 
Symbolic Parameters for FORVLDGO 
 

Required 
 

Value to be supplied 

None 
 

None 

Optional 
 

Value to be supplied 

OPTIONS=parms  Loader and GO parameters 
CORE=nnnnK  Region for GO step; 1000K is the default 
EPT=entry  Entry point for main program; the default is MAIN 
LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined library 
LIBDISK=fileser  Volume for first library; required only if the data set is 

not cataloged 
LIBSTOR=type  Unit name for first library; FILE is the default 
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library 
ALTDISK=fileser  Volume for second library; required only if the data 

set is not cataloged 
ALTSTOR=type  Unit name for second library; FILE is the default 

 
The internal stepname for the FORVLDGO procedure is GO. 
 

Example 11: 
To compile a VS FORTRAN main program and use the Loader to execute it. 

 
//stepname EXEC FORVCOMP 
//COMP.SYSIN  DD  * 
   (source program) 
//stepname EXEC FORVLDGO 
//GO.ddname  DD  etc. (as many as needed) 
//GO.SYSIN  DD  *  (if needed) 
   (data) 

 



 

16  Using FORTRAN at the NIH Computer Center (9/98) 
 

6 STORING AND USING PROGRAMS IN USER LIBRARIES 
The following procedures were developed to store user programs in load module form. Users 
can develop and maintain their own private libraries, which are partitioned data sets. 
 
A Partitioned Data Set (PDS) is divided into one or more sequential “members”, each of 
which may be accessed independently. Each member has a unique name, up to 8 characters 
long, stored in a directory. The directory contains an entry for each member consisting of the 
member name and a pointer to the location of the member in the data set. When a member is 
deleted or replaced, only the member-name-pointer is deleted or changed. The space used by 
the member cannot be reused until the data set is condensed. If there is not enough space for 
a new or replacement member, or if there are no more free entries in the directory, no 
members can be added. A job that attempts to add a new member to a PDS that is full usually 
ABENDs with an X37 completion code. A PDS must be stored on a disk and cannot exceed 
one disk pack in size. 
 
Load modules (the output from the Binder) must be stored in PDSs. The programs may be 
either fully or partially link-edited. The Binder will automatically search libraries defined by 
the SYSLIB DD statement to resolve calls or references to programs that are not included in 
the main input stream defined by the SYSLIN DD statement. The libraries are searched in the 
order they are defined. When a reference is found, no further searching is done, and the next 
search begins again at the first library. If all external references and subroutine calls are 
resolved, the program is fully link-edited and is, therefore, directly executable without link-
editing again. If the external references and calls are not to be resolved, the NCAL option 
must be specified on the EXEC statement for the procedure used to store the program. The 
program is then partially link-edited and must be reprocessed by the Binder before it can be 
executed. 
 
Executing fully resolved load modules may cost less because a link-edit step is saved every 
time the program is run; however, problems may develop as a result of updates to the 
computer system. Fully resolved load modules cannot take advantage of some of these 
system improvements. In addition, a program may fail to run if it contains old interfaces to 
system modules. 
 
To avoid these problems, fully resolved load modules should be re-created periodically, 
particularly whenever a new system release is installed. If re-creating the fully resolved 
modules is difficult, it may be better to keep partially resolved modules and do the final link-
edit each time the program is run. 
 

6.1 Storing Programs in Single-Member User Libraries 
The LKSM procedure is used to link-edit and store a load module (output of the Binder) into 
a single-member partitioned data set (PDS). The COMP and OBJ procedures may be used to 
prepare input for the LKSM procedure. A short step, executed before the link-edit step, 
deletes the PDS if it already exists. Then the link-edit step creates the new data set. If the data 



 

Using FORTRAN at the NIH Computer Center (9/98)  17 

set does not already exist, the delete step issues a message, but does not affect later 
processing.  
 
The user may define two private call libraries for resolving external references. They are 
searched in their order of concatenation; if members with duplicate names exist, the first one 
found will be selected. The private libraries are searched after the FORTRAN language 
libraries and before NIH.UTILITY. 
 
Symbolic Parameters for FORVLKSM 
 

Required Value to be supplied 
 

NAME=‘aaaaiii.dsname’ Dsname of PDS to receive load module 
 

Optional Value to be supplied 
 

DISK=fileser  Volume for PDS; required only if the data set is not 
cataloged 

STORAGE=type  Unit name for PDS; FILE is the default 
OPTIONS=parms  Binder parameters 
PROGRAM=progname  Member name for load module; the default is MAIN 
SIZE=primary  Primary space allocation for load module; the default is 

100 units 
UNITS=type  Allocation units for load module; the default is blocks 

of 1024 bytes 
INCR=secondary  Number of units in each secondary allocation; the 

default is 12 
STEPEND=disp  Disposition for the load module; the default is KEEP 
UNUSED=  Nullifying causes retention of unused space; the default 

is RLSE 
INDEX=blocks  Number of directory blocks for load module PDS; the 

default is 1 
LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined library 
LIBDISK=fileser  Volume for first library; required only if the data set is 

not cataloged 
LIBSTOR=type  Unit name for first library; FILE is the default 
ALTNAME=‘aaaaiii.dsname
’  

Dsname of second user-defined library 

ALTDISK=fileser  Volume for second library; required only if the data set 
is not cataloged 

ALTSTOR=type  Unit name for second library; FILE is the default 
 
The internal stepnames for the FORVLKSM procedures are SCRATCH, for the step to 
scratch the data set if it already exists, and LOAD for the link-edit step. 
 



