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SUMMARY

Multiple modes of endocytosis require actin-
dependent remodeling of the plasma mem-
brane; however, neither the factors linking these
processes nor their mechanisms of action are
understood. The sorting nexin, SNX9, localizes
to clathrin-coated pits where it interacts with
dynamin and functions in clathrin-mediated
endocytosis. Here, we demonstrate that SNX9
also localizes to actin-rich structures implicated
in fluid-phase uptake, including tubular mem-
branes containing GPI-anchored proteins and
dorsal membrane ruffles. Moreover, we show
that SNX9 is critical for dorsal ruffle formation
and for clathrin-independent, actin-dependent
fluid-phase endocytosis. In vitro, SNX9 directly
associates with N-WASP, an Arp2/3 complex
activator, and stimulates N-WASP/Arp2/3-
mediated actin assembly. SNX9-stimulated
actin polymerization is greatly enhanced by
PI4,5P2-containing liposomes, due in part to
PI4,5P2-induced SNX9 oligomerization. These
results suggest a mechanism for the spatial
and temporal regulation of N-WASP-dependent
actin assembly and implicate SNX9 in directly
coupling actin dynamics to membrane remod-
eling during multiple modes of endocytosis.

INTRODUCTION

Cells take up macromolecules and fluids through diverse

endocytic pathways including macropinocytosis, cla-

thrin-mediated endocytosis, caveolin-mediated endocy-

tosis, and clathrin/caveolin-independent endocytosis

(Conner and Schmid, 2003). Clathrin/caveolin-indepen-

dent endocytosis encompasses several distinct, poorly

characterized pathways (Kirkham and Parton, 2005). For

example, a clathrin-independent endocytic pathway is

induced upon dominant interference of dynamin GTPase

activity, a key regulator of multiple endocytic pathways

(Damke et al., 1995), whereas a clathrin-independent,

dynamin- and RhoA-dependent endocytic pathway is
D

used by the interleukin 2 receptor (Lamaze et al., 2001).

In addition, recent studies have focused on a clathrin/

caveolin-independent endocytic pathway used by GPI-an-

chored proteins (GPI-APs) that are internalized through

tubular invaginations in the plasma membrane and traffic

through a compartment called the GPI-AP-enriched early

endosomal compartment (GEEC) (Kirkham and Parton,

2005; Mayor and Riezman, 2004; Sabharanjak et al., 2002).

Although clathrin-, caveolin-, and clathrin/caveolin-in-

dependent pathways are mechanistically distinct, many

require the spatial and temporal coordination of F-actin

assembly. Actin assembly plays a role in membrane

remodeling events such as protrusion during macropino-

cytosis, invagination during clathrin- and caveolin-depen-

dent endocytosis, and vesicle fission (Kaksonen et al.,

2006; Merrifield et al., 2002, 2005; Pelkmans et al., 2002;

Swanson and Watts, 1995; Yarar et al., 2005). However,

little is known about the factors controlling the coordina-

tion of F-actin polymerization with membranes during

these modes of endocytosis.

A small subset of endocytic accessory proteins has

been implicated in functioning at the interface between

membranes and the F-actin cytoskeleton. For example,

Hip1R, Toca1, Cip4, and FBP17 contain phospholipid-

binding domains and directly interact with components

of the F-actin cytoskeleton (Engqvist-Goldstein et al.,

1999; Ho et al., 2004; Itoh et al., 2005; Tsujita et al.,

2006). However, it is unclear if any of these proteins utilize

their lipid-binding properties to directly modulate F-actin

dynamics. Thus, the proteins that directly convey signals

from membranes to the regulation of F-actin dynamics

for membrane remodeling during endocytosis remain to

be defined.

We and others previously identified the sorting nexin,

SNX9, as a major binding partner of dynamin (Lundmark

and Carlsson, 2004; Soulet et al., 2005). SNX9 is essential

for efficient clathrin-mediated endocytosis and is tran-

siently recruited to clathrin-coated pits, along with dyna-

min, during late stages of vesicle formation (Soulet et al.,

2005). The SNX family is defined by the phox homology

(PX) domain, a phospholipid-binding module (Seet and

Hong, 2006). SNX9 also contains an N-terminal SH3

domain that participates in protein-protein interactions

and a BAR (Bin/amphiphysin/Rvs) domain, a second

phospholipid-binding region that also functions in dimer-

ization (Peter et al., 2004). SNX9 has been linked to the
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F-actin cytoskeleton through an interaction with WASP

(Worby et al., 2001; Badour et al., 2007), suggesting it

may function in both endocytic and actin-related

processes.

Here, we establish that SNX9 is required for clathrin-

independent, actin-dependent fluid-phase endocytosis.

SNX9 directly regulates F-actin nucleation through N-

WASP and the Arp2/3 complex, and this activity is syner-

gistically enhanced by PI4,5P2-containing liposomes. Our

findings suggest a mechanism by which SNX9 physically

couples F-actin nucleation to plasma membrane remodel-

ing during endocytosis.

RESULTS

SNX9 Localizes with F-Actin-Rich Structures

Implicated in Endocytosis

SNX9 transiently localizes to clathrin-coated pits on the

plasma membrane, prior to vesicle formation (Lundmark

and Carlsson, 2004; Soulet et al., 2005). However, in

BSC1 epithelial cells expressing clathrin light chain-

EGFP, we also observed surface-associated mCherry-

SNX9 at sites other than those corresponding to coated

pits, suggesting that it may associate with other endocytic

sites. Therefore, to further investigate SNX9’s function,

we examined its subcellular localization by double label-

ing with other markers for endocytosis.

