
Using Assembler Language
at the NIH
Computer Center

September 1998

National Institutes of Health
Center for Information Technology
NIH Computer Center
12 South Drive MSC 5607
Bethesda, Maryland 20892-5607

Publication No. CIT182

Using Assembler Language at the NIH Computer Center – September 1998

Using Assembler Language at the NIH Computer Center (9/98) i

Table Of Contents

1 INTRODUCTION... 1

1.1 Procedure Names... 2

2 DCB INFORMATION FOR SYSOUT DATA SETS .. 4

3 HIGH LEVEL ASSEMBLER LANGUAGE PUBLICATIONS 5

4 HIGH LEVEL ASSEMBLER COMPILER OPTIONS.. 8

5 ASSEMBLING AND RUNNING PROGRAMS .. 9

5.1 Using the Assembler ... 9
5.2 Using the Binder.. 10
5.3 Creating and Using Object Modules ... 12
5.4 Using the Loader ... 15

6 STORING AND USING PROGRAMS IN USERS LIBRARIES 17

6.1 Storing Programs in Single-Member User Libraries... 17
6.2 Storing Programs in Multi-Member User Libraries .. 20
6.3 Using Programs from User Libraries .. 23
6.4 Using the Binder from a User Library... 23

7 PROGRAMMING AND RUNNING TIPS ... 27

7.1 Modular Programming .. 27
7.2 Program Commenting ... 27
7.3 Standard Binder Conventions.. 28
7.4 Register Usage... 28
7.5 Some Coding Hints ... 29

7.5.1 General Programming Guidelines ... 29
7.5.2 Instruction Usage Hints ... 30

7.6 Data Formats for Inter-Language Communication ... 34

ii Using Assembler Language at the NIH Computer Center (9/98)

Using Assembler Language at the NIH Computer Center (9/98) 1

1 INTRODUCTION
This manual describes the use of the Assembler programming language at the NIH Computer
Center. This manual is intended to give programmers the Assembler information they need in
order to create new programs and to maintain programs running on the MVS South System.
The information in this manual should be used in conjunction with the Computer Center
User’s Guide, Batch Processing and Utilities at NIH, and the manuals described in Section 3
of this publication.

The Assembler programming language receives full (Level 1) support. Questions on
Assembler should be directed to the Technical Assistance and Support Center (TASC), either
by phone at (301) 594-3278 or by submitting a Problem Tracking Report (PTR). There are
several methods of submitting a PTR:

�� World Wide Web

Users with NIHnet or Internet connections can submit a PTR through the World Wide
Web. To access the PTR system, connect to:

http://datacenter.cit.nih.gov/ptr.html

�� Electronic Mail

PTRs can also be submitted to the Computer Center by sending electronic mail to the
WYLBUR initials PTR or the Internet address PTR@CU.NIH.GOV. Mailed PTRs must
have a valid SUBJECT header containing the submitter’s name and telephone number,
and be of the form

Subject: PTR FROM name TELEPHONE phone-number

For example:

Subject: PTR FROM Tom Jones TELEPHONE 6-1111

�� ENTER PTR

Users can submit a PTR through WYLBUR’s ENTER PTR command.

Changes that affect the use of Assembler will be fully tested and pre-announced through the
Interface newsletter. For a full description of Level 1 support, see the NIH Computer Center
User’s Guide.

The IBM Operating System Assembler is a symbolic programming language used to write
programs for the MVS System. The language provides a convenient means for representing
the machine instructions and related data necessary to program the MVS System. The NIH
Computer Center uses the IBM High Level Assembler program product.

2 Using Assembler Language at the NIH Computer Center (9/98)

No Federal Information Processing Standard (FIPS) has been established for this language.
Programs written in languages meeting FIPS standards can be transported more readily
between federal installations and different vendors’ mainframes. Federal policy encourages
the use of languages with FIPS standards.

1.1 Procedure Names

Note: the Binder now performs the link-editing functions previously performed by
the Linkage Editor.

The procedure names for Assembler Language are:

ASMHCOMP
ASMHOBJ
ASMHLKGO
ASMHLDGO
ASMHLKMM
ASMHLKSM
ASMHCALL

Each procedure name follows the pattern:

lllvffff

where “lll” is the language prefix (ASM for Assembler)
 “v” is the version (is the version (H))
 “ffff” is the function

The meaning of each function is given below:

COMP compilation only

OBJ compile and store object module

LKGO use the Binder (formerly the Linkage Editor) and execute program

LDGO use the Loader and execute program

LKMM use the Binder to store a link-edited load module into an existing
multi-member PDS

Using Assembler Language at the NIH Computer Center (9/98) 3

LKSM use the Binder to store a link-edited load module into a new single-
member PDS

CALL execute a fully link-edited load module

In the examples throughout this manual, the following conventions apply:

“aaaa” the account number

“iii” the programmer’s registered initials

“dsname” name of data set

“progname” name of program stored in partitioned data set (PDS)

“fileser” volume serial number of disk where data set is located; required only
if the data set is not cataloged

“primary” primary quantity requested in the SPACE parameter

“blocks” number of directory blocks

“stepname” name of step which executes the procedure; should be unique within
a job

“ddname” user-supplied ddname; should be unique within job step

4 Using Assembler Language at the NIH Computer Center (9/98)

2 DCB INFORMATION FOR SYSOUT DATA SETS
Listed in the table below are the default record formats and blocksizes for all SYSOUT data
sets in the Assembler procedures:

PROCEDURE
NAME

STEP NAME DD NAME DEFAULT
RECFM/BLKSIZE

ASMHCOMP COMP SYSTERM FM 121
 SYSPRINT FM 121
 SYSUDUMP

VBA 125

ASMHLDGO GO SYSLOUT

FA 121

ASMHLKGO LOAD SYSPRINT FA 121
 SYSUDUMP

VBA 125

ASMHLKMM LOAD SYSPRINT FA 121
 SYSUDUMP

VBA 125

ASMHLKSM LOAD SYSPRINT FA 121
 SYSUDUMP

VBA 125

ASMHOBJ COMP SYSTERM FM 121
 SYSPRINT FM 121
 SYSUDUMP

VBA 125

Figure 1. SYSOUT DCB Information for Assembler Procedures

Using Assembler Language at the NIH Computer Center (9/98) 5

3 HIGH LEVEL ASSEMBLER LANGUAGE PUBLICATIONS
The CIT Technical Information Office distributes general information, technical and vendor
publications and certain software to the user community. Using Assembler Language at the
NIH Computer Center is one of the many publications available online through the World
Wide Web at:

http://datacenter.cit.nih.gov/cfb.pub.txt.html

Users may order publications in the following ways:

�� Using the World Wide Web, visit:

http://livewire.nih.gov/publications/publications.asp

and select the option for ordering publications online. Some publications may not be
available through this ordering system.

�� Sign on to WYLBUR and use the ENTER PUBWARE command to order publications.

�� If you cannot order a publication online, you may place an order by visiting TASC in
Building 12A or by telephone.

The following manuals relevant to Assembler can be ordered:

IBM High Level Assembler Language Reference, GC26-4940

This publication is a reference manual for the programmer using High Level
Assembler. It will enable the user to answer specific questions about language
functions and specifications.

