U.S. Department of Health and Human Services # Genomics in the Genome-Wide Association Era: What's Next for Translation? U.S. Department of Health and Human Services National Institutes of Health National Human Genome Research Institute Teri A. Manolio, M.D., Ph.D. Director, Office of Population Genomics Senior Advisor to the Director, NHGRI, for Population Genomics October 22, 2008 #### 2007: The Year of GWA Studies #### **BREAKTHROUGH OF THE YEAR** # Human Genetic Variation Equipped with faster, cheaper technologies for sequencing DNA and assessing variation in genomes on scales ranging from one to millions of bases, researchers are finding out how truly different we are from one another THE UNVEILING OF THE HUMAN GENOME ALMOST 7 YEARS AGO cast the first faint light on our complete genetic makeup. Since then, each new genome sequenced and each new individual studied has illuminated our genomic landscape in ever more detail. In 2007, researchers came to appreciate the extent to which our genomes differ from person to person and the implications of this variation for deciphering the genetics of complex diseases and personal traits. Less than a year ago, the big news was triangulating variation between us and our primate cousins to get a better handle on genetic changes along the evolutionary tree that led to humans. Now, we have moved from asking what in our DNA makes us human to striving to know what in my DNA makes me me. ### Diseases and Traits with Published GWA Studies (n = 72, 10/14/08) - Macular Degeneration - Exfoliation Glaucoma - Lung Cancer - Prostate Cancer - Breast Cancer - Colorectal Cancer - Bladder Cancer - Neuroblastoma - Melanoma - TP53 Cancer Predispos'n - · Chr. Lymph. Leukemia - Inflamm, Bowel Disease - Celiac Disease - Gallstones - Irritable Bowel Syndrome - QT Prolongation - Coronary Disease - Coronary Spasm - Atrial Fibrillation/Flutter - Stroke - Subarachnoid Hemorrhage - Hypertension - Hypt. Diuretic Response - Peripheral Artery Disease - Lipids and Lipoproteins - Warfarin Dosing - Ximelegatran Adv. Resp. - Parkinson Disease - Amyotrophic Lat. Sclerosis - Multiple Sclerosis - MS Interferon-β Response - Prog. Supranuclear Palsy - Alzheimer's Disease in ε4+ - Cognitive Ability - Memory - Hearing - Restless Legs Syndrome - Nicotine Dependence - Methamphetamine Depend. - Neuroticism - Schizophrenia - Sz. Iloperidone Response - Bipolar Disorder - Family Chaos - Narcolepsy - Rheumatoid Arthritis - RA Anti-TNF Response - Syst. Lupus Erythematosus - Sarcoidosis - Psoriasis - HIV Viral Setpoint - Childhood Asthma - Type 1 Diabetes - Type 2 Diabetes - Diabetic Nephropathy - End-St. Renal Disease - Obesity, BMI, Waist, IR - Height - Osteoporosis - Osteoarthritis - Male Pattern Baldness - F-Cell Distribution - Fetal Hgb Levels - C-Reactive Protein - ICAM-1 - Total IgE Levels - Uric Acid Levels, Gout - Protein Levels - Vitamin B12 Levels - Recombination Rate - Pigmentation #### STATISTICS AND MEDICINE #### Drinking from the Fire Hose — Statistical Issues in Genomewide Association Studies David J. Hunter, M.B., B.S., and Peter Kraft, Ph.D. Related article, page 443 ained in samples ower to The past 3 months have seen ating the need for guessing which The main problem with this the publication of a series of genes are likely to harbor variants, strategy is that, because of the ost stud- #### "There have been few, if any, similar bursts of discovery in the