The GEEC pathway for internalization of GPI-APs has

been reported to participate in the uptake of a large frac-

tion of the fluid phase (Guha et al., 2003; Kirkham et al.,

2005; Sabharanjak et al., 2002). Using time-lapse total

internal reflection fluorescence microscopy (TIR-FM), we

observed mCherry-SNX9 along the length of dynamic ve-

sicular and tubular structures that were labeled with the

model GPI-anchored protein, GFP-GPI. In addition, while

we detected SNX9 foci devoid of GFP-GPI, we frequently

observed bright mCherry-SNX9 foci transiently associ-

ated with the edges of these dynamic GFP-GPI tubules

(Figure 1A and see Movie S1 in the Supplemental Data

available with this article online).

Since SNX9 has been linked with WASP-family proteins

(Worby et al., 2001; Badour et al., 2007), regulators of the

actin cytoskeleton, we also analyzed the localization of the

ubiquitously expressed vertebrate WASP-family protein,

N-WASP, and of actin. Like mCherry-SNX9, mCherry-N-

WASP localized along the length of GFP-GPI structures,

as well as transiently at the edges of GFP-GPI structures

(Figure 1B; Movie S2). We also observed flashes of

mCherry-actin along the lengths of GFP-GPI tubules,

often appearing brighter at the edges (Figure 1D; Movie

S4). To determine if there was coordination between

N-WASP with SNX9, we analyzed the relative localization

of these two proteins and found that 80 ± 13% of

mCherry-SNX9 foci (mean ± standard deviation, n = 118,

four cells) transiently colocalized with a subset of EGFP-

N-WASP foci (Figure 1C; Movie S3). Together, these

data suggest that SNX9, N-WASP, and actin function in

a spatially and temporally coordinated manner at sites of

GPI-AP-containing membrane tubule formation.
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Figure 1. SNX9, N-WASP, and Actin Partially Colocalize with

GPI-APs on the Plasma Membrane

(A, B, and D) SNX9 (A) N-WASP (B), and actin (D) each colocalize with

GPI-APs on the plasma membrane, shown in regions of cells tran-

siently expressing mCherry-SNX9 ([A], red in merge), mCherry-

N-WASP ([B], red in merge), or mCherry-actin ([D], red in merge) and

GFP-GPI ([A], [B], and [D], green in merge), and in kymographs of

representative events. See Movie S1, S2, and S4.

(C) SNX9 and N-WASP are transiently colocalized at foci on the plasma

membrane. Shown are regions of cells expressing mCherry-SNX9 (red

in merge) and EGFP-N-WASP (green in merge) and representative

kymographs. See Movie S3. Scale bars in cells = 5 mm. Scale bars in

kymographs = 2 mm. Time scales of kymographs are (min:s) (A),

10:43; (B), 11:48; (C), 7:00; and (D), 10:48. See arrows for examples

of overlapping structures.
.



Developmental Cell

SNX9 Links Actin Dynamics and Membrane Remodeling
We also detected punctate signals of SNX9 at circular

dorsal rings and at a subset of membrane ruffles at the

cell periphery in BSC1, Cos7, and Swiss 3T3 cells

(Figure 2A; Figure S1A; data not shown). Structures similar

to these have been implicated in fluid-phase endocytosis

(Buccione et al., 2004; Suetsugu et al., 2003; Mettlen et al.,

2006). Dorsal ruffles and rings are infrequent in normal cell

populations but can be induced by treatment with PDGF

(Buccione et al., 2004). Indeed, PDGF-induced dorsal

ruffles and rings also contained SNX9 (Figure 2B;

Figure S1A).

Previous studies have shown that dorsal ruffles and

rings are rich in F-actin and in N-WASP (Buccione et al.,

2004). Based on both fixed and live cell analyses, SNX9

partially colocalized with F-actin in these structures and

could often be observed at the center of the dorsal rings

(Figures 2A–2D; Figure S1). In living cells stimulated with

PDGF, mCherry-SNX9 associated with punctate struc-

tures forming a ring at the dorsal surface (Figures 2C

and 2D). A subset of these structures constricted over

time, and mCherry-SNX9 was associated with tubulo-

vesicular structures at the center of the constricted ring

(Figure 2C; Movie S5). While EGFP-actin localization

mostly paralleled that of mCherry-SNX9 in PDGF-induced

dorsal rings, EGFP-actin was occasionally observed at the

periphery (Figure 2D; Movies S6 and S7). In addition,

mCherry-SNX9 and EGFP-N-WASP partially colocalized

at dorsal rings following PDGF stimulation (Figure S2;

Movie S8). Together, these results demonstrate that

SNX9, NWASP, and actin are enriched at multiple F-actin-

rich structures implicated in fluid-phase endocytosis.

Since SNX9 localized to F-actin-rich dorsal ruffles and

rings, we tested whether it was required for the formation

of these structures. Transfection of siRNAs targeting

SNX9 resulted in depletion of greater than 90% of SNX9

protein but did not alter actin or dynamin levels (Figure 2E

and data not shown). F-actin-rich dorsal ruffles and rings

formed in 74 ± 12% (mean ± standard deviation) of con-

trol-depleted cells after PDGF stimulation (Figure 2F),

whereas significantly fewer SNX9-depleted cells had dor-

sal ruffles and rings (12 ± 5%, p < 0.01; Figure 2F). These

data demonstrate that, in addition to its known role in

clathrin-mediated endocytosis, SNX9 is required for the

efficient formation of PDGF-induced dorsal ruffles and

rings on the plasma membrane.