 

18  Using FORTRAN at the NIH Computer Center (9/98) 
 

Example 12:  
To compile, fully link-edit, and store a VS FORTRAN program into a single-member 
PDS. 

 
//stepname EXEC FORVCOMP 
//COMP.SYSIN DD * 
   (source program) 
//stepname EXEC FORVLKSM,NAME=‘aaaaiii.dsname’ 

 

Example 13: 
To compile, fully link-edit, and store a VS FORTRAN program, overriding the 
default space allocation. If the program requires more than the default space 
allocation, the SIZE parameter should be used. The default SIZE allows the user to 
obtain at least 10 tracks (unnecessary space is released) for the load module. 

 
//stepname EXEC FORVCOMP 
//COMP.SYSIN DD * 
   (source program) 
//stepname EXEC FORVLKSM,NAME=‘aaaaiii.dsname’, 
//  SIZE=primary 
 

Example 14:  
To fully link-edit and store a VS FORTRAN main program using input from the OBJ 
procedure. The user must supply a DD statement for each data set that contains a 
program or subroutine and insure that the main program is defined first. 

 
//stepname EXEC FORVLKSM,NAME=‘aaaaiii.dsname’ 
//LOAD.SYSLIN DD DSN=aaaaiii.dsname1,DISP=SHR 
// DD DSN=aaaaiii.dsname2,DISP=SHR 
// DD DSN=aaaaiii.dsname3,DISP=SHR 

 

Example 15:  
To compile a VS FORTRAN main program (FORVCOMP), link-edit using 
subroutines previously compiled with the OBJ procedure, and create a fully resolved 
single-member load module (FORVLKSM). 

 
//stepname EXEC FORVCOMP 
//COMP.SYSIN DD * 
   (source program) 
//stepname EXEC FORVLKSM,NAME=‘aaaaiii.dsname’ 
//LOAD.SYSLIN DD 
//  DD  DSN=aaaaiii.dsname1,DISP=SHR 
//  DD  DSN=aaaaiii.dsname2,DISP=SHR 

 



 

Using FORTRAN at the NIH Computer Center (9/98)  19 

6.2 Storing Programs in Multi-Member User Libraries 
The procedures described below enable the user to add programs to multi-member 
partitioned data sets and execute them. Before using these procedures, see the manual Batch 
Processing and Utilities at NIH for information on how to establish and maintain partitioned 
data sets. These procedures differ from the OBJ and LKSM procedures in that many 
programs can be stored in one data set. The OBJ and LKSM procedures store only one 
program in one data set. 
 
The LKMM procedure adds a program to a private partitioned data set. If the program name 
already exists in the data set, it will be replaced. The Binder input is the same as for the 
LKGO procedure. 
 
The user may define two private call libraries for resolving external references. They are 
searched in their order of concatenation; if members with duplicate names exist, the first one 
found will be selected. The private libraries are searched after the FORTRAN language and 
before NIH.UTILITY. If no libraries are to be searched (no external references are to be 
resolved), OPTIONS=NCAL must be specified for the LKMM step; this creates a partially 
link-edited load module. 
 
Symbolic Parameters for FORVLKMM 
 

Required  
 

Value to be supplied 

NAME=‘aaaaiii.dsname’ Dsname of PDS to receive load module 
PROGRAM=progname 
 

Program name; member name in PDS 

Optional 
 

Value to be supplied 

DISK=fileser Volume for PDS; required only if the data set is not 
cataloged 

STORAGE=type  Unit name for PDS; FILE is the default 
OPTIONS=parms  Binder parameters 
LIBNAME=‘aaaaiii. dsname’ Dsname of first user-defined library 
LIBDISK=fileser  Volume for first library; required only if the data set is 

not cataloged 
LIBSTOR=type  Unit name for first library; FILE is the default 
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library 
ALTDISK=fileser  Volume for second library; required only if the data 

set is not cataloged 
ALTSTOR=type  Unit name for second library; FILE is the default 

 
The stepname within the FORVLKMM cataloged procedure is LOAD. 
 



 

20  Using FORTRAN at the NIH Computer Center (9/98) 
 

Example 16:   
To create a multi-member PDS on a FILE volume and then compile and add a 
partially link-edited program to the PDS. The program must be fully link-edited along 
with all of its subroutines, as shown in the next example, before it is executed. 

 
//  EXEC  PGM=IEFBR14 
//NEWPDS  DD  DSN=aaaaiii.dsname,DISP=(NEW,CATLG), 
//          UNIT=FILE,SPACE=(TRK,(10,2,3)) 
//stepname EXEC FORVCOMP 
//COMP.SYSIN DD * 
  (source program) 
//stepname EXEC FORVLKMM,NAME=‘aaaaiii.dsname’, 
// PROGRAM=progname,OPTIONS=NCAL 

 

Example 17: 
To fully link-edit and add a VS FORTRAN program to a cataloged PDS, where one 
or more of the subroutines is being compiled. The same PDS is used to resolve 
external references; therefore, LIBNAME and NAME refer to the same data set. 