history of medical research..." and in this issue of the lournal, coronary artery disease (reported by Samani et al., pages 443-453). These genomewide association studies have been able to examine interpatient differences in inherited genetic variability at an unprecedented level of resolution, thanks to the development of microarrays, or chips, capable of as- lated to the disease. Some of these associations have been found in regions not even known to harbor genes, such as the 8q24 region, in which multiple variants have been found to be associated with prostate cancer.2 Such findings promise to open up new avenues of research, through both the discovery of new genes rele- generate P values as small as 10-7. In addition, most variants identified recently have been associated with modest relative risks (e.g., 1.3 for heterozygotes and 1.6 for homozygotes), and many true associations are not likely to exceed P values as extreme as 10⁻⁷ in an initial study. On the other hand, a "statistically significant" finding #### What is a Genome-Wide Association Study? - Method for interrogating all 10 million variable points across human genome - Variation inherited in groups, or blocks, so not all 10 million points have to be tested - Blocks are shorter (so need to test more points) the less closely people are related - Technology now allows studies in unrelated persons, assuming 5,000 – 10,000 base pair lengths in common (300,000 – 1,000,000 markers) #### DNA on Chromosome 7 ACGGAGTTT C/ACTC TGTTGCCAACCTGGAGTGCAGTGGCGTGATCTCAGCTCACTGCACACTCCGCTTTCCTGGTT TTTTTAGTAGAGTTGGGGTTTCACCATGTTGGCCAGACTGGTCTCGAACTCCTGACCTTGTGATCCGCCAGCCTCTGC CTCCCAAAGAGCTGGGATTACAGGCGTGAGCCACCGCGCTCGGCCCTTTGCATCAATTTCTACAGCTTGTTTTCTTTG CCTGGACTTTACAAGTCTTACCTTGTTCTGCC TTCAG TATTTGTGTGGTCTCATTCTGGTGTGCCAGTAGCTAAAAAT CCATGATTTGCTCTCATCCCACTCCTGTTGTTCATCTCCTCTTATCTGGGGTCACA/(TATCTC)TCGTGATTGCATTCT GATCCCCAGTACTTAGCATGTGCGTAACAACTCTGCCTCTGCTTTCCCAGGCTGTTGATCCGGTGCTGTTCATGCCTCA GAAAAATGCATTGTAAGTTAAATTATTAAAGATTTTAAATATAGGAAAAAGTAAGCAAACATAAGGAACAAAAGGAA **AGAACATGTATTCTAATCCATTATTTATTATACAATTAAGAAATTTGGAAACTTTAGATTACACTGCTTTTAGAGATGGAGA** TGTAGTAAGTCTTTTACTCTTTACAAAATACATGTGTTAGCAATTTTGGGAAGAATAGTAACTCACCCGAACAGTG/TAA ATGAAAACCAAGGAATTTTTTTAGAAAACATTACCAGGGCTAATAACAAAGTAGAGCCACATGTCATTTATCTTCCCTT TGTGTCTGTGTGAGAATTCTAGAGTTATATTTGTACATAGCATGGAAAAATGAGAGGCTAGTTTATCAACTAGTTCATTTT TAAAAGTCTAACACATCCTAGGTATAGGTGAACTGTCCTCCTGCCAATGTATTGCACATTTGTGCCCAGATCCAGCATA **GGGTATGTTTGCCATTTACAAACGTTTATGTCTTAAGAGAGGAAATATGAAGAGCAAAACAGTGCATGCTGGAGAGAG** AAAGCTGATACAAATATAAAT/GAAACAATAATTGGAAAAATTGABAAACTACTCATTTTCTAAATTACTCATGTATTTTC **TCAGGGAAAGAAATTGCTTTTT** SNPs 1 / 300 bases #### Mapping the Relationships Among SNPs #### Chromosome 9p21 Region Associated with MI | | Boston | Provi-
dence | New
York | Phila-
delphia | Balti-
more | |--------------|--------|-----------------|-------------|-------------------|----------------| | Providence | 59 | | | | | | New York | 210 | 152 | | | | | Philadelphia | 320 | 237 | 86 | | | | Baltimore | 430 | 325 | 173 | 87 | | | Washington | 450 | 358 | 206 | 120 | 34 | | | Boston | Provi-
dence | New
York | Phila-
delphia | Balti-
more | |--------------|--------|-----------------|-------------|-------------------|----------------| | Providence | 59 | | | | | | New York | 210 | 152 | | | | | Philadelphia | 320 | 237 | 86 | | | | Baltimore | 430 | 325 | 173 | 87 | | | Washington | 450 | 358 | 206 | 120 | 34 | 201-300 301-400 > 400 < 100 101-200 | | Boston | Provi-