IBM High Level Assembler Programmer’s Guide, SC26-4941

This publication tells how to use High Level Assembler. It provides the guide to
assembling, link editing, running, interpreting listings and programming
considerations. Only Parts 1 and 2 are applicable to the MVS operating systems. Part
3 is for VM/CMS only. Part 4 is for VSE.

IBM High Level Assembler General Information, GC26-4943
This manual introduces the major features of High Level Assembler to help users
decide whether this programming language meets their data processing needs.

6 Using Assembler Language at the NIH Computer Center (9/98)

IBM MVS/ESA Principles of Operation, SA22-7200
This manual is the machine reference manual for the IBM MVS extended system
architecture mode. It is written principally for Assembler Language programmers to
be used in conjunction with the appropriate Assembler Language manuals.

IBM MVS/ESA Programming: Assembler Services Guide, GC28-1466
This publication shows applications programmers how to use the services of the
supervisor, the macro instructions used to request these services, and the linkage
conventions used by the control program to provide these services.

IBM MVS/ESA Programming: Assembler Services Reference, GC28-1474
This publication describes some of the macros (or macro instructions) that the system
provides. These macros are available to any Assembler Language program.
Programmers can use these macros to invoke the system services that they need. This
publication includes the detailed information; such as the function, syntax, and
parameters, needed to code the macros.

DFSMS/MVS Program Management, SC26-4916
This publication is intended to help you learn about and use the program management
functions provided by DFSMS/MVS. DFSMS/MVS works in conjunction with
MVS/ESA SP to manage programs, performing the steps necessary to create and
execute programs on the system. These functions are performed by various
DFSMS/MVS program management components, including the program management
binder, the program management loader, the Binder, the batch loader, and the
transport utility.

IBM DFSMS/MVS Macro Instructions for Data Sets, SC26-4913
This publication contains descriptions and definitions for the data management macro
instructions available in Assembler Language. No information is included for VSAM.

IBM MVS/ESA JCL User’s Guide, GC28-1473
This publication is designed as a user’s guide to be used when deciding how to
perform job control tasks. It does not describe how to code the statements.

IBM MVS/ESA JCL Reference, GC28-1479
This publication is designed as a reference book to be used while coding JCL
statements.

MVS/ESA System Messages, Volume 1 (GC28-1480), Volume 2 (GC28-1481), Volume 3
(GC28-1482), Volume 4 (GC28-1483), and Volume 5 (GC28-1484)

These publications list the systems messages produced by IBM-supplied components
of the operating system. The causes of the messages are explained, the accompanying
actions by the operating system are described, and appropriate responses are
suggested.

Using Assembler Language at the NIH Computer Center (9/98) 7

IBM MVS/ESA JES2 Messages, GC23-00085
This publication documents the messages issued by the MVS/ESA operating system.

IBM MVS/ESA Systems Codes, GC28-1486
This publication lists the system completion codes and wait state codes issued by the
MVS/ESA operating system. Each code is explained, and where appropriate, a
programmer response is indicated.

Interface
This is a series of technical notes for users, published by the Computer Center. All
changes to Computer Center standards and facilities are announced in this
publication.

8 Using Assembler Language at the NIH Computer Center (9/98)

4 HIGH LEVEL ASSEMBLER COMPILER OPTIONS
The NIH Computer Center has customized the following options for High Level Assembler:

TERM The Assembler will write diagnostic information on the device
specified by the SYSTERM DD statement (SYSOUT=A).

XREF(SHORT) Cross reference table of all symbols referenced in the assembly is
produced.

For a complete list of all options for High Level Assembler, see the IBM High Level
Assembler Programmer’s Guide, SC26-4941.

If any options will be changed, the new values must appear in the options list on the EXEC
statement. The OPTIONS symbolic parameter should be used in place of the PARM
parameter. Use of the OPTIONS symbolic parameter is illustrated in the examples later in
this manual.

For those who must override or augment the cataloged procedures, the stepnames used in the
procedure are given in each section.

Using Assembler Language at the NIH Computer Center (9/98) 9

5 ASSEMBLING AND RUNNING PROGRAMS
The procedures in this section are used to assemble, fully resolve (using the Binder), and
execute Assembler Language programs.

5.1 Using the Assembler
The COMP procedure provides the user with a one-step procedure to assemble source code
for diagnostic messages; and, if assembly is successful, to prepare the input for further
processing (e.g., the LKGO procedure). This procedure stores the output of the Assembler
into a temporary data set to be used later in the job and then deleted.

Symbolic Parameters for ASMHCOMP

Required Value to be supplied

None None

Optional Value to be supplied

OPTIONS=parms Assembler parameters
LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined macro library
LIBDISK=fileser Volume for first library; required only if the data set is

not cataloged
LIBSTOR=type Unit name for first library; FILE is the default
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined macro library
ALTDISK=fileser Volume for second library; required only if the data set

is not cataloged
ALTSTOR=type Unit name for second library; FILE is the default

The internal stepname for the ASMHCOMP procedure is COMP.

10 Using Assembler Language at the NIH Computer Center (9/98)

Example 1:
To assemble source code only.

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)

Example 2:
To assemble source code containing user-defined macros that are located in the user’s
macro library which resides on the MSS.

//stepname EXEC ASMHCOMP,LIBNAME=‘aaaaiii.dsname’
//COMP.SYSIN DD *
(source program)

Example 3:
To assemble source code, printing the full cross-reference table and keeping the
source symbol table (SYM) in the object module for later use by TSO TEST. The
TEST option must be specified for both the Assembler and the Binder. This option
must not be specified if the program is to be executed as a batch job (using
ASMHLKGO, ASMHLDGO, or ASMHCALL).

//stepname EXEC ASMHCOMP,OPTIONS=‘XREF(FULL),TEST’
//COMP.SYSIN DD *
(source program)

Use of the TEST facility is described in the TSO Extensions Command Language Reference,
SC28-1881.

5.2 Using the Binder
The LKGO procedure performs the following:

�� fully resolves the program to prepare a load module for execution

�� executes the load module

It provides the user with the DD statements needed to use the printer (SYSOUT) and the
SORT/MERGE messages data set (SORTMSGS). The user must provide additional JCL for
any I/O units (data sets) used. Section 6.4 discusses specifying user-defined libraries with
LKGO.

There must be one GO.ddname DD statement describing each data set used. DD statements
to override ddnames within the procedure must precede those for ddnames to be added to the
procedure. If more than one DD statement is being overridden, the override statements must

Using Assembler Language at the NIH Computer Center (9/98) 11

be in the same order as the existing DD statements in the procedure. See the manual Batch
Processing and Utilities at NIH for a description of the format of DD statements.

Symbolic Parameters for ASMHLKGO

Required

Value to be supplied

None

None

Optional

Value to be supplied

OPTIONS=parms Binder parameters
CORE=nnnK Region for GO step; 512K is the default
LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined library
LIBDISK=fileser Volume for first library; required only if the data set

is not cataloged
LIBSTOR=type Unit name for first library; FILE is the default
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library
ALTDISK=fileser Volume for second library; required only if the data

set is not cataloged
ALTSTOR=type Unit name for second library; FILE is the default

The stepnames within the ASMHLKGO cataloged procedure are LOAD for the Binder step
and GO for the run step.