 
//stepname EXEC FORVCOMP 
//COMP.SYSIN DD * 
  (source program) 
//stepname EXEC FORVLKMM,LIBNAME=‘aaaaiii.dsname’, 
// NAME=‘aaaaiii.dsname’,PROGRAM=progname 
//LOAD.SYSLIN  DD 
//  DD  * 
    INCLUDE  SYSLIB(main progname) 
    ENTRY MAIN 

 
The INCLUDE and ENTRY statements are control statements to the Binder. They always 
begin after column 1. The INCLUDE statement is used to define as input to the Binder 
modules that would not automatically be brought in. The ENTRY statement indicates the 
starting point of the program. The entry name is always MAIN for FORTRAN. These control 
statements and the two preceding DD statements are not needed in this example if the main 
program is one of the routines being compiled. In general, the ENTRY statement is not 
needed for FORTRAN if the main program is the first input to the Binder or if it is in object 
module form. 
 



 

Using FORTRAN at the NIH Computer Center (9/98)  21 

Example 18: 
To fully link-edit and add a VS FORTRAN main program or subroutine to a PDS, 
where the main program and its subroutines were previously stored in the same PDS 
as partially link-edited load modules. If ‘progname’ and ‘main progname’ are the 
same, the partially link-edited main program will be replaced. 

 
//stepname  EXEC  FORVLKMM,NAME=‘aaaaiii.dsname’, 
//  PROGRAM=progname, 
//  LIBNAME=‘aaaaiii.dsname’ 
//LOAD.SYSLIN  DD  * 
    INCLUDE SYSLIB(main progname) 

 

Example 19: 
To link-edit and execute a program where the main program and some subroutines 
are in two separate PDSs and other subroutines are being compiled. 

 
//stepname  EXEC  FORVCOMP 
//COMP.SYSIN  DD  * 
   (source program) 
/* 
//stepname  EXEC  FORVLKGO, 
//  LIBNAME=‘aaaaiii.dsname1’, 
//  ALTNAME=‘aaaaiii.dsname2’ 
//LOAD.SYSLIN  DD 
//  DD  * 
  INCLUDE SYSLIB(main program name) 
  ENTRY entryname 
//GO.ddname  DD  etc. (as many as needed) 
//GO.SYSIN  DD  *  (if needed) 
   (data) 

 

6.3 Using Programs from User Libraries 
The CALL procedure is used to execute a fully link-edited program. This procedure provides 
the user with the DD statements needed to use the printer (FT06F001 or FT15F001). The 
ddname SYSIN may be used in place of FT05F001. These DD statements are the same ones 
supplied in the LKGO procedure. All FORTRAN execution-time error messages are written 
to the DD statement FT06F001; because of a local system standard, this cannot be 
overridden. The user must supply any additional DD statements required for the proper 
execution of the program. 
 
Symbolic Parameters for FORVCALL 
 

Required Value to be supplied 
 



 

22  Using FORTRAN at the NIH Computer Center (9/98) 
 

NAME=‘aaaaiii.dsname’  Dsname of PDS containing load module 
Optional Value to be supplied 

 
DISK=fileser Volume for PDS; required only if the data set is not 

cataloged 
STORAGE=type Unit name for PDS; FILE is the default 
PROGRAM=progname Member name for load module; the default is MAIN 
CORE=nnnnK Region for GO step; 4096K is the default 

 
The stepname within the FORVCALL cataloged procedure is GO. 
 

Example 20: 
To execute a VS FORTRAN program that has been previously stored by an LKSM 
procedure. 

 
//stepname EXEC FORVCALL,NAME=‘aaaaiii.dsname’ 
//GO.ddname  DD  etc. (as many as needed) 
//GO.SYSIN  DD  *  (if needed) 
   (data) 

 

Example 21: 
To execute a fully link-edited VS FORTRAN program stored in a cataloged PDS. 

 
//stepname EXEC FORVCALL,NAME=‘aaaaiii.dsname’, 
//  PROGRAM=progname 
//GO.ddname  DD  etc. (as many as needed) 
//GO.SYSIN  DD  *  (if needed) 
   (data) 

 

6.4 Link-editing from a User Library 
User-defined libraries can be specified to be searched in resolving external references. Both 
the Binder and the Loader offer this facility. The symbolic parameter LIBNAME defines the 
first such library. ALTNAME is available if it is necessary to define a second private library. 
These private libraries are searched in their order of concatenation; if members with 
duplicate names exist, the first one found will be selected. The private libraries are searched 
after the FORTRAN language library and before NIH.UTILITY. 
 



 

Using FORTRAN at the NIH Computer Center (9/98)  23 

Symbolic Parameters for FORVLKGO and FORVLDGO 
 

Required 
 

Value to be supplied 

None 
 

None 

Optional 
 

Value to be supplied 

OPTIONS=parms  Binder or Loader parameters 
CORE=nnnnK  Region for GO step; the defaults are 4096K for 

LKGO; 1000K for LDGO 
LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined library 
LIBDISK=fileser  Volume for first library; required only if the data set is 

not cataloged 
LIBSTOR=type  Unit name for first library; FILE is the default 
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library 
ALTDISK=fileser  Volume for second library; required only if the data 

set is not cataloged 
ALTSTOR=type  Unit name for second library; FILE is the default 

 

Example 22: 
To use the Binder when a main VS FORTRAN program is compiled and its 
subroutines are stored as load modules in a private user library. 