dence | New
York | Phila-
delphia | Balti-
more | |--------------|--------|-----------------|-------------|-------------------|----------------| | Providence | 59 | | | | | | New York | 210 | 152 | | | | | Philadelphia | 320 | 237 | 86 | | | | Baltimore | | 325 | 173 | 87 | | | Washington | | 358 | 206 | 120 | 34 | 201-300 301-400 > 400 < 100 101-200 #### Mapping the Relationships Among SNPs Block 1 Block 2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 **CAGATCGCTGGATGAATCGCATCTGTAAGCAT CGGATTGCTGCATGGATCGCATCTGTAAGCAC CAGATCGCTGGATGAATCGCATCTGTAAGCAT** CAGATCGCTGGATGAATCCCATCAGTACGCAT CGGATTGCTGCATGGATCCCATCAGTACGCAT **CGGATTGCTGCATGGATCCCATCAGTACGCAC** #### www.hapmap.org Vol 437 27 October 2005 doi:10.1038/nature04226 nature Vol 449 18 October 2007 doi:10.1038/nature06258 nature Nature 2007; 449:851-61. ARTICLES ## A second generation human haplotype map of over 3.1 million SNPs The International HapMap Consortium* We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25–35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r^2 of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r^2 of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10–30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination ### A HapMap for More Efficient Association Studies: Goals - Use just the density of SNPs needed to find associations between SNPs and diseases - Do not miss chromosomal regions with disease association - Produce a tool to assist in finding genes affecting health and disease - Use more SNPs for complete genome coverage of populations of recent African ancestry populations due to shorter LD #### **Progress in Genotyping Technology** ## Continued Progress in Genotyping Technology Courtesy S. Gabriel, Broad/MIT ## Association of Alleles and Genotypes of rs1333049 with Myocardial Infarction | | С | G | χ^2 | P-value | | |---------------------------|--------------|--------------|----------|-------------------------|--| | | N (%) | N (%) | (1df) | r-value | | | Cases | 2,132 (55.4) | 1,716 (44.6) | 55 1 | 1.2 x 10 ⁻¹³ | | | Controls | 2,783 (47.4) | 3,089 (52.6) | 55. i | 1.2 X 10 1° | | | Allelic Odds Ratio = 1.38 | | | | | | ## Association of Alleles and Genotypes of rs1333049 with Myocardial Infarction | | C
N (%) | G
N (%) | | χ²
(1df) | P-value | | | |--------------------------------|--------------|--------------|------------|-------------|-------------------------|--|--| | Cases | 2,132 (55.4) | 1,716 (44.6) | | <i>EE</i> 1 | 1 2 × 10-13 | | | | Controls | 2,783 (47.4) | 3,089 (52.6) | | 55.1 | 1.2 x 10 ⁻¹³ | | | | Allelic Odds Ratio = 1.38 | | | | | | | | | | CC | CG | GG | χ^2 | P-value | | | | | N (%) | N (%) | N (%) | (2df) | r-value | | | | Cases | 586 (30.5) | 960 (49.9) | 378 (19.6) | 59.7 | 1.1 x 10 ⁻¹⁴ | | | | Controls | 676 (23.0) | 1,431 (48.7) | 829 (28.2) | 59.1 | 1.1 X 10 ··· | | | | Heterozygote Odds Ratio = 1.47 | | | | | | | | | Homozygote Odds Ratio = 1.90 | | | | | | | | Samani N et al, N Engl J Med 2007; 357:443-53. ### P Values of GWA Scan for Age-Related Macular Degeneration Klein et al, *Science* 2005; 308:385-389. #### Nicotine Dependence among Smokers Bierut LJ et al, Hum Molec Genet 2007; 16:24-35. #### Genome-Wide Scan for Type 2 Diabetes in a Scandinavian Cohort ## -Log₁₀ P Values for SNP Associations with Myocardial Infarction ### Association Signal for Coronary Artery Disease on Chromosome 9 Samani N et al., N Engl J Med 2007; 357:443-53. ### Region of Chromosome 1 Showing Strong Association with Inflammatory Bowel Disease ## Published GWA Reports, 3/2005 - 9/2008 # NHGRI Catalog of GWA Studies: http://www.genome.gov/gwastudies/ | First Author/Date/
