Positron Emission Tomographic (PET) Imaging of Efflux Transporters

Robert B. Innis, MD, PhD Molecular Imaging Branch NIMH

Outline of Talk

- 1. PET: high sensitivity and specificity
- 2. Many PET ligands already exist to measure density of transporters e.g., dopamine transporter in Parkinson disease
- 3. P-gp: efflux transporter "protects" organs like brain and testis from some toxins and drugs
- 4. [¹¹C]loperamide: avid P-gp substrate but has radiometabolite; measures function
- 5. [¹¹C]desmethyl-loperamide (dLop): metabolite is better than parent
- 6. After P-gp blockade, [¹¹C]dLop has high brain uptake that is dependent on flow
- 7. [¹¹C]dLop in humans: no brain uptake at baseline and slightly increased by P-blockade

Imaging of neuroreceptors by PET

Positron Emission Tomography

Positron Emission Tomography

Simon R. Cherry, Ph.D. Center for Molecular and Genomic Imaging University of California-Davis

NIH Rodent PET Camera ¹⁸F bone uptake rat

Developed By: Mike Green & Jurgen Seidel

PET vs. MRI

	PET	MRI	
Spatial Resolution	2 – 6 mm	<< 1 mm	
Sensitivity	10 ⁻¹² M	10-4 M	
Temporal Resolution	minutes	<1 sec	

Radionuclide (¹¹C): high sensitivity Ligand (raclopride): high selectivity Radioligand [¹¹C]raclopride: high sensitivity & selectivity

Radioligand = Drug + Radioactivity

- 1. Drug administered at tracer doses
 - a) No pharm effects
 - b) Labels <1% receptors
 - c) Labeled subset reflects entire population
- 2. Radioligand disposed like all drugs
 - a) Metabolism & distribution
- 3. Radiation exposure

Dopamine Transporter: Located on DA Terminals Removes DA from Synapse

SPECT Imaging of Dopamine Transporter in Caudate and Putamen of Human Brain

MRI SPECT

¹²³I-β-CIT Dopamine Transporter SPECT: Decreased in Parkinson's Disease

Healthy

Parkinson Stage 1

Serial Dopamine Transporter Imaging in a Parkinsons Patient

PET Imaging to Monitor Embryonic Stem Cell Treatment of "Parkinson Disease" in Rats

Normal

Embryonic Stem Cells

Unilateral Lesion

PET & MRI

P-glycoprotein (P-gp) Efflux Transporter

- 1. Transports drugs out of cells in many locations e.g., brain and testes
- 2. Specific component of blood-brain barrier
- Loperamide (Imodium®) is a potent opiate that acts on gut to slow motility – but no actions in brain.
- 4. Over expressed in 40% of tumors resistant to chemotherapy

[¹¹C]Loperamide: brain uptake much higher in P-gp KO than in wild type mice

MRI

Wild Type

KO

Injection of [¹¹C]Loperamide in P-gp Knockout and Wild Type Mice

	Brain			
	Concentration (%SUV)		% Brain Activity	
Radiochemical Species	КО	WT	КО	
[¹¹ C]Loperamide	25	2	50%	
[¹¹ C]dLop	12	1	24%	
[¹¹ C]Metabolites	14	11	26%	
Total	51	14	100%	

Five P-gp KO and five WT mice were killed 30 min after injection of [¹¹C]loperamide.

PROBLEM of [¹¹C]Loperamide Radiometabolite (desmethyl) enters brain

[¹¹C]Loperamide

Solution: Remove the nonradioactive methyl group

[¹¹C]Desmethyl-loperamide: Better radioligand? Demethylation product does not enter brain

[¹¹C]dLop: brain uptake much higher in P-gp KO than in wild type mice

MRI

Injection of [¹¹C]*N*-desmethyl-Loperamide in P-gp Knockout and Wild Type Mice

	Brain		
	Concentration (%SUV)		% Brain Activity
Radiochemical Species	KO	WT	KO
[¹¹ C]dLop	36	2	92 %
[¹¹ C]Metabolites	3	3	8 %
Total	39	5	100 %

Three P-gp KO and three WT mice were killed 30 min after i.v. injection of [¹¹C]dLop.

DCPQ or Tariquidar Increases Brain Uptake of Radioactivity in Monkey Given [¹¹C]Loperamide

[¹¹C]dLop in Monkey Brain Baseline P-gp blocked

Brain

[¹¹C]dLop in Monkey Brain: Radioligand does not bind to opiate receptors

DCPQ 16 mg/kg, Naloxone 5 mg/kg (30 min after injection)

Is P-gp function uniformly distributed in brain?