 
//stepname EXEC FORVCOMP 
//COMP.SYSIN DD * 
   (source program) 
//stepname EXEC FORVLKGO,LIBNAME=‘aaaaiii.dsname’ 
//GO.ddname DD etc. 

 

Example 23: 
To use the Loader when a main VS FORTRAN program program is compiled and 
some subroutines are stored as load modules in private user libraries. 

 
//stepname EXEC FORVCOMP 
//COMP.SYSIN DD * 
   (source program) 
//stepname EXEC FORVLDGO, 
//    LIBNAME=‘aaaaiii.dsname1’, 
//    ALTNAME=‘aaaaiii.dsname2’ 
//GO.ddname DD etc. 

 
The LKGO procedure may also be used to relink-edit and execute a partially resolved load 
module stored in a partitioned data set. 
 



 

24  Using FORTRAN at the NIH Computer Center (9/98) 
 

The examples above assume the subroutines were stored using the same names they are 
called by. If these names are not the same, INCLUDE statements must be supplied for the 
subroutines. 
 

Example 24: 
To link-edit and execute a VS FORTRAN main program and its subroutines which 
have been partially link-edited and stored into a PDS. 

 
//stepname  EXEC  FORVLKGO, 
//  LIBNAME=‘aaaaiii.dsname’ 
//LOAD.SYSLIN  DD  * 
  INCLUDE  SYSLIB(main program name) 
/* 
//GO.ddname  DD  etc. (as many as needed) 
//GO.SYSIN  DD  *  (if needed) 
   (data) 

 

Example 25: 
To link-edit and execute a VS FORTRAN program where the main program and 
some subroutines are in two separate PDSs and other subroutines are being compiled. 

 
//stepname  EXEC  FORVCOMP 
//COMP.SYSIN  DD  * 
   (source program) 
/* 
//stepname  EXEC  FORVLKGO, 
//  LIBNAME=‘aaaaiii.dsname1’, 
//  ALTNAME=‘aaaaiii.dsname2’ 
//LOAD.SYSLIN  DD 
//  DD  * 
  INCLUDE SYSLIB(main program name) 
  ENTRY entryname 
//GO.ddname  DD  etc. (as many as needed) 
//GO.SYSIN  DD  *  (if needed) 
   (data) 

 



 

Using FORTRAN at the NIH Computer Center (9/98)  25 

7 PROGRAMMING AND RUNNING TIPS 
The hints in this section apply to VS FORTRAN programs run at the NIH Computer Center. 
 

7.1 Coding in FORTRAN 
�� The names used in the SUBROUTINE and the CALL statements referencing a subroutine 

must always be the same. If this name is not the same as the name under which the 
subroutine is stored in the online library, then a Binder INCLUDE control statement must 
also be used for the subroutine in the link-edit step. 

�� Use of the LABEL=(,,,IN) DD parameter to prevent writing over an input tape data set is 
not recommended because it does not work in all cases. Unless the first I/O operation is a 
READ or WRITE (it might be a REWIND), the tape may be written on regardless of the 
specification in the LABEL parameter. 

�� The DEBUG, SDUMP, and PDUMP facilities can be used when debugging a VS 
FORTRAN program to check the validity of subscripts, trace the flow of the program, 
print the variables whenever their values change, and print given variables at any point in 
the program. 

�� When using FORTRAN to create variable length spanned records (all unformatted I/O in 
FORTRAN uses VS or VBS records), the LRECL specified must be as long as the 
longest record. Otherwise, a warning message, AFB201, will appear stating that the file 
may not be usable by other programs. Once migrated, such data sets cannot be retrieved. 

�� At the NIH Computer Center, a program will terminate with a completion code of 16 
after receiving only one AFB219 execution time error if the file “opened” or “closed” 
does not exist. This differs from the standard described in IBM documentation that 
indicates that 10 such errors may occur before program termination. 

�� Unlike the indications in IBM documentation, not all AFB219 errors are caused by DD 
statement errors. Requesting insufficient REGION for the program can also cause this 
error. As indicated in the IBM documentation, this error will occur 10 times before 
program termination. 

�� Some programming errors normally expected to cause an ABEND in a FORTRAN 
program are treated differently by FORTRAN. For example, ABENDs which might 
occur when a data set is opened (such as an 813 if a tape data set name is misspelled) are 
intercepted by FORTRAN execution-time library routines and a completion code of 16 is 
issued instead. 

Users who code conditional EXEC statements (using the COND parameter) should be 
mindful of this ABEND-handling by executing FORTRAN programs and adjust their 
condition code tests accordingly. For example, COND=EVEN and COND=ONLY, 
which apply only to system ABEND completion codes, would not necessarily detect a 
problem in the execution of a FORTRAN load module. It may be advisable to test the 
jobstep completion code of the executing FORTRAN load module for 16, or greater than 
zero. 