SNX9 Is Required for Fluid-Phase Endocytosis

The GEEC pathway and peripheral and dorsal membrane

ruffles have been implicated in endocytosis (Kirkham and

Parton, 2005, Buccione et al., 2004; Suetsugu et al., 2003;

Mettlen et al., 2006). Consistent with the dynamic associ-

ation of SNX9 with these structures, a pronounced inhibi-

tion of fluid-phase endocytosis in SNX9-depleted cells

relative to control siRNA-treated cells was observed as

measured by the accumulation of Alexa-568-labeled

dextran (Figure 3A). To quantify this effect, we measured

horseradish peroxidase (HRP) uptake, a well-established

fluid-phase marker (Figure S2A). Depletion of SNX9

resulted in a 59 ± 15% (n = 3, p = 0.004) reduction of con-
D

stitutive HRP internalization in comparison to control-

depleted cells (Figure 3B). The specificity of SNX9 deple-

tion was confirmed with an siRNA sequence targeting

a second region of SNX9 (Figures S3B and S3C).

To definitively establish that SNX9 functions in non-cla-

thrin-dependent endocytosis, we used siRNAs to deplete

clathrin heavy chain (CHC) by 90%, under conditions

which do not alter SNX9 or actin protein levels (Figure 3B).

In contrast to SNX9 depletion, CHC depletion did not

significantly alter the level of HRP uptake (Figure 3B; n = 3).

In addition, codepletion of CHC and SNX9 did not further

reduce HRP uptake over SNX9 depletion alone (Figure 3B;

n = 3). Thus, in addition to its known role in clathrin-depen-

dent endocytosis, SNX9 is also required for a second

clathrin-independent, constitutive fluid-phase endocytic

pathway.

Overexpression of dominant-negative dynamin inhibits

both clathrin- and caveolin-mediated endocytosis and

induces a clathrin-independent compensatory endocytic

pathway (Damke et al., 1995). As previously reported,

overexpression of dyn2-K44A did not disrupt fluid-phase

internalization of HRP (Figure 3C), indicating that SNX9

depletion and dynamin inhibition differentially effect

fluid-phase uptake. Strikingly, SNX9 depletion had no

effect on HRP uptake in dyn2-K44A-expressing cells,

demonstrating that SNX9 is not required for the dyn2-

K44A-induced compensatory endocytic pathway. These

data underscore the diversity of endocytic machinery

used by mammalian cells.

Since SNX9 colocalizes with actin at multiple sites on

the plasma membrane, we examined whether the SNX9-

dependent fluid-phase endocytic pathway was also actin

dependent. Disruption of F-actin with 1 mM latrunculin A

(LatA), a drug that sequesters actin monomers (Coue

et al., 1987), resulted in a 30 ± 7% (n = 3, p = 0.008) reduc-

tion in HRP uptake (Figure 3D). Importantly, treatment of

SNX9-depleted cells with LatA did not further reduce

HRP uptake levels (Figure 3D), suggesting that SNX9

functions in a pathway together with F-actin to facilitate

fluid-phase endocytosis.

SNX9 Stimulates N-WASP-Mediated Activation

of the Arp2/3 Complex and Promotes

F-Actin Branching

The spatial and temporal coordination of SNX9, N-WASP,

and actin suggests that these proteins may function

together at many sites of endocytosis. N-WASP exists in

an autoinhibited conformation that can be relieved by

interactions with the Rho-family GTPase Cdc42, phos-

phatidylinositol-4,5-bisphosphate (PI4,5P2), and SH3 do-

main-containing binding partners (Stradal et al., 2004).

Since SNX9 contains an SH3 domain, we examined

whether it interacts directly with N-WASP in vitro. As

shown in Figure 5B, 6xHis-N-WASP associated with

GST-SNX9 but not with GST alone. Therefore, we also ex-

amined whether SNX9 could affect the in vitro activities of

N-WASP to simulate Arp2/3 complex-mediated F-actin

nucleation using a pyrene actin assembly assay. In the

absence of either N-WASP or the Arp2/3 complex, SNX9
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Figure 3. SNX9 Is Required for Clathrin-

Independent, F-Actin-Dependent Fluid-

Phase Endocytosis

(A) Fluid-phase endocytosis is reduced in

SNX9-depleted cells. Shown are DIC (upper,

cells are outlined) and fluorescence (lower)

images of BSC1 cells treated with SNX9 or

control siRNA and incubated for 10 min with

0.25 mg/ml Alexa-568 dextran. See Figure 1E

for western blot. Scale bar = 5 mm.

(B) SNX9 is required for clathrin-independent

fluid-phase uptake. HRP uptake assays and

quantitative western blot (as in Figure 2E) of

siRNA-treated lysates from control-, clathrin

heavy chain (CHC)-, SNX9-, or CHC and

SNX9- depleted BSC1 cells. Blots were probed

with antibodies against CHC, SNX9, and actin

(as a loading control). The extent of HRP up-

take/mg of cell lysate was measured after

8 min incubation in control- (white bar), SNX9-

(light gray bar), CHC- (dark gray bar), and

SNX9- and CHC-depleted cells (black bar). Results are normalized to controls and shown as mean ± standard deviation, n = 4.

(C) SNX9 is not required for dominant-negative dynamin-induced compensatory fluid-phase uptake. HRP uptake assays and western blots of siRNA-

treated lysates from control or SNX9-depleted cells infected with tetracycline-regulable HA-dyn2 K44A-expressing adenoviruses in the presence (+)

or absence (�) of tetracycline. Blots were probed with antibodies against HA, SNX9, and actin. The extent of HRP uptake, determined as in Figure 2B,

is shown in control (white bars) and SNX9-depleted cells (gray bars).