Example 4:
To assemble the main program and execute it. The OPTIONS parameter in the run
step requests the Binder option XREF.

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)
//stepname EXEC ASMHLKGO,OPTIONS=XREF
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
(data)

12 Using Assembler Language at the NIH Computer Center (9/98)

Example 5:
To assemble the main program and one subroutine and execute it. The CORE
parameter supplies a region size for the GO step.

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source for main program)
//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source for subroutine)
//stepname EXEC ASMHLKGO,CORE=nnnK
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
(data)

5.3 Creating and Using Object Modules
The OBJ procedure is used to assemble source code and store the resultant object module
into a sequential data set. The output of this procedure must be processed by the Binder
before it can be run. The LKGO procedure may be used to fully resolve and execute the
object module(s) created by the OBJ procedure(s).

Symbolic Parameters for ASMHOBJ

Required

Value to be supplied

NAME=‘aaaaiii.dsname’

Dsname of object module to be stored

Optional

Value to be supplied

DISK=fileser Required only for a data set written to a dedicated
disk

STORAGE=type Unit name for the object module; FILE is the default
OPTIONS=parms Assembler parameters
STATUS=status Specifies whether the output data set is old or new;

NEW is the default
SIZE=primary Primary space allocation for object module; default is

500 (enough for approximately 500 source
statements)

UNITS=type Allocation units for object module; the default is
blocks of 1024 bytes

LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined macro library
LIBDISK=fileser Volume for first library; required only if the data set

is not cataloged
LIBSTOR=type Unit name for first library; FILE is the default
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined macro library

Using Assembler Language at the NIH Computer Center (9/98) 13

ALTDISK=fileser Volume for second library; required only if the data
set is not cataloged

ALTSTOR=type Unit name for second library; FILE is the default

The internal stepname for the ASMHOBJ procedure is COMP.

Example 6
To assemble and save the object module.

//stepname EXEC ASMHOBJ,NAME=‘aaaaiii.dsname’
//COMP.SYSIN DD *
(source program)

Example 7:
To assemble and save into an existing data set. Former contents will be destroyed.

//stepname EXEC ASMHOBJ,STATUS=OLD,
// NAME=‘aaaaiii.dsname’
//COMP.SYSIN DD *
(source program)

Example 8:
To assemble and save overriding the default for primary space allocation. If there are
more than 500 source statements, the ‘primary’ value should be roughly equal to the
number of statements in the program.

//stepname EXEC ASMHOBJ,SIZE=primary,
// NAME=‘aaaaiii.dsname’
//COMP.SYSIN DD *
(source program)

To execute a program which has been stored by a OBJ procedure, use the ASMHLKGO
procedure. The user must supply a //LOAD.SYSLIN DD statement describing the data set
containing the program which was assembled and stored.

14 Using Assembler Language at the NIH Computer Center (9/98)

Example 9:
To assemble, fully resolve, and run. The object module saved as “aaaaiii.dsname1”
from the OBJ procedure is used as input for the Binder step.

//stepname EXEC ASMHOBJ,NAME=‘aaaaiii.dsname1’
//COMP.SYSIN DD *
(source program)
//stepname EXEC ASMHLKGO
//LOAD.SYSLIN DD DSN=aaaaiii.dsname1,DISP=SHR
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
(data)

Example 10:
To execute a main program and subroutines that have been created as separate data
sets by the OBJ procedure. The user must supply a DD statement for each data set that
contains a program or subroutine and insure that the main program is defined first.

//stepname EXEC ASMHLKGO
//LOAD.SYSLIN DD DSN=aaaaiii.dsname1,DISP=SHR
// DD DSN=aaaaiii.dsname2,DISP=SHR
// DD DSN=aaaaiii.dsname3,DISP=SHR
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
(data)

Example 11:
To execute a program where the main program is to be assembled and the subroutines
have been stored by the OBJ procedure in two data sets. These data sets will be
concatenated with the data set created by the COMP step.

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)
//stepname EXEC ASMHLKGO
//LOAD.SYSLIN DD
// DD DSN=aaaaiii.dsname1,DISP=SHR
// DD DSN=aaaaiii.dsname2,DISP=SHR
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
(data)

Using Assembler Language at the NIH Computer Center (9/98) 15

5.4 Using the Loader
The LDGO procedure combines the Binder and run steps into one. The Loader will accept
object modules and load modules. It will also search libraries defined by the SYSLIB DD
statement within the procedure if unresolved external references remain after processing the
primary input defined by the SYSLIN DD statement within the procedure. DD statements are
provided for use of the printer (SYSOUT).

The LDGO procedure should be used during the early stages of program development
(debugging); it is particularly recommended for the development of small and medium-sized
programs. Using LDGO is often more economical than using LKGO, but a dump from a
LDGO run may not be sufficient to resolve a problem. If so, the job may have to be rerun
using the Binder (LKGO).

Additional technical information on the use of the Loader can be found in the manual Batch
Processing and Utilities at NIH.

Symbolic Parameters for ASMHLDGO

Required

Value to be supplied

None

None

Optional

Value to be supplied

OPTIONS=parms Loader and GO parameters
CORE=nnnK Region for GO step; 300K is the default
EPT=entry Entry point for the main program; no default is

supplied
LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined macro library
LIBDISK=fileser Volume for first library; required only if the data set

is not cataloged
LIBSTOR=type Unit name for first library; FILE is the default
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined macro library
ALTDISK=fileser Volume for second library; required only if the data

set is not cataloged
ALTSTOR=type Unit name for second library; FILE is the default

The internal stepname for the ASMHLDGO procedure is GO.

16 Using Assembler Language at the NIH Computer Center (9/98)

Example 12:
To assemble the main program and execute it. The OPTIONS parameter in the run
step requests the Loader option XREF.

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)
//stepname EXEC ASMHLDGO,OPTIONS=XREF
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
(data)

Using Assembler Language at the NIH Computer Center (9/98) 17

6 STORING AND USING PROGRAMS IN USERS LIBRARIES
The following procedures were developed to store user programs in load module form. Each
user can develop and maintain private libraries, which are partitioned data sets.

A Partitioned Data Set (PDS) is divided into one or more sequential “members,” each of
which may be accessed independently. Each member has a unique name, up to 8 characters
long, stored in a directory. The directory contains an entry for each member consisting of the
member name and a pointer to the location of the member in the data set. When a member is
deleted or replaced, only the member-name pointer is deleted or changed. The space used by
the member cannot be reused until the data set is condensed. If there is not enough space for a
new or replacement member, or if there are no more free entries in the directory, no members
can be added. A job that attempts to add a new member to a PDS that is full usually ABENDs
with a B37 or D37 completion code. A PDS must be stored on a disk and cannot exceed one
disk pack in size.

Load modules (the output from the Binder) must be stored in PDSs. The programs may be
either fully or partially resolved. The Binder will automatically search libraries defined by the
SYSLIB DD statement to resolve calls or references to programs that are not included in the
main input stream defined by the SYSLIN DD statement. The libraries are searched in the
order they are defined. When a reference is found, no further searching is done, and the next
search begins again at the first library. If all external references and subroutine calls are
resolved, the program is fully resolved and is, therefore, directly executable without being
resolved again. If the external references and calls are not to be resolved, the NCAL option
must be specified in the EXEC statement for the procedure used to store the program. The
program is then partially resolved and must be reprocessed by the Binder before it can be
executed.