 

26  Using FORTRAN at the NIH Computer Center (9/98) 
 

 

7.2 Using Data Set Reference Numbers 
�� For the VS FORTRAN compiler, the data set reference numbers may range from 0-99 

(i.e., FT00F001-FT99F001). The data set reference number nn (FTnnF001) corresponds 
to the READ (nn, formatno) or WRITE in the user’s FORTRAN programs. 

�� VS FORTRAN load module execution time messages are printed on data set reference 
number 6 (FT06F001). FT06F001 is opened for output by FORTRAN because it is the 
default ddname for all AFB type diagnostics and execution time messages. The DD 
statement for unit 6 should always be coded as SYSOUT=A, e.g., 

 
//FT06F001 DD SYSOUT=A 

 
Never use unit 6 for input; this is an error that will cause unpredictable results. 

�� The VS FORTRAN additional facilities, which permit I/O operations without data set 
reference numbers, are defined by the Computer Center such that: 

 
READ format,list reads data set reference number 5 (FT05F001 or SYSIN) 

PRINT format,list writes data set reference number 6 (FT06F001) 

 

7.3 Writing Efficient Programs 
�� Consult the section entitled “Optimizing Your Program” in the VS FORTRAN Version 2: 

Programming Guide for CMS & MVS for a wealth of information on efficient VS 
FORTRAN coding techniques. 

�� Avoid using subroutines and functions for small repeated tasks. Use statement functions 
for short functions instead of calling external subroutines. Statement functions are 
compiled directly in the module. 

�� Apply the information gained during analysis of the problem before programming to 
simplify the problem and speed up the numerical procedure. 

�� Arrange the program logic to avoid branches whenever possible. 

�� Make the most probable result of all logical IF statements a simple drop-through instead 
of a branch. 

�� Reduce I/O to the minimum necessary when debugging is complete. 

�� Because of round-off error in low-order bits, do not test for equal using floating-point 
variables; use .GE. or .LE. 

�� Use SQRT instead of **.5. For small powers, use A*A*A ... or A**I with I = R instead 
of A**R where R is a floating-point integer. (Values raised to integer powers are 
computed by repetitive multiplication, whereas values raised to real powers are computed 
using logarithmic and exponential routines. A**R can be forty times slower than A**I). 



 

Using FORTRAN at the NIH Computer Center (9/98)  27 

�� Calculate all quantities that are constant throughout a program at the beginning, and 
calculate all quantities constant throughout a loop outside the loop. For example: 

     DO 20 I = 1,450 
20   C(I+3,2*I+1) = (D*(I+2))**(2*K)+E-2.*L-1 

 

should be written 

 
     M = 2*K 
     F = E-2.*L-1 
     DO  20  J=3,452 
20   C(J+1,2*J-3) = (D*J)**M+F 

 
�� If several tests or operations are to be done in DO loops, incorporate as many as possible 

in a single DO loop rather than setting up separate DO loops for each test or operation. 

�� Code the first subscript in the innermost loop of the program. For example: 
 

     DO 500 J=1,500 
     DO 500 I=1,500 
500  TOTAL=TOTAL+ARRAY(I,J) 

 
�� When using CHARACTER data, relatively long character variable lengths 

(CHARACTER*20 or more) should be used. This reduces or eliminates the need for 
long, costly DO LOOPS to initialize data. 

 

7.4 Increasing I/O Efficiency 
�� If your program reads or writes portions of arrays, the use of EQUIVALENCE statements 

will permit the use of simple array names in I/O statements. For example: 

 
   INTEGER BUFFER(1000),BUFF1(500),BUFF2(500) 
   EQUIVALENCE (BUFFER(1),BUFF1(1)), 
 *(BUFFER(501),BUFF2(1)) 
1  WRITE(3)INUM,(BUFFER(I),I=1,500) 
2  WRITE(3)INUM,BUFF1 
   RETURN 
   END 

 
WRITE statements 1 and 2 are equivalent in effect, but the second requires less CPU 
time. 

�� The I/O of a list of many variables can be made more efficient in the following manner. 
Use a COMMON or named COMMON statement to place the variables in contiguous 
storage spaces. Define a singly dimensioned array the length of the list of variables and 



 

28  Using FORTRAN at the NIH Computer Center (9/98) 
 

use an EQUIVALENCE statement to cause the array to reference the same storage 
locations as the list of variables. Then use the array name for I/O. An example is: 

 
COMMON/LIST/A(20),B(30),C,D,E(15),F,G(25) 
DIMENSION XOUT(93) 
EQUIVALENCE (A(1),XOUT(1)) 
READ (5,100) XOUT 
. 
. 
WRITE (6,200) XOUT 

 

7.5 Data Formats for Inter-Language Communication 
The following figures show the ways data can be stored. The source language definitions for 
each data type are given under the COBOL, FORTRAN, and PL/I headings. For more 
specific information on data formats, consult the appropriate language manuals and the IBM 
ESA/390 Principles of Operation, SA22-7201. 
 
The “MACHINE DATA FORMAT” column in the figures below shows a bit breakdown of 
the data type as stored internally. Bit positions are written vertically under the machine data 
format symbols they refer to. 
 