Journal/Study | Disease/Trait | Initial
Sample Size | Replication
Sample Size | Region | Gene | Strongest
SNP-Risk
Allele | Risk Allele
Frequency in
Controls | P-
value | OR per copy or B-coefficient for
heterozygote and [95% CI] | Platfo
[SNPs pas | |--|---------------|--|---|---------|------------------------------|---------------------------------|---|--------------|---|-------------------------------------| | Amos
April 03, 2008 | Lung cancer | 1,154 cases, 1,137
controls | 2,724 cases, 3,694
controls | 15q25.1 | CHRNA3 | rs8034191-G | NR | 3 x
10-18 | 1.30 [1.15-1.47] | Illumina
[317,498] | | Nat Genet
Genome-wide | | Controls | Controls | 1q23.2 | CRP | rs2808630-G | NR | 7 x | 1.22 [1.10-1.35] | [317,430] | | association scan of tag
SNPs identifies a | | | | 3q28 | IL1RAP | rs7626795-G | NR | 10-6 | 1.16 [1.05-1.28] | | | susceptibility locus for
lung cancer at15g251 | | | | | | | | 8 x
10-6 | | | | Hung April 03, 2008 Nature A susceptibility locus for lung cancer maps to nicotinic actevlcholine receptor subunit genes on 15q25 | Lung cancer | 1,926 cases, 2,522
controls | 2,513 cases, 4,752 controls | 15q25.1 | CHRNA3,
CHRNA5,
CHRNB4 | rs8034191-C | 0.34 | 5 x
10-20 | 1.21 [1.11-1.31] | Illumina
[310,023] | | Spinola January 16, 2007 Cancer Lett Genome-wide single nucleotide polymorphism analysis of lung cancer risk detects the KLF6 gene | Lung cancer | 338 Italian lung
adenocarcinoma
cases, 335 Italian
controls | 265 Norwegian
non-small lung
carcinoma cases
356 Norwegian
controls | NA | NA | NA | NA | NS | NA | Affymetrix
[116,204]
(pooled) | ## NHGRI GWA Catalog - Objectives - Identify and track all GWA publications attempting to assay > 100,000 SNPs - Extract key information regarding associations - Provide widely as scientific resource, including downloadable datafile - Seek commonalities across associations genome-wide rather than disease by disease - Describe approach clearly so others can replicate or expand upon it - Maintain consistency in approach - Adapt to evolving technologies: CNVs? # Functional Classification of 782 Index SNPs Associated with Complex Traits # Functional Classification of 782 Index SNPs and 4,623 Index + Linked SNPs # Functional Classes (%) of Linked and Index SNPs vs Randomly-Drawn HapMap SNPs | Functional Class | Index | Linked | НарМар | P-value* | |------------------|-------|--------|--------|-----------------------| | Missense | 4.7 | 1.3 | 0.6 | 2 x 10 ⁻⁶ | | Synonymous | 1.4 | 0.7 | 0.5 | 0.05 | | Intronic | 43.5 | 47.5 | 37.5 | 6 x 10 ⁻³⁸ | | 5' UTR | 0.3 | 0.3 | 0.1 | 0.05 | | 3' UTR | 1.4 | 1.0 | 0.9 | 0.23 | | miRTS | 8.0 | 0.5 | 0.3 | 0.12 | | 5' (2kb) | 2.8 | 2.0 | 1.1 | 2 x 10 ⁻⁷ | | 3' (0.5kb) | 2.6 | 1.8 | 1.2 | 3 x 10 ⁻⁴ | | Intergenic | 45.3 | 47.0 | 58.1 | 4 x 10 ⁻⁵⁹ | ^{*} Multiple comparisons correction $p_{threshold} = 0.006$. # Functional Classes (%) of Linked and Index SNPs vs Randomly-Drawn HapMap SNPs | Functional Class | Index | Linked | НарМар | P-value* | |------------------|-------|--------|--------|-----------------------| | Missense | 4.7 | 1.3 | 0.6 | 2 x 10 ⁻⁶ | | Synonymous | 1.4 | 0.7 | 0.5 | 0.05 | | Intronic | 43.5 | 47.5 | 37.5 | 6 x 10 ⁻³⁸ | | 5' UTR | 0.3 | 0.3 | 0.1 | 0.05 | | 3' UTR | 1.4 | 1.0 | 0.9 | 0.23 | | miRTS | 8.0 | 0.5 | 0.3 | 0.12 | | 5' (2kb) | 2.8 | 2.0 | 1.1 | 2 x 10 ⁻⁷ | | 3' (0.5kb) | 2.6 | 1.8 | 1.2 | 3 x 10 ⁻⁴ | | Intergenic | 45.3 | 47.0 | 58.1 | 4 x 10 ⁻⁵⁹ | ^{*} Multiple comparisons correction $p_{threshold} = 0.006$. ### Signals in Previously Unsuspected Genes | Macular Degeneration | CFH | |----------------------|------------| |----------------------|------------| Coronary Disease CDKN2A/2B Childhood Asthma ORMDL3 Type II Diabetes CDKAL1 Crohn's Disease ATG16L1 | Signals in Previously | Unsuspected | Genes | |-----------------------|-------------|-------| | | | | Macular Degeneration CFH Coronary Disease CDKN2A/2B Childhood Asthma ORMDL3 Type II Diabetes CDKAL1 Crohn's Disease ATG16L1 Signals in Gene "Deserts" Prostate Cancer 8q24 Crohn's Disease 5p13.1, 1q31.2, 10p21 | Signals in Previously Uns | Signals in Common | | |---------------------------|--------------------------|--------------------| | Macular Degeneration | CFH | | | Coronary Disease | CDKN2A/2B | Diabetes, Melanoma | | Childhood Asthma | ORMDL3 | Crohn's Disease | | Type II Diabetes | CDKAL1 | Prostate Cancer | | Crohn's Disease | ATG16L1 | | | Signals in Gene | | | | Prostate Cancer | 8q24 | | | Crohn's Disease | 5p13.1, 1q31.2,
10p21 | | | Signals in Previously Un | Signals in Common | | |--------------------------|--------------------------|---------------------------------------| | Macular Degeneration | CFH | | | Coronary Disease | CDKN2A/2B | Diabetes, Melanoma | | Childhood Asthma | ORMDL3 | Crohn's Disease | | Type II Diabetes | CDKAL1 | Prostate Cancer | | Crohn's Disease | ATG16L1 | | | Signals in Gene | "Deserts" | Signals in Common | | Prostate Cancer | 8q24 | Breast, Colorectal
Cancer; Crohn's | | Crohn's Disease | 5p13.1, 1q31.2,
10p21 | | | Signals in Previously U | Signals in Common | | |-------------------------|--------------------------|---------------------------------------| | Macular Degeneration | CFH | | | Coronary Disease | CDKN2A/2B | Diabetes, Melanoma | | Childhood Asthma | ORMDL3 | Crohn's Disease | | Type II Diabetes | CDKAL1 | Prostate Cancer | | Crohn's Disease | ATG16L1 | | | Signals in Gen | e "Deserts" | Signals in Common | | Prostate Cancer | 8q24 | Breast, Colorectal
Cancer; Crohn's | | Crohn's Disease | 5p13.1, 1q31.2,
10p21 | | | | Signals in Common | | | Multiple Sclerosis | IL7R | Type 1 Diabetes | | Sarcoidosis | C10orf67 | Celiac Disease | | RA, T1DM | PTPN2, PTPN22 | Crohn's | | Signals in Previously U | Signals in Common | | |-------------------------|--------------------------|---------------------------------------| | Macular Degeneration | CFH | | | Coronary Disease | CDKN2A/2B | Diabetes, Melanoma | | Childhood Asthma | ORMDL3 | Crohn's Disease | | Type II Diabetes | CDKAL1 | Prostate Cancer | | Crohn's Disease | ATG16L1 | | | Signals in Gene | e "Deserts" | Signals in Common | | Prostate Cancer | 8q24 | Breast, Colorectal
Cancer; Crohn's | | Crohn's Disease | 5p13.1, 1q31.2,