(D) SNX9 and F-actin function in the same fluid-phase uptake pathway. HRP in control (white bars) and SNX9- depleted cells (gray bars) treated with

DMSO (control) or 1 mM LatA (LatA, hatched bars). n = 2.
did not significantly alter F-actin assembly dynamics

(Figure 4A). However, in the presence of both N-WASP

and Arp2/3, SNX9 stimulated N-WASP nucleation-pro-

moting activity in a dose-dependent manner (Figure 4B;

Figure S4). Using a more stringent test, we found that

SNX9 also activated DEVH1 N-WASP, an N-WASP trun-

cation mutant lacking the WH1/EVH1 domain (DEVH1 N-

WASP) that exhibits increased autoinhibition (Figure 4C;

Figure S4).

The Arp2/3 complex binds to the sides of actin filaments

and promotes the growth and nucleation of new filaments

to drive the formation of branched, dendritic F-actin arrays

in vivo and in vitro (Pollard et al., 2000). Stimulation of

Arp2/3-mediated actin nucleation by WASP-family pro-

teins increases the formation of F-actin branches (Amann

and Pollard, 2001). To determine whether SNX9 stimu-

lates F-actin nucleation and branching by Arp2/3, we

visualized the actin structures formed using TIR-FM of

fluorescent actin (Kuhn and Pollard, 2005). In the absence
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of other proteins, actin assembled into long, linear fila-

ments (Figure 4D [top panel]; Movie S9). However, consis-

tent with previous work, in the presence of the Arp2/3

complex and DEVH1 N-WASP, actin filaments formed

dendritic assemblies with many F-actin Y branches

(Figure 4D [middle panel]; Movie S9). While SNX9 alone

did not alter the morphology of the linear actin structures

(data not shown), addition of SNX9 to a mixture of the

Arp2/3 complex and DEVH1 N-WASP dramatically in-

creased the density of the branches that assembled

(Figure 4D [bottom panel]; Movie S9). In total, these results

demonstrate that SNX9 binds to and stimulates N-WASP

activation of the Arp2/3 complex, yielding highly branched

arrays of F-actin.

The SH3 Domain of SNX9 Is Necessary

but Not Sufficient for Full N-WASP Activation

To identify the regions of SNX9 required for binding to and

activating N-WASP, we generated deletion mutants
Figure 2. SNX9 Is Present in Multiple F-Actin-Rich Structures and Is Required for Dorsal Ruffle and Ring Formation

(A) SNX9 is enriched in peripheral ruffles (top) and dorsal rings (bottom). Epi-fluorescence images of immunofluorescence labeling of endogenous

SNX9 (left, green in merge) and phalloidin staining of F-actin (second from left, red in merge) are shown. This is more clearly seen in an enlargement

of the yellow boxed area from merged image (right).

(B) Immunofluorescence as in (A) showing that SNX9 is enriched in dorsal ring structures (top) and in dorsal ruffles (bottom) in PDGF-stimulated cells.

(C) mCherry-SNX9 localizes to puncta and tubules in PDGF-induced dorsal rings in time-lapse epi-fluorescence images. Time (min:s) after the

addition of PDGF is shown. See Movie S5.

(D) mCherry-SNX9 (left, red in merge) partially colocalizes with EGFP-actin (center, green in merge) in dorsal ring in PDGF-stimulated cell. See Movie

S6 and S7.

(E) Quantitative western blots of siRNA-treated lysates from control or SNX9-depleted BSC1 cells using antibodies against SNX9 and actin. Serial

dilutions of control lysate (100%–10%) were loaded as indicated.

(F) PDGF-induced dorsal ruffle and ring formation is reduced in SNX9-depleted cells. Shown is phalloidin staining of cells treated with control (left) or

SNX9 (right) siRNAs and the corresponding percentage of cells that form dorsal rings or ruffles (mean ± standard deviation, 100–200 cells counted/

experiment, n = 3). Scale bars = 5 mm.
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Figure 4. SNX9 Stimulates the Ability of N-WASP to Promote

Arp2/3-Complex-Dependent F-Actin Nucleation

(A–C) Pyrene actin assembly assays showing that (A) SNX9 does not

significantly affect F-actin kinetics in the absence of N-WASP or

Arp2/3 complex. (B) SNX9 activates N-WASP and (C) DEVH1

N-WASP. Unless otherwise stated, for all subsequent figures, protein

concentrations used in pyrene actin assembly assays are 1.7 mM actin,

15 nM Arp2/3 complex, (B) 30 nM N-WASP, or (C) 100 nM DEVH1

N-WASP, and 1 mM SNX9. 1.7 mM actin + 15 nM Arp2/3 complex +

30 nM N-WASP is denoted as double asterisk (**), and 1.7 mM actin +
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lacking the SH3 (DSH3 SNX9) or PX (DPX SNX9) domains,

and a fragment of SNX9 containing only the SH3 domain

(Figure 5A; Figure S5). SNX9 mutants lacking the BAR do-

main or mutated to compromise BAR domain activity were

insoluble (data not shown), precluding their analysis.

SNX9 derivatives containing the SH3 domain (GST-DPX

SNX9 and GST-SH3) interacted with recombinant N-

WASP and DEVH1 N-WASP in a GST pull-down assay

(Figure 5B; data not shown). In contrast, GST-DSH3

SNX9 was unable to bind to either N-WASP derivative,

demonstrating that the SH3 domain is both necessary

and sufficient for the N-WASP interaction (Figure 5B).

We next tested the relative abilities of the SNX9 deriva-

tives to activate the nucleation-promoting activity of N-

WASP. Addition of 1 mM His-DPX SNX9, and to a lesser

extent GST-SNX9 SH3, to N-WASP or DEVH1 NWASP

and the Arp2/3 complex increased the rate of F-actin

assembly (Figures 5C and 5D; Figure S5B). However,

these SNX9 derivatives activated N-WASP less than

full-length SNX9, indicating that multiple regions of

SNX9 are required for maximal stimulatory activity. In

contrast, His-DSH3 SNX9 was unable to stimulate N-

WASP activity and may exhibit a subtle inhibitory effect

on N-WASP activation (Figure 5C). Thus, although the

SH3 domain of SNX9 is sufficient for interaction with

N-WASP, additional regions of SNX9 are required for full

activation of N-WASP.