CHARACTER 
  

COBOL FORTRAN PL/I TYPE 
PIC X(n) 
DISPLAY 
 
1<=n<=32767 

CHARACTER*n 
 
1<=n<=3267 

CHAR(n) 
 
1<=n<=32767 

Length = 
n bytes 
 

 
MACHINE DATA FORMAT EXAMPLE 

Char 1 Char 2 … 
 

Char n Value Internal hex 
representation 

0         0 
      -      
0         7 

0         1 
      -      
8         5 

  ABCD C1C2C3C4 
 

Figure 3. Character Formats for Inter-Language Communication 
 
FIXED POINT 
The fixed point two-word data type, which is available only in COBOL, is simulated through 
software and requires all data items to be aligned on a word boundary. 
 
The “Range” given in the table indicates the minimum and maximum values numbers can 
have in all uses of the language. Idiosyncrasies in languages reduce the full range of numbers 
in some cases even though they are represented the same internally. 



 

Using FORTRAN at the NIH Computer Center (9/98)  29 

 
Assumed decimal points in COBOL and PL/I are not shown in the table. They are stored in 
the same way as other numbers; instructions generated by the compilers keep track of the 
position of the assumed decimal point. 
 

COBOL FORTRAN PL/I TYPE 
PIC S9(1-4) 

COMP 
(or COMP-4) 

 
Range: 

-9999 to 9999 

INTEGER*2 
 
 
 
Range: 

-32768 to 32767 

FIXED BIN 
(1-15,0) 

 
 
Range: 

-32768 to 32767 

Halfword 
 
Length = 2 bytes. 

PIC S9(5-9) 
COMP 

(or COMP-4) 
 

Range: 
-(9)9s to +(9)9s 

INTEGER*4 
 
 

Range: 
-2147483648 to 

2147483647 

FIXED BIN 
16-31,0) 

 
Range: 

-2147483648 to 
2147483647 

Fullword 
 
Length =4 bytes. 

PIC S9(10-18) 
COMP 

(or COMP-4) 
 

Range: 
-(18)9s to +(18)9s 

 
 

----- 

 
 

----- 

Two-word 
 

Length = 8 bytes. 

Figure 4. Fixed Point Formats for Inter-Language Communication 



 

30  Using FORTRAN at the NIH Computer Center (9/98) 
 

 
MACHINE DATA FORMAT EXAMPLES 

 
 
 

0  0  -  1 
0  1     5               Halfword 

Value 
 
----------
+1234 
-1234 

Internal hex 
representation 
-------------------- 
04D2 
FB2E 

 
 
 

0  0      -          3 
0  1                 1   Fullword 

 
+1234  
---------- 
 
-1234 

 
000004D2 
--------------------- 
 
FFFFFB2E 

 
 

 
0  0                        -                       6 
0  1                                                3 

Two-word 

 
+1234 
---------- 
 
-1234 

 
0…04D2 
--------------------- 
 
F...FB2E 

“S” is a binary sign bit: 0 is positive; 1 is negative. 
“I” is a 15, 31, or 63 bit integer. 
Figure 4 (Continued) 
 
FLOATING POINT 
Magnitude is the range of a number expressed in powers of ten. 
 
Although the numbers are represented the same internally, peculiarities in languages reduce 
the precision of numbers in some cases. The degree of precision given in the table is good in 
all cases. Fractional precisions occur because of the difference between the decimal 
representation and the machine’s internal storage of numbers. 
 

S    I 

S          I 

S                        I 



 

Using FORTRAN at the NIH Computer Center (9/98)  31 

COBOL  FORTRAN PL/I TYPE 
COMP-1 

 
 
Magnitude:  
10**-78 to 10**75 
Precision: 

7.2 digits 

REAL*4 
 
 

Magnitude: 
10**-78 to 10**75 
Precision: 

7.2 digits 

FLOAT 
DEC(1-6) 

 
Magnitude: 
10**-78 to 10**75 
Precision: 

 6 digits 

Short  
 

Length = 4 bytes 

COMP-2 
 
 
Magnitude:  
10**-78 to 10**75 
Precision: 

16 digits 

REAL*8 
 
 

Magnitude: 
10**-78 to 10**75 
Precision: 

16.8 digits 

FLOAT 
DEC(7-16) 

 
Magnitude: 
10**-78 to 10**75 
Precision: 

 16 digits 

Long 
 

Length = 8 bytes 

 
 

------ 

REAL*16 
 
 

Magnitude: 
10**-78 to 10**75 
Precision: 

35 digits 

FLOAT 
DEC(17-33) 

 
Magnitude: 
10**-78 to 10**75 
Precision: 

 33 digits 

Extended 
 

Length = 16 bytes 

Figure 5. Floating Point Formats for Inter-Language Communication 



 

32  Using FORTRAN at the NIH Computer Center (9/98) 
 

MACHINE DATA FORMAT EXAMPLES 
 
 

0  0-0  0      -      3 
0  1 7  8              1 

Short 

Value 
 
----------- 
+1234 
-----------
-1234 

Internal hex 
representation 
--------------------- 
434D2000 
--------------------- 
C34D2000 

 
 

0  0-0  0                 -                      6 
0  1 7  8                                         3 

Long 

 
+1234 
----------- 
-1234 
 

 
434D20…0 
--------------------- 
C34D20…0  

 
 

 
0 0-0  0                 -                       6 
0 1 7  8                                          3 