10p21 | | | | Signals in Common | | | Multiple Sclerosis | IL7R | Type 1 Diabetes | | Sarcoidosis | C10orf67 | Celiac Disease | | RA, T1DM | PTPN2, PTPN22 | Crohn's | ## Study Crohn's Disease! Barrett et al., Nat Genet 2008 Jun 29. "God, Collings, I hate to start a Monday with a case like this." #### Larson, G. The Complete Far Side. 2003. ## nature Senetics Volume 22 no. 1 may 1999 # Freely associating May 1999 Editorial: Once and Again—Issues Surrounding Replication in Genetic Association Studies PERSPECTIVE The Future of Association Studies: Gene-Based Analysis and Replication В **Editorial** # Replication Publication Statistical false positive or true disease pathway? John A Todd Nat Genet July 2006 # Replication Strategy for Prostate Cancer Study in CGEMS ### **GWA Efforts at NHGRI and NIH-wide** T KOLTA LINE HOME | GIVE NOW | CONTACT US | SEARCH # Genetic Association Information Network (GAIN) Analysis Workshop III Philadelphia Marriott Downtown November 10 - 11, 2008 Partners for Innovation, Discovery, Life #### Overview The Genetic Association Information Network (GAIN) is a public-private partnership of the Foundation for the National Institutes of Health, that currently involves the National Institutes of Health (NIH), Pfizer, Affymetrix, Perlegen Sciences, Abbott, and the Eli and Edythe Broad Institute - of MIT and Harvard University. GAIN is taking the next step in the search to understand the genetic factors influencing risk for complex diseases. Through a series of whole genome association studies, using samples from existing case-control studies of patients with common diseases, GAIN will contribute to the identification of genetic pathways that make us more susceptible to these diseases and thus facilitate discovery of new molecular targets for prevention, diagnosis, and treatment. GAIN announced the selection of six major studies in common diseases for genotyping at our November 2006 GAIN Kickoff Meeting and Analysis Workshop, including studies in ADHD, diabetic nephropathy, major depression, psoriasis, schizophrenia, and bipolar disorder. Since then GAIN has completed genotyping on all six studies and made the resulting phenotype and genotype data available via the GAIN Database in dbGaP at the National Center for Biotechnology Information (NCBI) at NIH (dbgap). The GAIN Analysis Workshop III will bring together the primary investigators and data analysts from these studies with genetics and data analysis experts from the scientific community to present the results of findings from analysis of the GAIN data, as well as related advances in strategies for analyzing specific genome-wide association data. Re Alz Net AD ΑD ### **GWA-Related Efforts at NHGRI** # The eMERGE Network electronic Medical Records & Genomics Population Architecture using Genomics and Epidemiology (PAGE) #### Part I Overview Information Н Department of Health and Human Services #### **Participating Organizations** National Institutes of Health (NIH), (http://www.nih.gov) #### **Components of Participating Organizations** National Human Genome Research Institute (NHGRI), (http://www.genome.gov) Title: Genome-wide Association Studies of Treatment Response in Randomized Clinical Trials – Study Investigators (U01) #### Announcement Type New ### **GWA-Related Efforts at NHGRI: Training** Genome-Wide Association Studies for the Rest of Us: Adding Genome-Wide Association to Population Studies Multi-IC Symposia on Application of Genomic Technologies to Population-Based Studies at NIH Institutes and Centers Genetics for Epidemiologists Application of Human Genomics to Population Sciences Epidemiology for Researchers Performing Genetic/Genomic Studies Natcher Auditorium, NIH Campus Bethesda July 18, 2008 #### Overview **Epidemiology