SNX9 Synergizes with PI4,5P2 to Activate N-WASP

Our in vivo and in vitro data suggest that SNX9 activates

N-WASP to trigger Arp2/3-dependent actin assembly at

sites of plasma membrane deformation during endocyto-

sis and membrane ruffling. The plasma membrane is en-

riched in and in part defined by PI4,5P2, which can partially

promote N-WASP activity (Rohatgi et al., 1999). SNX9 also

interacts directly with phosphatidylinositols through its

lipid-binding PX and BAR domains (Lundmark and Carls-

son, 2003). Therefore, to determine whether the lipid envi-

ronment can influence SNX9 activity, we examined if inter-

action with PI4,5P2-containing liposomes enhanced its

ability to stimulate N-WASP. To maximize sensitivity, we

tested the effects of PI4,5P2 and SNX9 on the activity of

strongly autoinhibited DEVH1 N-WASP. Under these as-

say conditions, addition of either 100 nM SNX9 or 50 mM

PI4,5P2-containing liposomes alone did not activate N-

WASP/Arp2/3-mediated actin assembly (Figure 6A). How-

ever, when SNX9 and 50 mM PI4,5P2 liposomes were added

together, we observed a synergistic activation of DEVH1

N-WASP and the Arp2/3 complex (Figure 6A). Importantly,

15 nM Arp2/3 complex + 100 nM DEVH1 N-WASP is denoted as

asterisk (*).

(D) SNX9 stimulates the branching activity of the Arp2/3 complex

through N-WASP, as detected by time-lapse TIR-FM of Alexa-488

actin assembly (min:s). Pre-existing filaments can appear by dropping

into the evanescent field. The end of an elongating actin filament is

marked by an arrow. See Movie S9. 1.1 mM actin (top panels), ± 15 nM

Arp2/3 complex and 100 nM DEVH1 N-WASP (middle panels), ± 1 mM

SNX9 (bottom panels).
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Figure 5. Multiple SNX9 Domains Are Required to Fully Stimulate N-WASP Activity

(A) Schematics of SNX9 and deletion derivatives used in these studies.

(B) The SNX9 SH3 domain is necessary and sufficient to bind to N-WASP. 2 mM GST-SNX9 derivative pull-downs of 1 mM 6xHis-N-WASP analyzed by

western blot using anti-Penta His antibodies to detect 6xHis-N-WASP (top) and Coomassie blue staining (bottom).

(C and D) Full-length SNX9 is required for maximal activity. Pyrene actin assembly assays show the relative abilities of 1 mM SNX9 derivatives to

activate (C) N-WASP or (D) DEVH1 N-WASP.
in the absence of DEVH1 N-WASP, addition of SNX9 and

50 mM PI4,5P2 had no effect on the rate of Arp2/3-mediated

actin assembly (Figure S6A). Interestingly, this synergistic

activity of SNX9 with PI4,5P2 liposomes required their

preincubation for 30 min at 25�C prior to addition to the

actin assembly mix. Combining 100 nM SNX9 with either

50 mM (Figure 6A) or 100 mM (data not shown) PI4,5P2

liposomes without any prior incubation did not synergisti-

cally activate N-WASP. This effect was also dependent

on the presence of PI4,5P2, because PC liposomes did

not affect actin polymerization (Figures S6B and S6C).

The ability of SNX9 to synergize with PI4,5P2 depends on

the lipid-binding domains of SNX9 as neither DPX SNX9

nor GST-SH3 SNX9 exhibited synergy with PI4,5P2 lipo-

somes (Figure 6B). These results demonstrate that the

presence of the lipid-binding and SH3 domains in SNX9 to-

gether promote N-WASP- and Arp2/3-dependent F-actin

nucleation.

Other BAR/F-BAR and SH3 domain-containing proteins

have been identified that associate with N-WASP and

therefore have the potential to simultaneously interact

with phosphatidylinositols and N-WASP (Dawson et al.,

2006). Therefore, we tested whether the activation by

PI4,5P2-containing liposomes was specific to SNX9. Simi-

lar to SNX9, syndapin II is an F-BAR and SH3 domain-

containing protein that associates with N-WASP in cell

lysates and has been suggested to regulate F-actin

assembly during endocytosis (Kessels and Qualmann,
D

2002; Qualmann et al., 1999). Immobilized GST-syndapin

II was able to pull down recombinant DEVH1 N-WASP

(Figure 6C), although to a much lower extent than the

GST-SH3 domain of SNX9. Consistent with this, syndapin

II could also stimulate the activity of DEVH1 N-WASP,

albeit to a lower extent than SNX9 (Figure 6D). In contrast,

syndapin II did not synergistically activate DEVH1 N-

WASP when preincubated with PI4,5P2 liposomes (Fig-

ure 6F), even though it was able to bind to and cosediment

with these liposomes (Figure 6E). These results establish

specificity with respect to the ability of SNX9 to synergize

with PI4,5P2 liposomes.

Oligomeric SNX9 Exhibits Higher Activity

Than Dimeric SNX9

The requirement for preincubation to detect PI4,5P2 stimu-

lation of SNX9 suggests that a structural or conformational

change may be necessary to mediate this effect. In the

course of purifying recombinant SNX9 by gel filtration, we

observed two His-SNX9 species, one eluting with a Stokes

radius of 6.2–8.0 nm and a more variably present larger

species eluting with a Stokes radius of 13.5–16.8 nm.