 
 

 
0  -  0  0                                       6 
0     7  8                                        3 

Extended 

 
+1234 
 
----------- 
 
-1234 
 
 

 
434D20…0 
 
--------------------- 
 
C34D20…0 

“S” is a binary sign bit: 0 is positive; 1 is negative. 
“E” is a seven bit exponent with a value between hex 16** -64 and 16** +63. 
“F” is a fraction, which may be 24, 56, or 112 bits long. 
Figure 5 (Continued) 
 

S   E         F 

S    E                      F 

S    E                    F  

F (continued) 



 

Using FORTRAN at the NIH Computer Center (9/98)  33 

ZONED DECIMAL 
The “Range” given in the table indicates the minimum and maximum values numbers can 
have in all uses of the language. Idiosyncrasies in languages reduce the full range of numbers 
in some cases even though they are represented the same internally. 
 

COBOL FORTRAN PL/I TYPE 
PIC 9(n) 

DISPLAY 
 

1<=n<=18 
 

Range: 0 to (18)9s 

 
 

------ 
 
 

PIC ‘(n)9’ 
 

1<=n<=15 
 
 

Range: 0 to (15)9s 

Unsigned 
 

Length = n bytes. 

PIC S9(n) 
DISPLAY 

 
1<=n<=18 

 
Range: 
-(18)9s to +(18)9s 

 
 

------ 

PIC ‘(n-1)9T’ 
 

1<=n<=15 
 
 
Range: 
-(15)9s to +(15)9s 

Signed 
 

Length = n bytes. 

 
MACHINE DATA FORMAT EXAMPLES 

 
 

0-0   0-0  0-1  1-1 
0 3   4 7  8 1  2 5  

Unsigned 

Value 
 
---------- 
1234 
 

Internal hex 
representation 
--------------------- 
F1F2F3F4 
 

 
 

0-0   0-0  0-1  1-1 
0 3   4 7  8 1  2 5  

Signed 

 
+1234 
---------- 
-1234 
 

 
F1F2F3C4 
--------------------- 
F1F2F3D4 

“Z” is a 4 bit zone code with a value of hex F. 
“D” is a 4 bit binary decimal number with a value between hex 0 and 9. 
“Si” is a 4 bit sign code: A, C, E, and F are positive; B and D are negative. 

Figure 6.  Zoned Decimal Formats for Inter-Language Communication 
 

  Z     D     Z    D       …     

  Z     D     Z    D       …     

   Z    D

 Si     D



 

34  Using FORTRAN at the NIH Computer Center (9/98) 
 

PACKED DECIMAL 
The “Range” given in the table indicates the minimum and maximum values numbers can 
have in all uses of the language. Idiosyncrasies in languages reduce the full range of numbers 
in some cases even though they are represented the same internally. 
 

COBOL FORTRAN PL/I TYPE 
COMP-3 
PIC 9(n) 

 
1<=n<=18 

 
Range: -(18)9s to 

+(18)9s 
 

 
 

------ 
 

FIXED 
DEC(n) 

 
1<=n<=15 

 
Range: -(15)9s to 

+(15)9s 

 
Length in 

bytes = (n+1)/2 
rounded up. 

 
MACHINE DATA FORMAT EXAMPLES 

 
 

0-0   0-0 

0 3   4 7 
 

Value 
 
--------------- 
-1234 
--------------- 
-1234 

Internal hex 
representation 
--------------------- 
01234C 
--------------------- 
01234D 

“D” is a 4 bit binary decimal number with a value hex 0 through 9. 
“Si” is a 4 bit sign code: A, C, E, and F are positive; B and D are negative. 

Figure 7. Packed Decimal Formats for Inter-Language Communication 
 

D     D             …        D     Si 



 

Using FORTRAN at the NIH Computer Center (9/98)  35 

7.6 Dynamic Data Set Allocation 
Normally, when FORTRAN programs are run at the NIH Computer Center the JCL specifies 
the various input and output data sets with DD statements. FORTRAN allows users to 
specify these data sets dynamically within the program. 
 
For example: 
 

//  EXEC  FORVCOMP C 
C This job dynamically creates a data set called   
C AAAAIII.FORT.TEST on a public FILE volume.  If the data  
C set does not exist, this is the equivalent to  
C specifying the following DD statement: 
C 
C   //GO.FT10F001  DD  DSN=AAAAIII.FORT.TEST, 
C   //   DISP=(NEW,CATLG), 
C   //   UNIT=FILE,SPACE=(TRK,(5,5)), 
C   //   DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000) 
C 
C If the data set exists before the job is submitted,  
C this program is equivalent to coding: 
C 
C   //GO.FT10F001  DD  DSN=AAAAIII.FORT.TEST, 
C   //   DISP=(OLD,KEEP), 
C   //   SPACE=(TRK,(5,5)) 
C 
         CALL FILEINF(IRC, ‘RECFM’, ‘FB’, ‘LRECL’, 80, 
     X   ‘BLKSIZE’,8000, ‘TRK’, 5, ‘SECOND’, 5, 
     X   ‘DEVICE’,’FILE’) 
         OPEN(10,FILE=‘/AAAAIII.FORT.TEST’) 
         WRITE(10,100) 
100      FORMAT(‘TEST DATA’) 
         STOP 
         END 
//  EXEC  FORVLKGO 

 
See VS FORTRAN Version 2: Language and Library Reference, SC26-4221 for details on the 
use of the FILEINF function that is used to set up the characteristics of the data set being 
allocated. 
 