Executing fully resolved load modules may cost less because a Binder step is saved every
time the program is run; however, problems may develop as a result of updates to the
computer system. Fully resolved load modules cannot take advantage of some of these
system improvements. In addition, a program may fail to run if it contains old interfaces to
system modules.

To avoid these problems, fully resolved load modules should be re-created periodically,
particularly whenever a new system release is installed. If re-creating the fully resolved
modules is difficult, it may be better to keep partially resolved modules and do the final
Binder step each time the program is run.

6.1 Storing Programs in Single-Member User Libraries
The LKSM procedure is used to fully resolve and store a load module (output of the Binder)
a single-member partitioned data set (PDS). The COMP and OBJ procedures may be used to
prepare input for the LKSM procedure. A short step, executed before the Binder step, deletes
the PDS if it already exists on the specified disk. Then the Binder step creates the new data

18 Using Assembler Language at the NIH Computer Center (9/98)

set. If the data set does not already exist, the delete step issues a message, but does not affect
later processing. If the output library is to be created on the MSS, STORAGE=MSS must be
specified. Additionally, the symbolic parameters SIZE, UNITS, and INCR must be coded
with the appropriate values for requesting space on the MSS.

The user may define two private call libraries for resolving external references. They are
searched in their order of concatenation; if members with duplicate names exist, the first one
found will be selected. The private libraries are searched before NIH.UTILITY.

Symbolic Parameters for ASMHLKSM

Required

Value to be supplied

NAME=‘aaaaiii.dsname’

Dsname of PDS to receive load module

Optional

Value to be supplied

DISK=fileser Volume for PDS; required only if the data set is not
cataloged

STORAGE=type Unit name for PDS; FILE is the default
OPTIONS=parms Binder parameters
PROGRAM=progname Member name for load module; the default is MAIN
SIZE=primary Primary space allocation for load module; the default

is 100 units
UNITS=type Allocation units for load module; the default is blocks

of 1024 bytes
INCR=secondary Number of units in each secondary allocation; the

default is 12
STEPEND=disp Disposition for the load module; the default is KEEP
UNUSED= Nullifying causes retention of unused space; the

default is RLSE
INDEX=blocks Number of directory blocks for load module PDS; the

default is 1
LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined library
LIBDISK=fileser Volume for first library; required only if the data set is

not cataloged
LIBSTOR=type Unit name for first library; FILE is the default
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library
ALTDISK=fileser Volume for second library; required only if the data set

is not cataloged
ALTSTOR=type Unit name for second library; FILE is the default

The internal stepnames for the ASMHLKSM procedure are SCRATCH, for the step to
scratch the data set if it already exists, and LOAD for the Binder step.

Using Assembler Language at the NIH Computer Center (9/98) 19

Example 13:
To assemble, fully resolve, and store a program into a single-member PDS.

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)
//stepname EXEC ASMHLKSM,NAME=‘aaaaiii.dsname’

Example 14:

To assemble, fully resolve, and store a program, overriding the default space
allocation. If the program requires more than the default space allocation, the SIZE
parameter should be used. The default SIZE parameter allows the user to obtain at
least 10 tracks for the load module (unneeded space is released).

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)
//stepname EXEC ASMHLKSM,NAME=‘aaaaiii.dsname’,
// SIZE=primary

Example 15:
To fully resolve and store a main program and subroutines using input from the OBJ
procedure. The user must supply a DD statement for each data set that contains a
program or subroutine and insure that the main program is defined first.

//stepname EXEC ASMHLKSM,NAME=‘aaaaiii.dsname’,
// DISK=fileser
//LOAD.SYSLIN DD DSN=aaaaiii.dsname1,DISP=SHR
// DD DSN=aaaaiii.dsname2,DISP=SHR
// DD DSN=aaaaiii.dsname3,DISP=SHR

20 Using Assembler Language at the NIH Computer Center (9/98)

Example 16:
To assemble a main program (ASMHCOMP), fully resolve it using subroutines
previously assembled with the OBJ procedure, and create a fully resolved single-
member load module (ASMHLKSM).

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)
//stepname EXEC ASMHLKSM,NAME=‘aaaaiii.dsname’
//LOAD.SYSLIN DD
// DD DSN=aaaaiii.dsname1,DISP=SHR
// DD DSN=aaaaiii.dsname2,DISP=SHR

6.2 Storing Programs in Multi-Member User Libraries
The procedures described below enable the user to add programs to multi-member partitioned
data sets and execute them. Before using these procedures, see Batch Processing and Utilities
at NIH for information on how to establish and maintain partitioned data sets. These
procedures differ from the OBJ and LKSM procedures in that many programs can be stored
in one data set. The OBJ and LKSM procedures store only one program in one data set.

The LKMM procedure adds a program to a private partitioned data set. If the program name
already exists in the data set, it will be replaced. The Binder input is the same as for the
LKGO procedure.

The user may define two private call libraries for resolving external references. They are
searched in their order of concatenation; if members with duplicate names exist, the first one
found will be selected. The private libraries are searched before NIH.UTILITY. If no libraries
are to be searched (no external references are to be resolved), OPTIONS=NCAL must be
specified for the ASMHLKMM step; this creates a partially resolved load module.

Symbolic Parameters for ASMHLKMM

Required

Value to be supplied

NAME=‘aaaaiii.dsname’ Dsname of PDS to receive load module
PROGRAM=progname

Program name; member name in PDS

Optional

Value to be supplied

DISK=fileser Volume for PDS; required only if the data set is not
cataloged

STORAGE=type Unit name for PDS; FILE is the default
OPTIONS=parms Binder parameters
LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined library

Using Assembler Language at the NIH Computer Center (9/98) 21

LIBDISK=fileser Volume for first library; required only if the data set is
not cataloged

LIBSTOR=type Unit name for first library; FILE is the default
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library
ALTDISK=fileser Volume for second library; required only if the data set

is not cataloged
LTSTOR=type Unit name for second library; FILE is the default

The procedure name is ASMHLKMM. The stepname within the cataloged procedure is
LOAD.

Example 17
To create a multi-member PDS on a FILE volume and then assemble and add a
partially resolved program to the PDS. The program must be fully resolved along with
all of its subroutines, as shown in the next example, before it is executed.

// EXEC PGM=IEFBR14
//NEWPDS DD DSN=aaaaiii.dsname,DISP=(NEW,CATLG),
// UNIT=FILE,SPACE=(TRK,(10,2,3))
//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)
//stepname EXEC ASMHLKMM,NAME=‘aaaaiii.dsname’,
// PROGRAM=progname,OPTIONS=NCAL

Example 18
To fully resolve and add a program to a multi- member PDS, where the main program
and its subroutines were previously stored in the same PDS as partially resolved load
modules. If ‘progname’ and ‘main progname’ are the same, the partially resolved
main program will be replaced.

//stepname EXEC ASMHLKMM,NAME=‘aaaaiii.dsname’,
// PROGRAM=progname,
// LIBNAME=‘aaaaiii.dsname’
//LOAD.SYSLIN DD *
INCLUDE SYSLIB(main progname)

22 Using Assembler Language at the NIH Computer Center (9/98)

Example 19:
To fully resolve and add a program to a cataloged PDS, where one or more of the
subroutines is being assembled. The same PDS is used to fully resolve external
references; therefore, LIBNAME and NAME refer to the same data set.