(Figure 7A). Velocity sedimentation analyses indicated

S-values of �5.6S and between 5.6 and 10.0S for the

smaller and larger species, respectively (Figure 7B). To-

gether these hydrodynamic properties indicate that the

smaller species corresponds to a dimer of SNX9, while the

larger species consists of an oligomer of 5–10 subunits.
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Figure 6. PI4,5P2 Liposomes Induce SNX9 Oligomerization and Synergize with SNX9 to Activate DEVH1 N-WASP

(A) SNX9 must be preincubated with PI4,5P2 liposomes to synergistically activate DEVH1 N-WASP. Conditions are similar to those described in Fig-

ure 4, with the exception that 100 nM SNX9 was preincubated for 30 min at 25�C with either 50 mM PI4,5P2 (black circles) or 10 mM (gray squares)

PI4,5P2 liposomes. 100 nM SNX9 and 50 mM PI4,5P2 liposomes were assayed without preincubation (open diamonds).

(B) SNX9 lipid-binding domains are required for synergy with PI4,5P2 liposomes. Addition of 100 nM SNX9 derivatives preincubated for 30 min at 25�C

with 10 mM PI4,5P2 liposomes does not activate DEVH1 N-WASP.

(C) Syndapin II can directly interact with DEVH1 N-WASP, shown by GST-SNX9 SH3 or GST-syndapin II pull-downs of DEVH1 N-WASP analyzed by

western blot using anti-His antibodies to detect 6xHis-DEVH1 N-WASP (top) and Coomassie blue staining (bottom).

(D) Dose-dependent activation of DEVH1 N-WASP by syndapin II. 2 mM SNX9 is shown for comparison.

(E) Coomassie-stained gel showing that SNX9 and syndapin II interact and cosediment with PI4,5P2 liposomes but not PC liposomes.

(F) Syndapin II and PI4,5P2 liposome activation of DEVH1 N-WASP is additive, not synergistic. 100 nM syndapin II was preincubated as in (B) with

50 mM PI4,5P2 liposomes (black squares) before addition to assay.
Strikingly, when assayed in the presence of both DEVH1

N-WASP and the Arp2/3 complex, the SNX9 oligomer was

significantly more potent than the SNX9 dimer (Figures 4

and 7D). While as little as 30 nM SNX9 oligomer potently

stimulated DEVH1 NWASP and Arp2/3 complex-medi-

ated F-actin assembly in a dose-dependent manner (Fig-

ure 7D; Figure S7), under these conditions 125 nM SNX9

dimer had little effect. Importantly, in control experiments,

we found that oligomeric SNX9 (Figure 7C), like dimeric

SNX9 (Figure 4A), had no effect on F-actin polymerization
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when assayed in the absence of either DEVH1 N-WASP or

the Arp2/3 complex.

The ability of dimeric SNX9 to stimulate N-WASP activ-

ity is potently enhanced by either preincubation with

PI4,5P2 liposomes or by SNX9 oligomerization. To test

for a relationship between these two conditions, we per-

formed nondenaturing polyacrylamide gel electrophoresis

in the presence of excess detergent to assess the oligo-

merization state of SNX9 following preincubation with

PI4,5P2 liposomes (Figure 7E). In the absence of
.
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liposomes, SNX9 primarily migrated near the bottom of

the gel, consistent with its dimeric nature. Incubation of di-

meric SNX9 with detergent alone or with PC liposomes,

which do not bind to SNX9, did not alter its migration prop-

erties in the native gel. In contrast, incubation of SNX9 with

PI4,5P2 -containing liposomes significantly slowed the mi-

gration of SNX9, suggesting the formation of oligomers

(Figure 7E). To determine if association with a lipid mem-

brane is sufficient to induce oligomerization and activation

of SNX9, His-SNX9 was incubated with nickel-NTA-con-

taining liposomes (15 mol% Ni-NTA and 85 mol% PC)

and examined for its activity level and oligomerization

state. In this experiment, untagged DEVH1 N-WASP was

used so that the His tag did not affect interpretation of re-

sults. Although His-SNX9 efficiently pelleted with nickel-

NTA-containing liposomes (Figure S7B), this interaction

did not induce SNX9 oligomerization (Figure 7E) or en-

hance DEVH1 N-WASP activity (Figure 7F). Taken to-

gether, these data suggest that in the presence of

PI4,5P2, SNX9 is induced to undergo oligomerization that

in turn results in a dramatic increase in the ability of

SNX9 to activate N-WASP. These findings suggest a novel

mechanism by which SNX9 can couple phosphoinositide

signaling to actin assembly and affect plasma membrane

remodeling during endocytosis.

DISCUSSION

SNX9 Functions in Coupling Actin Dynamics

to Membrane Remodeling in Multiple

Modes of Endocytosis

F-actin dynamics play a critical role in remodeling the

plasma membrane. However, the mechanism coupling

regulation of F-actin assembly to membrane remodeling

during endocytosis has remained poorly defined. Using

a combination of in vivo and in vitro approaches, we

have identified SNX9 as a molecular link that could couple

membrane association with de novo F-actin nucleation

through modulation of N-WASP activity during multiple

modes of endocytosis.

In addition to the previously established requirement for

SNX9 in clathrin-mediated endocytosis (Soulet et al.,

2005), we now show that SNX9 participates in clathrin-

independent, F-actin-dependent constitutive fluid-phase

endocytosis. SNX9, N-WASP, and actin assembly are

spatially and temporally coordinated at membrane tu-

bules containing GPI-APs, and the dynamics of actin as-

sembly appear to locally correlate with tubule motion.