 

Using FORTRAN at the NIH Computer Center (9/98)  37 

INDEX 
 

3 
31-bit addressing, 10 

A 
ABENDs 

S913-38 with FORTRAN, 25 
X37, 16 

C 
CALL procedure, 21 
character data, 28 
coding hints, 25 
COMP procedure, 9 
compiler options 

changing, 8 
defaults, 7 

compiling programs, 9 

D 
data formats, 28 
data set allocation, 34 
data set reference numbers, 26 
data types 

character, 28 
fixed point, 28 
floating point, 30 
packed decimal, 33 
zoned decimal, 32 

DCB information, 4 
other FORTRAN data sets, 4 

DD statements needed, 10 
DEBUG facility, 25 
documentation. See publications 
dynamic data set allocation, 34 

E 
electronic mail 

submitting a PTR, 1 
ENTER PTR, 1 
ENTER PUBWARE, 6 
ENTRY statement, 20 
extended address space 

FORTRAN, 10 

F 
figures 

character formats for inter-language 
communication, 28 

DCB information for FORTRAN data 
sets, 5 

fixed point formats for inter-language 
communication, 29 

floating point formats for inter-language 
communication, 30 

packed decimal formats for inter-
language communication, 33 

SYSOUT DCB information for 
FORTRAN procedures, 4 

FIPS standard 
FORTRAN, 2 

fixed point data, 28 
floating point, 30 
FORTRAN 

introduction, 1 
FORVCALL procedure, 21 
FORVCOMP procedure, 9 
FORVLDGO procedure, 14 
FORVLKGO procedure, 10, 13, 22 
FORVLKMM procedure, 19 
FORVLKSM procedure, 16 
FORVOBJ procedure, 12 

I 
I/O efficiency, 27 
INCLUDE statement, 20, 24 
input tapes, 25 
inter-language communications, 28 
introduction, 1 

L 
LABEL DD parameter 

FORTRAN, 25 
level of support, 1 
libraries 

private, 22 



 

38  Using FORTRAN at the NIH Computer Center (9/98) 
 

LKGO procedure, 10, 13, 22 
LKMM procedure, 19 
LKSM procedure, 16 
load module storage, 16 
load modules 

recreate periodically, 16 

M 
messages, 26 
multi-member libraries, 19 

N 
names in subroutine, 25 

O 
OBJ procedure, 12 
overriding procedures, 10 

P 
packed decimal, 33 
PDS, 16 

multi-member for programs, 19 
single member for load module, 16 
use explained, 16 

private libraries 
how to define, 19 

private libraries for load modules, 16 
procedure functions, 2 
procedure names, 2 
program optimization, 25 
programming tips, 25 
PTR, 1 
publications, 6 

ordering, 6 
PUBWARE, 6 

R 
RACF 

FORTRAN considerations, 25 
RACF access, 25 
running programs, 9 

S 
savings with load modules, 16 

single member libraries, 16 
standards, 2 
support from Computer Center, 1 
SYSOUT blocksizes, 4 
SYSOUT DCB information for 

FORTRAN procedures, 4 
SYSOUT record formats, 4 

T 
tapes 

FORTRAN access, 25 
Technical Information Office, 6 

V 
VS FORTRAN. See FORTRAN 

W 
warning messages 

AFB201 from FORTRAN, 25 
World Wide Web 

PTR submission, 1 
publication ordering, 6 
publications online, 6 

WYLBUR 
ENTER PUBWARE, 6 

X 
X37 ABEND, 16 

Z 
zoned decimal data, 32 
 



 

Using FORTRAN at the NIH Computer Center (9/98)  39 

Using FORTRAN at the NIH Computer Center 
 
 

Document Evaluation 
Is the Manual: 
  YES NO 
  
 Clear?    
    
 Well organized?    
 
 Complete?   
 
 Accurate?   
 
 Suitable for the beginner?   
 
 Suitable for the advanced user?     
 
Comments:  
 
���������������������������������������������������������������������������������������������������������������������������������������� 
���������������������������������������������������������������������������������������������������������������������������������������� 
���������������������������������������������������������������������������������������������������������������������������������������� 
���������������������������������������������������������������������������������������������������������������������������������������� 
���������������������������������������������������������������������������������������������������������������������������������������� 
���������������������������������������������������������������������������������������������������������������������������������������� 
���������������������������������������������������������������������������������������������������������������������������������������� 
 
Please give page references where appropriate.  If you wish a reply, include your name and mailing 
address. 
 
         Send to:   Application Services Branch 
  Division of Computer System Services, CIT 
                        National Institutes of Health 
                         Building 12A, Room 4011 
  Bethesda, MD  20892-5607 
 
 FAX to:  (301) 496-6905 
 
ICD or Agency: 
Date Submitted: 
Name (Optional): 
E-Mail Address:             
        Revision date: 9/98 



 

40  Using FORTRAN at the NIH Computer Center (9/98) 
 

 
 
 