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)
//stepname EXEC ASMHLKMM,LIBNAME=‘aaaaiii.dsname’,
// NAME=‘aaaaiii.dsname’,PROGRAM=progname
//LOAD.SYSLIN DD
// DD *
INCLUDE SYSLIB(main progname)
ENTRY entryname

The INCLUDE and ENTRY control statements are passed to the Binder. They always begin
after column 1. The INCLUDE statement is used to define as input to the Binder modules
that would not automatically be brought in. The ENTRY statement indicates the starting
point of the program. If the ENTRY statement is not provided and no entry point is specified
in the Assembler program, the first byte of the first control section of the load module will be
used as the entry point.

These control statements and the two preceding DD statements are not needed in this
example if the main program is one of the routines being assembled. In general, the ENTRY
statement is not needed for Assembler Language if the main program specified an entry point
and is the first input to the Binder or is in object module form.

Example 20:
To fully resolve and execute a program where the main program and some
subroutines are in two separate PDSs and other subroutines are being compiled.

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)
/*
//stepname EXEC ASMHLKGO,
// LIBNAME=‘aaaaiii.dsname1’
// ALTNAME=‘aaaaiii.dsname2’
//LOAD.SYSLIN DD
// DD *
INCLUDE SYSLIB(main program name)
ENTRY entryname
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
(data)

Using Assembler Language at the NIH Computer Center (9/98) 23

6.3 Using Programs from User Libraries
The CALL procedure is used to execute a fully resolved program. This procedure provides
the user with the DD statements needed to use the printer (SYSOUT) and the SORT/MERGE
messages data set (SORTMSGS). These DD statements are the same ones supplied in the
ASMHLKGO procedure. The user must supply any additional DD statements required for the
proper execution of the program.

Symbolic Parameters for ASMHCALL

Required

Value to be supplied

NAME=‘aaaaiii.dsname’

Dsname of PDS containing load module

Optional

Value to be supplied

DISK=fileser Volume for PDS; required only if the data set is not
cataloged

STORAGE=type Unit name for PDS; FILE is the default
PROGRAM=progname Member name for load module; the default is MAIN.
CORE=nnnK Region for GO step; 500K is the default

The internal stepname for the ASMHCALL procedure is GO.

Example 21:
To execute a program that has been previously stored by a LKSM procedure.

//stepname EXEC ASMHCALL,NAME=‘aaaaiii.dsname’
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
(data)

Example 22:
To execute a fully resolved program previously stored in a PDS on the MSS.

//stepname EXEC ASMHCALL,NAME=‘aaaaiii.dsname’,
// PROGRAM=progname,
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
(data)

6.4 Using the Binder from a User Library
User-defined libraries can be specified to be searched in resolving external references. Both
the Binder and the Loader offer this facility. The symbolic parameter LIBNAME defines the

24 Using Assembler Language at the NIH Computer Center (9/98)

first such library. ALTNAME is available if it is necessary to define a second private library.
These private libraries are searched in their order of concatenation; if members with duplicate
names exist, the first one found will be selected. The private libraries are searched before
NIH.UTILITY. if members with duplicate names exist, the first one found will be selected.
The private libraries are searched before NIH.UTILITY.

Symbolic Parameters for ASMHLKGO and ASMHLDGO

Required

Value to be supplied

None

None

Optional

Value to be supplied

OPTIONS=parms Binder or Loader parameters
CORE=nnnK Region for GO step; 512K is the default
EPT=entry Entry point for main program (Loader only); no

default is supplied
LIBNAME=‘aaaaiii.dsname’ Dsname of first user-defined library
LIBDISK=fileser Volume for first library; required only if the data set

is not cataloged
LIBSTOR=type Unit name for first library; FILE is the default
ALTNAME=‘aaaaiii.dsname’ Dsname of second user-defined library
ALTDISK=fileser Volume for second library; required only if the data

set is not cataloged
ALTSTOR=type Unit name for second library; FILE is the default

Example 23:
To use the Binder when the main program has been assembled and its subroutines are
stored as load modules in a private user library on one of the FILE disks.

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)
//stepname EXEC ASMHLKGO,LIBNAME=‘aaaaiii.dsname’
//GO.ddname DD etc.

Using Assembler Language at the NIH Computer Center (9/98) 25

Example 24:
To use the Loader when the main program has been assembled and its subroutines are
stored as load modules in a private user library on the MSS.

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)
//stepname EXEC ASMHLDGO,LIBNAME=‘aaaaiii.dsname’
//GO.ddname DD etc.

The LKGO procedure may also be used to fully re-resolve and execute a partially resolved
load module stored in a partitioned data set.

The examples above assume the subroutines were stored using the same names they are
called by. If these names are not the same, INCLUDE statements must be supplied for the
subroutines.

26 Using Assembler Language at the NIH Computer Center (9/98)

Example 25:
To fully resolve and execute a main program and its subroutines that have been
partially resolved and stored into a PDS.

//stepname EXEC ASMHLKGO,
// LIBNAME=‘aaaaiii.dsname’
//LOAD.SYSLIN DD *
INCLUDE SYSLIB(main program name)
/*
//GO.ddname DD etc. (as many as needed)
(data)

Example 26:
To fully resolve and execute a program where the main program and some
subroutines are in two separate PDSs and other subroutines are being compiled.

//stepname EXEC ASMHCOMP
//COMP.SYSIN DD *
(source program)
//stepname EXEC ASMHLKGO,
// LIBNAME=‘aaaaiii.dsname1’,
// ALTNAME=‘aaaaiii.dsname2’
//LOAD.SYSLIN DD
// DD *
INCLUDE SYSLIB(main program name)
ENTRY entryname
//GO.ddname DD etc. (as many as needed)
//GO.SYSIN DD * (if needed)
(data)

Using Assembler Language at the NIH Computer Center (9/98) 27

7 PROGRAMMING AND RUNNING TIPS
The suggestions in this section apply to Assembler Language jobs run at NIH.

7.1 Modular Programming
Modular programming may be defined as a method of dividing problem solutions into logical
parts so that they may be solved by arranging programs into sections which are easily
understood and written. The result of this method of program design is a group of related
routines controlled by a single routine called a “main line” or “driver” program. Using this
method, routines may be added, deleted, or modified without affecting the remainder of the
program; routines may be used in several different places within a program without duplicate
coding; and sections may be coded and tested independently. The primary objectives of
modular programming are an increase in ease of understanding and modification and
standardization of program organization. When writing modular programs:

�� Each routine should establish its own base register for addressability.

�� All called routines should return to an address supplied by the calling routine.

�� Standard OS/VS Binder conventions should be followed.

7.2 Program Commenting
One of the most useful tools available for maintaining programs is the existence of
meaningful comments on a program listing. Comments should be written to explain what
takes place in a program rather than to act as extraneous words on a listing. It is very helpful
to precede programs with commentary explaining:

�� purpose of the routine

�� the action that takes place and the method used

�� conditions assumed or expected upon entry; i.e., register contents, parameter list
structure, etc.