This suggests the involvement of these proteins in the re-

cently identified GEEC pathway thought to be a major

route for the uptake of GPI-APs and fluid (Kirkham et al.,

2005; Mayor and Riezman, 2004). SNX9, N-WASP, and

actin dynamics are also spatio-temporally coordinated

with the motion of PDGF-induced dorsal ruffles and rings,

suggesting that ruffle motion is powered by SNX9-medi-

ated actin assembly (Buccione et al., 2004; Legg et al.,

2007; this study). SNX9, N-WASP, and actin are also re-

cruited to clathrin-coated pits on the plasma membrane

at late stages of clathrin-coated vesicle formation (Merri-
D

field et al., 2002, 2004; Soulet et al., 2005; Yarar et al.,

2005). As siRNA-mediated depletion of SNX9 inhibits

fluid-phase endocytosis, membrane ruffling, and cla-

thrin-mediated endocytosis (Soulet et al., 2005; this

study), we propose that the local recruitment of SNX9 to

membrane sites of endocytosis results in N-WASP activa-

tion to promote the local assembly of a dendritic actin net-

work through activation of the Arp2/3 complex. The force

generated by network assembly at the membrane then

drives the local membrane deformations required for

specific aspects of these different modes of endocytosis.

Although SNX9 is a major dynamin-binding partner

(Soulet et al., 2005), SNX9 depletion inhibits fluid-phase

uptake, while dominant interference of dynamin does

not. Because dominant-negative dynamin expression

induces a dynamin- and clathrin-independent compensa-

tory endocytic pathway that is also independent of SNX9,

we cannot conclude that SNX9 functions independently of

dynamin during fluid-phase uptake. Nevertheless, induc-

tion of a compensatory pathway upon inhibition of endo-

cytosis by dynamin, but not after depletion of either

SNX9 or clathrin, is an unexpected observation that

underscores the diversity and versatility of endocytic

pathways in mammalian cells. Together, our results dem-

onstrate a novel role for SNX9 during multiple modes of

endocytosis.

Oligomerization and PI4,5P2-Containing Liposomes

Enhance SNX9 Activity

Recombinant SNX9 exists predominantly as a dimer.

However, we were also able to isolate a small proportion

of SNX9 as a higher-order oligomer and show that this

oligomeric species was dramatically more active in stimu-

lating N-WASP- and Arp2/3-dependent actin assembly.

Although the mechanism of oligomerization in E. coli is

unclear, it may reflect either the high concentration of

recombinant protein in the bacterium-promoted His-

SNX9 assembly or the association of recombinant SNX9

with bacterial proteins, lipids, or polyphosphates. Regard-

less, this fortuitous observation provided mechanistic

insight into SNX9 activation. Interestingly, other BAR-

and F-BAR-containing proteins, including FBP17, CIP4,

and syndapin II, have also been suggested to oligomerize

(Dawson et al., 2006). However, no activity has been

previously connected with this oligomerization.

SNX9 oligomerization is promoted by PI4,5P2 binding.

PI4,5P2-induced SNX9 assembly may result from an in-

creased local concentration of SNX9 on the 2D surface

of the liposome and/or from a conformational change

that facilitates oligomerization. Importantly, forced inter-

action of His-SNX9 with nickel-NTA-containing liposomes

failed to promote SNX9 assembly, suggesting that a phos-

phoinositide interaction is required. Although we cannot

exclude the possibility that incubation of SNX9 with lipo-

somes might modify the lipid environment (i.e., by cluster-

ing the PI4,5P2), we suggest that the increased activity

observed upon liposome association is a result of SNX9

oligomerization and may partly result from N-WASP clus-

tering. Previous in vivo studies have shown that artificially
evelopmental Cell 13, 43–56, July 2007 ª2007 Elsevier Inc. 51
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Figure 7. SNX9 Oligomer Is a More Potent N-WASP Activator Than SNX9 Dimer

(A) Gel filtration of 6xHis-SNX9 and corresponding Coomassie blue-stained gel of peak fractions (7–17) reveals two main SNX9 species. Gel filtration

standards (molecular weights and Stokes radii) are indicated above graph. Oligomeric and dimeric fractions used in experiments are marked/under-

scored by the red and blue line, respectively.
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induced clustering of WASP (a hematopoetic-specific

WASP-family protein, structurally similar to N-WASP) on

the plasma membrane resulted in F-actin polymerization

and the formation of membrane protrusions (Castellano

et al., 1999). Alternatively, or in addition, the increase in

SNX9’s stimulation of N-WASP could be caused by a con-

formational change within SNX9 that releases an autoinhi-

bitory, intramolecular interaction (Worby et al., 2001).

Thus, interaction with PI4,5P2 liposomes could modulate

inter- and intramolecular interactions that regulate both

SNX9 oligomerization and autoinhibition.

The finding that SNX9 has broad phospholipid-binding

specificity (Lundmark and Carlsson, 2003) suggests that

other phosphatidylinositols may also regulate SNX9 activ-

ity. Indeed, it was recently shown that T cell/CD28 stimu-

lation induces the formation of a multimeric signaling

complex containing SNX9, WASP, and p85, the regulatory

subunit of PI-3 kinase, at sites of clathrin-mediated endo-

cytosis (Badour et al., 2007). These data support a more

general role for SNX9 in coupling phosphoinositide signal-

ing to actin dynamics during endocytosis.