FC=Frontal Cortex, AC=Anterior Cingulate Gyrus, TE=Temporal Cortex, PA=Parietal Cortex, HP=Hippocampus, OC= Occipital Cortex, PU=Putamen, CE=Cerebellum

Brain uptake is rapid and probably dependent on blood flow.

Baseline
 DCPQ

P-glycoprotein removes lipophilic substrates directly from the plasma membrane

Brain uptake depends on blood flow and single pass extraction.

 $K_{1} = \text{rate brain entry}$ $K_{1} = \text{flow} \cdot \text{extraction}$ $K_{1} = F \cdot E$ <u>Example</u>
Flow of drug 100 µg per min

Extraction is 2%

 $K_1 = 2 \mu g per min$

Single Pass Extraction of [¹¹C]dLop >50%

- 1) Measure K₁ from brain and plasma data of [¹¹C]dLop
- 2) Measure blood flow with $[^{15}O]H_2O$
- **3)** Calculate Extraction (E)

$$E = \frac{K_1}{F}$$

 $K_1 > 0.25 \text{ mL per cm}^3 \text{ per min}$ F = 0.5 mL per cm³ per min

E > 0.5 = 50%

After correction for relative blood flow, [¹¹C]dLop uptake is uniform among brain regions

No Flow Correction

With Flow Correction

FC=Frontal Cortex, AC=Anterior Cingulate Gyrus, TE=Temporal Cortex, PA=Parietal Cortex, HP=Hippocampus, OC= Occipital Cortex, PU=Putamen, CE=Cerebellum

Conclusions

- 1. [¹¹C]dLop: avoids metabolite problem of [¹¹C]loperamide
- 2. After P-gp blockade, single pass uptake of [¹¹C]dLop into brain is high and, therefore, shows dependence on blood flow

Implies function of P-gp at baseline is rapid and has high capacity

[¹¹C]dLop: Distribution of radioactivity in healthy male

P-gp Transport in Human Body

Summed early images (0 – 3 min) show blood pool.

Minimal brain uptake of [11C]dLop in healthy human brain

100

0

100

What is this?

Extended summed images (0 – 10 min) show blood pool <u>and</u> tissue accumulation.

DCPQ or Tariquidar Increases Brain Uptake of Radioactivity in Monkey Given [¹¹C]Loperamide

Renal Cell Carcinoma: Tariquidar increases uptake of ^{99m}Tc-Sestamibi in metastasis of thigh

Future Directions

- BRAIN: Potential dysfunction of P-gp at blood-brain barrier: Alzheimer's disease, Parkinson's disease, epilepsy
- 2. ONCOLOGY: P-gp function in tumor cells transplanted into mice
- 3. Develop radiolabeled inhibitor to measure density, rather than function, of P-gp

Outline of Talk

- 1. PET: high sensitivity and specificity
- 2. Many PET ligands already exist to measure density of transporters e.g., dopamine transporter in Parkinson disease
- 3. P-gp: efflux transporter "protects" organs like brain and testis from some toxins and drugs
- 4. [¹¹C]loperamide: avid P-gp substrate but has radiometabolite; measures function
- 5. [¹¹C]desmethyl-loperamide (dLop): metabolite is better than parent
- 6. After P-gp blockade, [¹¹C]dLop has high brain uptake that is dependent on flow
- 7. [¹¹C]dLop in humans: no brain uptake at baseline and slightly increased by P-blockade

P-gp Efflux Transporter: Sami Zoghbi, PhD Jeih-San Liow, PhD Nick Seneca, PhD

OVERALL: Director PET Radiochemistry: Victor Pike Radiochemist: Neva Lazarova Metabolism: Sami Zoghbi Rodent Imaging & Image Analysis: Jeih-San Liow Monkey Imaging: Robert Gladding Human Imaging: Ferraris Araneta, NP; Chuck Kreisl, MD Chemistry: Cheryl Morse, Jinsoo Hong, and Kelly Sprague

Self-Assessment Quiz: True or False?

- Loperamide, an antidiarrheal drug, lacks central nervous system opiate effects because P-gp (Permeability-glycoprotein) blocks its entry into brain.
- Positron emission tomography (PET) can measure the function of P-gp *in vivo* by using a radiolabeled P-gp substrate such as [¹¹C]loperamide.
- PET can monitor the *in vivo* <u>metabolism</u> of radioligands. By measuring P-gp function, PET can also monitor drug <u>distribution</u>.