�� conditions set upon exiting from the routine

�� other routines that call and are called by this routine

In addition to prologue commentary, instruction coding should be documented. These
comments may point out restrictions, techniques, cautions, etc. that one should know before
attempting to modify the program. For ease of reading, all in-line commentary should start in
the same column.

28 Using Assembler Language at the NIH Computer Center (9/98)

7.3 Standard Binder Conventions
It is the responsibility of a calling routine, whether the user’s program or the operating
system, to:

�� insert the entry-point address of the called routine in general register 15

�� insert the return address in general register 14

�� insert the address of an 18 word save area in general register 13

�� insert the address of a parameter list (if any) in general register 1

It is the responsibility of the called routine to:

�� save the contents of all of the caller’s general registers upon entry

�� restore the contents of the caller’s general registers immediately before returning

�� return to the address supplied by the calling routine

 A detailed description of OS/VS Binder conventions, save areas, and parameter lists may be
found in the publication, IBM MVS/ESA Programming: Assembler Services Guide, GC28-
1466

7.4 Register Usage
General registers 0,1,13,14, and 15 are known as the linkage registers and are used in a
prescribed manner by the Operating System. These registers should be used in the same
manner by the problem program in order to avoid the possibility of register clobbering.

Registers 0,1,14, and 15 may be altered by the Operating System when using system macro
instructions. Registers 2-13 remain unchanged.

Registers 0 and 1 are used to pass parameters or parameter lists between programs.

Register 13 contains the address of the save area the user provided. This save area may be
used by the Operating System for any function the program requests.

Register 14 contains the return address of the program that called the user’s routine, or an
address within the operating system to which it is to return when it has finished processing.

Register 15 contains an entry point address when control is passed to a program from the
Operating System. The entry point should be in register 15 when control is passed to another
program or subroutine. Register 15 is also used to pass a return code to the calling program.
When control is returned to OS, the contents of register 15 will be the condition code
returned for the job step.

Using Assembler Language at the NIH Computer Center (9/98) 29

7.5 Some Coding Hints
The purpose of this section is to define some general rules and unusual uses of instructions
that will help the programmer conserve storage and CPU time.

7.5.1 General Programming Guidelines
�� At no time should a program be written which modifies the contents of an instruction

during program execution. This makes maintenance unduly burdensome and may create
model dependent code since the manner of instruction decoding and execution varies
among different models of System 370. Instead, the EX (execute) instruction can be used
to alter an instruction during execution.

�� Whenever possible, arithmetic and internal data representation should be done in fixed
point binary rather than packed or zoned decimal. Decimal instructions and data require
more storage and CPU execution time.

�� Programs should be planned to keep data movement to a minimum. Data movement can
often be avoided by passing an address in a register rather than the actual data from
routine to routine.

�� When defining constants, place items requiring double-word alignment first, followed by
full-word items, followed by half-word items, followed by items that do not require any
boundary alignment.

�� Do not attempt to capitalize on unique characteristics of individual operating system
implementations. Programs written to take advantage of specific hardware or software
features tend to be much more difficult to test and maintain.

�� Emphasize reduction of short term storage requirements even though the total size of the
program may increase slightly. The primary objective is to shrink and stabilize the
working set of each significant phase of the program. Although size limits will always be
enforced, the total size of the program is of less consequence since only the active portion
of the program requires real storage.

�� Optimize the main line of the program for the normal case. Remove all exception and
error handling routines from the normal program flow. This will increase the density of
reference of the most heavily used pages. However, these conditions should be detected
in the main line to avoid unnecessary entry into another page. The actual error routines
should be grouped together in pages of their own since under normal circumstances they
will never be entered. Low use code that is not exception handling code should be inline
(i.e., housekeeping and initialization) unless these routines are so large that good density
cannot be maintained.

�� Segment programs that have long running, well defined phases by function even if some
code must be duplicated. This will improve working set stability.

�� Remember that locality of reference applies only to the working set. The important
consideration is to keep storage references confined to pages that would normally tend to
be in main storage at the same time. It is logically immaterial whether the working set

30 Using Assembler Language at the NIH Computer Center (9/98)

consists of contiguous pages or of pages scattered throughout the program. However,
experience has shown that internal fragmentation is reduced (and program readability is
improved) if the working set consists of contiguous pages.

�� Initialize each data area just prior to its use rather than at the beginning of the program.
This will tend to prevent unnecessary paging activity. In addition, if a large area of virtual
storage is reserved for handling a worst case situation, do not initialize it until the exact
size needed is determined.

�� High use data areas and I/O buffers may be grouped together in common storage using
the COM assembler instruction. This allows convenient ways of aligning these areas on
specific page boundaries if needed.

�� Align large buffers on page boundaries. Buffer areas are “fixed” in main storage during
I/O operations. Careless buffer alignment could cause additional pages to be needed.
From a paging viewpoint, the optimal size for I/O buffers is the length of a page (or a
multiple thereof).

�� If possible, separate read only data areas from areas that will be changed. This could save
page out operations since only those pages that are changed are rewritten to external
storage. Bear in mind, however, that good locality is usually more important than strict
separation of read-only and read-write areas.

�� Order subroutines that are needed together or that are nested. For example, if the main
program invokes subroutines A, B, and C, or if A calls B which in turn calls C, then place
A, B, and C together.

�� Consider segmenting very large arrays and data areas into page size units. Then process
each segment instead of the entire array.

�� Literals (including literal address constants) may be inserted into the same page where
they are referenced. This can be accomplished by judicious use of LTORG statements
that can be placed at the end of each functional routine. This also helps to attain
“readability” of a program - something that is often non-trivial.

�� In a multi-processor environment where multiple tasks may be running concurrently in
the same job, any data that is accessed from more than one task should be serially
referenced to avoid simultaneous access. Simultaneous access may yield incomplete
changes.

�� If SORT is called from the Assembler and Computer Center procedures are not being
used, the following statement must be included for the SORT/MERGE program
messages:

//stepname.SORTMSGS DD SYSOUT=A

7.5.2 Instruction Usage Hints
Here are some examples of instruction usage. Any contributions to this section by
experienced programmers would be warmly welcomed.

Using Assembler Language at the NIH Computer Center (9/98) 31

�� When RX type instructions are used for data not covered under a USING statement, an

index register should always be specified even if it is not being used. If no indexing is
being used, indicate its absence by coding a comma (,) or specify register 0 as the index
register preceding the B2 specification. Omitting the comma causes the Assembler to
assume the B2 specification is an X2 specification and the instruction is assembled with
no base register assigned. Although the instruction will work, it requires more execution
time because of the added cycles for indexing and can cause confusion when debugging.

Example:

L R4,0(,R6) is faster than L R4,0(R6).

�� Branch on Count (BCTR)

This instruction is generally used to decrement the contents of a register (R1) being used
as a counter and branch to the address contained in R2 when the counter is non-zero. This
instruction may be used to decrement the counter without branching by specifying register
zero for the R2 field. This can be quite useful to prepare a register for the object of an
EXECUTE instruction.

LA R5,L’FIELDA GET LENGTH OF FIELDA
BCTR R5,0 GET MACHINE LENGTH
EX R5,MOVE EXECUTE THE MOVE
.
.
.