for Researchers Performing Genetic/Genomic Studies**, is a short course for investigators and trainees doing research in human genetics, particularly studies employing genomic analyses of samples from human populations. It was conducted by the Office of Population Genomics, NHGRI, on July 18, 2008, in Natcher Auditorium, Building 45, NIH campus. The course consists of eight lectures and aims at familiarizing researchers studying the human genome with basic principles and potential pitfalls of epidemiology as applied to human genome research. It draws from traditional genetic epidemiology and statistical genetics, but emphasizes the application of genomic technologies to unrelated subjects in human populations. Focus is on the design, conduct, analysis and interpretation of the epidemiologic studies most feasible and appropriate to address the genomic questions of interest. # NIH-Wide Efforts in Gene Discovery and Translation NATIONAL INSTITUTES OF HEALTH ### Genes, Environment and Health Initiative (GEI) NIH's Genes, Environment & Health Initiative Adds Six Studies Scientists Will Search for Genetic Factors Underlying Stroke, Glaucoma, High Blood Pressure and Other Common Disorders **Bethesda, Md.**, Wed., Sept. 24, 2008 — The Genes, Environment and Health Initiative (GEI) of the National Institutes of Health (NIH) today awarded grants, estimated to be up to \$5.5 million over two years, for six studies aimed at finding genetic factors that influence the risks for stroke, glaucoma, high blood pressure, prostate cancer and other common disorders. The grantees will use a genome-wide association study to rapidly scan markers across the complete sets of DNA, or genomes, of large groups of people to find genetic variants associated with a particular disease, condition or trait. "Genome-wide association studies are helping us take major strides towards identifying the genetic variants associated with common diseases," said National Human Genome Research Institute (NHGRI) Acting Director Alan E. Guttmacher, M.D., who is co-chair of the GEI coordinating committee. "This initiative will yield valuable information about the biological pathways that lead to health and disease and about how genetic variants, environmental factors and behavioral choices interact to influence disease risk. Such information is vital to our efforts to develop more personalized approaches to health care." SI MICH EI K Ge Μđ Stı # NIH-Wide Efforts in Gene Discovery and Translation | Pa | Part I Overview Information | | Receipt Date: 10/17/2008 | | | |------------------------------|-----------------------------|---|--------------------------|--|--| | De
Pa | Pai | rt I Overview Information | Red | ceipt Date: 11/25/2008 | | | Co
This | Pai | Part I Overview Information | | Receipt Date: 12/1/2008 | | | Tit
En
An
Nev
Re | initia
on bo | Department of Health and Human Services Participating Organizations National Institutes of Health (NIH) (http://www.nih.gov/) Components of Participating Organizations This FOA is developed as a part of the NIH-wide Genes, Environment, and Health Initial initiatives. This FOA will be administered by the National Cancer Institute (NCI, http://www.Title: Replication and Fine-Mapping Studies for the Initiative (GEI)(RO1) | ww.cancer.go | w/) on behalf of the NIH (<u>http://www.nih.gov</u>) | | | | | Announcement Type New Request For Applications (RFA): RFA-CA-09-003 | | | |