MOVE MVC FIELDB(1),FIELDA

�� Load Address (LA)

Normally this instruction is used to load a register with the address of some data or
instruction. However, it may also be used to load a register with an absolute value
between 0 and 4095, or to increment a register by an absolute value between 0 and 4095.
Load address may also be used to set the high order byte of a register to zero.

Example:

LA R5,10 PUT ABSOLUTE VALUE 10 IN R5
 .
 .
 .
LA R5,10(0,R5) INCREMENT R5 BY 10

32 Using Assembler Language at the NIH Computer Center (9/98)

The load address instruction is faster than the load instruction and therefore should be used
instead of

L R5,=F’10’
 .
 .
 .
A R5,=H’5’

To clear the high order byte of a register code

LA R7,0(0,R7) INCREMENT R7 BY ZERO AND SET
 BITS 0-7 TO ZERO

�� Shifting Instructions

To multiply or divide by a power of 2, use a shift instruction instead of the multiply or
divide instruction. For example, to divide a number in register 4 by 8, code

SRL R4,3 DIVIDE BY 8

The number of shift positions equals the power of 2 by which the register is multiplied or
divided.

�� SAVE macro

The SAVE macro may be coded with an identifier name of up to 70 characters. When
using subroutines, it is a good idea to use this form of the SAVE macro so that each
subroutine may be easily located in a dump by using the EBCDIC translation at the right
side of the dump. Version number and date may be coded with the CSECT name as part
of this identifier, as illustrated below:

SAVE (14,12),T,SORTER-V7-4OCT88

�� Return codes

Each Assembler Language main program or subroutine should set the return code in
register 15 prior to returning control to the operating system or calling program. The RC
parameter of the RETURN macro may be used. If register 15 is not properly set, a
garbage condition code may appear for the job step.

�� ANDs and ORs

AND (N,NR,NI,NC) AND-ing two bits results in 1 if both bits are 1;
otherwise the result is 0.

Using Assembler Language at the NIH Computer Center (9/98) 33

OR (O,OR,OI,OC) OR-ing two bits results in 1 if either bit is 1;

otherwise, the result is 0.

Exclusive-OR (X,XR,XI,XC) Exclusive-OR-ing two bits results in 1 when 1,
but not both of the bits is 1; otherwise, the result
is 0.

To set a bit to 0 Use AND. The mask should be all ones except
for the bit position(s) to be set to 0, which alone
should be 0.

To set a bit to 1 Use OR. The mask should be all zeros except for
the bit position(s) to be set to 1, which alone
should be 1.

To invert a bit Use Exclusive-OR. The mask should be all zeros
except for the bit position(s) to be inverted,
which alone should be 1.

To set a whole field or register to
zero

Use Exclusive-OR. Any field (or register)
exclusive-OR-ed with itself causes the field (or
register) to be set to zero.

To exchange the contents of two
fields or two registers

Use Exclusive-OR (XC or XR).

The exclusive-OR instructions may be used to exchange the contents of two registers or
two areas of storage without the use of a third register or a third storage area. The
sequence

34 Using Assembler Language at the NIH Computer Center (9/98)

A exclusive-ored B
B exclusive-ored A
A exclusive-ored B

will swap two areas. Example:

XC FIELDA,FIELDB
XC FIELDB,FIELDA
XC FIELDA,FIELDB
 .
 .
 .
XR R4,R6
XR R6,R4
XR R4,R6

will swap the contents of FIELDA and FIELDB and will exchange the contents of
registers 4 and 6.

7.6 Data Formats for Inter-Language Communication
The following tables show the ways data can be stored. The source language definitions for
each data type are given under the COBOL, FORTRAN, and PL/I headings. For more
specific information on data formats, consult the appropriate language manuals and the IBM
ESA/390 Principles of Operation, SA22-7201.

The “MACHINE DATA FORMAT” column in the figures below shows a bit breakdown of
the data type as stored internally. Bit positions are written vertically under the machine data
format symbols they refer to.

CHARACTER

 COBOL FORTRAN PL/I TYPE
PIC X(n)
DISPLAY

1<=n<=32767

CHARACTER*n

1<=n<=3267

CHAR(n)

1<=n<=32767

Length =
n bytes

MACHINE DATA FORMAT EXAMPLE

Char 1 Char 2 …

Char n Value Internal hex
representation

0 0
 -
0 7

0 1
 -
8 5

 ABCD C1C2C3C4

Figure 2. Character Formats for Inter-Language Communication

Using Assembler Language at the NIH Computer Center (9/98) 35

FIXED POINT
The fixed point two-word data type, which is available only in COBOL, is simulated through
software and requires all data items to be aligned on a word boundary.

The “Range” given in the table indicates the minimum and maximum values numbers can
have in all uses of the language. Idiosyncrasies in languages reduce the full range of numbers
in some cases even though they are represented the same internally.

Assumed decimal points in COBOL and PL/I are not shown in the table. They are stored in
the same way as other numbers; instructions generated by the compilers keep track of the
position of the assumed decimal point.

COBOL FORTRAN PL/I TYPE
PIC S9(1-4)

COMP
(or COMP-4)

Range:

-9999 to 9999

INTEGER*2

Range:

-32768 to 32767

FIXED BIN
(1-15,0)

Range:

-32768 to 32767

Halfword

Length = 2 bytes.

PIC S9(5-9)
COMP

(or COMP-4)

Range:
-(9)9s to +(9)9s

INTEGER*4

Range:
-2147483648 to

2147483647

FIXED BIN
16-31,0)

Range:

-2147483648 to
2147483647

Fullword

Length =4 bytes.

PIC S9(10-18)
COMP

(or COMP-4)

Range:
-(18)9s to +(18)9s

Two-word

Length = 8 bytes.

Figure 3. Fixed Point Formats for Inter-Language Communication

36 Using Assembler Language at the NIH Computer Center (9/98)

MACHINE DATA FORMAT EXAMPLES

0 0 - 1
0 1 5 Halfword

Value

+1234
-1234

Internal hex
representation

04D2
FB2E

0 0 - 3
0 1 1 Fullword

+1234

-1234

000004D2

FFFFFB2E

0 0 - 6
0 1 3

Two-word

+1234

-1234

0…04D2

F...FB2E

“S” is a binary sign bit: 0 is positive; 1 is negative.
“I” is a 15, 31, or 63 bit integer.
Figure 3 (Continued)

FLOATING POINT
Magnitude is the range of a number expressed in powers of ten.

Although the numbers are represented the same internally, peculiarities in languages reduce
the precision of numbers in some cases. The degree of precision given in the table is good in
all cases. Fractional precisions occur because of the difference between the decimal
representation and the machine’s internal storage of numbers.

S I

S I

S I

Using Assembler Language at the NIH Computer Center (9/98) 37

COBOL FORTRAN PL/I TYPE
COMP-1

Magnitude:
10**-78 to 10**75
Precision:

7.2 digits

REAL*4

Magnitude:
10**-78 to 10**75
Precision:

7.2 digits

FLOAT
DEC(1-6)

Magnitude:
10**-78 to 10**75
Precision:

 6 digits

Short

Length = 4 bytes

COMP-2

Magnitude:
10**-78 to 10**75
Precision:

16 digits

REAL*8

Magnitude:
10**-78 to 10**75
Precision:

16.8 digits

FLOAT
DEC(7-16)

Magnitude:
10**-78 to 10**75
Precision:

 16 digits

Long

Length = 8 bytes

REAL*16

Magnitude:
10**-78 to 10**75
Precision:

35 digits

FLOAT
DEC(17-33)

Magnitude:
10**-78 to 10**75
Precision:

 33 digits

Extended

Length = 16 bytes

Figure 4. Floating Point Formats for Inter-Language Communication

38 Using Assembler Language at the NIH Computer Center (9/98)

MACHINE DATA FORMAT EXAMPLES

0 0-0 0 - 3
0 1 7 8 1

Short

Value

+1234

1234

Internal hex
representation

434D2000

C34D2000

0 0-0 0 - 6
0 1 7 8 3

Long

+1234

-1234

434D20…0

C34D20…0

0 0-0 0 - 6
0 1 7 8 3

0 - 0 0 6
0 7 8 3

Extended

+1234

-1234

434D20…0

C34D20…0

“S” is a binary sign bit: 0 is positive; 1 is negative.
“E” is a seven bit exponent with a value between hex 16** -64 and 16** +63.
“F” is a fraction, which may be 24, 56, or 112 bits long.
Figure 4 (Continued)

S E F

S E F

S E F

F (continued)

Using Assembler Language at the NIH Computer Center (9/98) 39

ZONED DECIMAL
The “Range” given in the table indicates the minimum and maximum values numbers can
have in all uses of the language. Idiosyncrasies in languages reduce the full range of numbers
in some cases even though they are represented the same internally.

COBOL FORTRAN PL/I TYPE
PIC 9(n)

DISPLAY

1<=n<=18

Range: 0 to (18)9s

PIC ‘(n)9’

1<=n<=15

Range: 0 to (15)9s

Unsigned

Length = n bytes.

PIC S9(n)
DISPLAY

1<=n<=18

Range:
-(18)9s to +(18)9s

PIC ‘(n-1)9T’

1<=n<=15

Range:
-(15)9s to +(15)9s

Signed

Length = n bytes.

MACHINE DATA FORMAT EXAMPLES

0-0 0-0 0-1 1-1
0 3 4 7 8 1 2 5

Unsigned

Value

1234

Internal hex
representation

F1F2F3F4

0-0 0-0 0-1 1-1
0 3 4 7 8 1 2 5

Signed

+1234

-1234

F1F2F3C4

F1F2F3D4

“Z” is a 4 bit zone code with a value of hex F.
“D” is a 4 bit binary decimal number with a value between hex 0 and 9.
“Si” is a 4 bit sign code: A, C, E, and F are positive; B and D are negative.

Figure 5. Zoned Decimal Formats for Inter-Language Communication

 Z D Z D …

 Z D Z D …

 Z D

 Si D

40 Using Assembler Language at the NIH Computer Center (9/98)

PACKED DECIMAL
The “Range” given in the table indicates the minimum and maximum values numbers can
have in all uses of the language. Idiosyncrasies in languages reduce the full range of numbers
in some cases even though they are represented the same internally.

COBOL FORTRAN PL/I TYPE
COMP-3
PIC 9(n)

1<=n<=18

Range: -(18)9s to

+(18)9s

FIXED
DEC(n)

1<=n<=15

Range: -(15)9s to

+(15)9s

Length in

bytes = (n+1)/2
rounded up.

MACHINE DATA FORMAT EXAMPLES

0-0 0-0

0 3 4 7

Value

-1234

-1234

Internal hex
representation

01234C

01234D

“D” is a 4 bit binary decimal number with a value hex 0 through 9.
“Si” is a 4 bit sign code: A, C, E, and F are positive; B and D are negative.

Figure 6. Packed Decimal Formats for Inter-Language Communication

D D … D Si

Using Assembler Language at the NIH Computer Center (9/98) 41

INDEX

ABENDs

B37 from Assembler Language, 17
D37 from Assembler Language, 17

ASMHCALL procedure, 23
ASMHCOMP procedure, 9
ASMHLDGO procedure, 15
ASMHLKGO procedure, 10, 13, 25
ASMHLKMM procedure, 20
ASMHLKSM procedure, 17
ASMHOBJ procedure, 12
assembling and running programs, 9
B37 ABEND, 17
Binder conventions, 27
CALL procedure, 23
character data, 33
charges

reducing CPU time, 28
coding hints, 29
comments for programs, 26
compiler options

changing, 8
NIH Computer Center, 8

CPU time
reducing, 28

D37 ABEND, 17
data formats, 33
data types

character, 33
fixed point, 33
floating point, 35
packed decimal, 38
zoned decimal, 37

DD statements needed, 10
documentation. See publications
documenting programs, 26
efficiency of programs, 28
electronic mail

submitting a PTR, 1
ENTER PTR, 1
ENTER PUBWARE, 5
ENTRY statement, 22
Federal Information Processing Standard.

See FIPS

figures
character formats for inter-language

communication, 33
fixed point formats for inter-language

communication, 33
floating point formats for inter-language

communication, 35
packed decimal formats for inter-

language communication, 38
SYSOUT DCB information for

Assembler procedures, 4
zoned decimal data formats for Inter-

Language Communication, 37
FIPS standard

non for Assembler, 2
fixed point data, 33
floating point, 35
High Level Assembler, 1
INCLUDE statement, 22, 25
instruction usage, 29
interlanguage communications, 33
introduction, 1
LDGO procedure, 15
level of support, 1
libraries

private, 23
LKGO procedure, 10, 13, 25
LKMM procedure, 20
LKSM procedure, 17
load module storage, 17
load modules

recreate periodically, 17
modular programming, 26
multi-member libraries, 20
OBJ procedure, 12
overriding procedures, 10
packed decimal, 38
PDS

multi-member programs, 20
single member for load module, 17
use, 17

performance
improving, 28

42 Using Assembler Language at the NIH Computer Center (9/98)

private libraries, 20
load modules, 17

procedure functions, 2
procedure names, 2
program commenting, 26
programming guidelines, 28
programming tips, 26
PTR, 1
publications, 5

Assembler Language, 27
ordering, 5
OS/VS Binder conventions, 27

PUBWARE, 5
registers, 27

use, 27, 29
savings with load modules, 17

single member libraries, 17
software

improving efficiency, 28
standards

FIPS
none for Assembler, 2

support, 1
SYSOUT record formats, 4
Technical Information Office, 5
World Wide Web

PTR submission, 1
publication ordering, 5
publications online, 5

WYLBUR
ENTER PUBWARE, 5

zoned decimal data, 37

Using Assembler Language at the NIH Computer Center (9/98) 43

Using Assembler Language at the NIH Computer Center

Document Evaluation
Is the Manual:
 YES NO

 Clear?

 Well organized?

 Complete?

 Accurate?

 Suitable for the beginner?

 Suitable for the advanced user?

Comments:

��
��
��
��
��
��
��

Please give page references where appropriate. If you wish a reply, include your
name and mailing address.

 Send to: Application Services Branch
 Division of Computer System Services, CIT
 National Institutes of Health
 Building 12A, Room 4011
 Bethesda, MD 20892-5607

 FAX to: (301) 496-6905

ICD or Agency:
Date Submitted:
Name (Optional):
E-Mail Address: manual revised: 9/98