A Model for SNX9 Regulation of Actin Assembly

at the Plasma Membrane

Together, our in vivo and in vitro data suggest a mecha-

nism by which SNX9 spatially and temporally coordinates

F-actin nucleation and membrane remodeling during

endocytosis (Figure 7G). We propose that the discrete

accumulation of SNX9 observed at the tips of GFP-GPI

tubules and the dynamic association of SNX9 with mem-

brane ruffles reflects a PI4,5P2-induced critical, activating

conformational change that is followed by SNX9 self-

assembly. Interestingly, we have previously observed a

similar ‘‘burst’’ of SNX9 at clathrin-coated pits (Soulet

et al., 2005). Since we find that localization of SNX9 and

N-WASP is spatially and temporally coordinated, we pro-

pose that the locally activated SNX9 both clusters and

stimulates N-WASP to promote Arp2/3-mediated actin

filament nucleation. Filament elongation of a highly

branched actin network would provide the force required

for membrane reshaping during vesicle invagination and/

or scission and for the extension of dorsal ruffles. Consis-

tent with this, actin also appeared brighter at the edges of

dynamic GFP-GPI tubules and colocalized with SNX9 in

PDGF-induced ruffles. Further work will be necessary to

test aspects of this model and to define the mechanisms
D

of SNX9 regulation in coordinating actin assembly with

membrane remodeling during endocytosis.

EXPERIMENTAL PROCEDURES

Cell Culture

BSC1 cells (ATCC) or BSC1 CLC-EGFP-expressing cells (kindly pro-

vided by T. Kirchhausen) were grown at 37�C, 5% CO2 and maintained

in DMEM containing 10% FBS (Gemini).

Microscopy

For indirect immunofluorescence, BSC1 cells were plated onto cover-

slips and fixed with 4% paraformaldehyde (PFA). Cells were permea-

bilized in PBS containing 0.1% saponin and 2% BSA and incubated

with affinity-purified, polyclonal anti-SNX9 antibodies (5 mg/ml) (Soulet

et al., 2005), Alexa-488-conjugated anti-rabbit secondary antibodies

(Invitrogen), and/or Alexa-568 phalloidin (Invitrogen). For PDGF stimu-

lation, cells were starved for 24 hr in DMEM containing 0.2% FCS and

stimulated for 5 min with 30 ng/ml PDGF-BB (Calbiochem) before

fixation and staining. Images were obtained as previously described

(Wittmann et al., 2003).

To image mCherry-SNX9, EGFP-NWASP, GFP-GPI, or mCherry-

actin, plasmids were transfected into BSC1 cells with Effectene (QIA-

GEN) and imaged 16–20 hr posttransfection. Near-simultaneous, total

internal reflection fluorescence microscopy (TIR-FM) images of

mCherry- or EGFP-fusion proteins were collected at 2.5–5 s intervals

using an Orca II/ERG CCD camera in 14-bit mode (Adams et al.,

2004; Soulet et al., 2005). Images presented in movie sequences

and kymographs were subjected to a Gaussian filter (kernel 3) in Meta-

morph software (Molecular Devices) for presentation. Pairs of images

were acquired at 5 s intervals using epi-fluorescence mode and imag-

ing conditions as previously described (Adams et al., 2004; Yarar et al.,

2005). For colocalization analyses, TIR-FM images were contrast

enhanced, pseudo-colored, and merged using Metamorph to identify

SNX9 foci that were positive for EGFP-N-WASP.

siRNA Treatment

8.0 3 104 cells were plated into 35 mm dishes and allowed to grow for

24 hr. 80 nM siRNA (SNX9 siRNA #1:sense UAAGCACUUUGACUG

GUUAUU; control nontargeting siRNA #1 [Dharmacon]; CHC oligos:

sense AAGCUGGGAAAACUCUUCAGAUU [Motley et al., 2003])

were introduced into cells using HiPerFect (QIAGEN) according to

the manufacturer’s instructions. After 24 hr incubation, cells were

plated on 35 mm dishes, retransfected with siRNAs, and assayed 24

hr later for SNX9/CHC depletion by western blotting and for HRP/dex-

tran uptake. BSC1 CLC-GFP cells were used to determine the effect of

SNX9 depletion on dorsal ruffle/ring formation.

Endocytosis Assays

HRP uptake assays were performed as previously described

(Schlunck et al., 2004). For LatA treatment, cells grown in 35 mm

dishes were pretreated with 1 mM LatA (solubilized in DMSO) (Sigma)
(B) Velocity sedimentation profile of SNX9 oligomer (top panel) and dimer (bottom panel). S-values of standards are shown above gels.

(C and D) (C) The SNX9 oligomer has no effect on F-actin assembly kinetics in the absence of N-WASP (D) but more potently activates DEVH1

N-WASP than the SNX9 dimer.

(E) PI4,5P2-containing liposomes induce SNX9 oligomerization (left gel), but nickel-NTA liposomes do not (right gel). Gels shows 2 mM SNX9 dimer

alone (–) or after incubation without (TX-100) or with 200 mM PC liposomes, PI4,5P2 liposomes, or nickel-NTA liposomes, as indicated. After incubation,

SNX9/liposome mixtures were solubilized with TX-100 and subjected to native gel electrophoresis.

(F) 6xHis-SNX9 and nickel-NTA liposomes do not synergistically activate DEVH1 N-WASP. 50 mM PI4,5P2 liposomes were incubated either alone (gray

circles) or with 100 nM SNX9 (black circles). 1 mM nickel-NTA liposomes were incubated either alone (light purple triangles) or with 100 nM SNX9 (dark

purple triangles).

(G) Model of proposed mechanism by which SNX9 couples lipid binding to activation of N-WASP and F-actin nucleation to drive membrane shape

changes. SNX9 is shown as a blue circle which self associates upon lipid binding and undergoes a conformational change (blue squares). This results

in a more active form of SNX9 that enhances the ability of N-WASP to stimulate the Arp2/3 complex.
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or DMSO for 25 min at 37�C and then incubated with HRP in the con-

tinued presence of 1 mM LatA or DMSO for the duration of internaliza-

tion. For dyn2-K44A overexpression, cells grown in 35 mm dishes were

transfected with SNX9 or control siRNAs as described above and in-

fected with HA-dyn2 K44A (under control of tetracycline regulatable

promoter, tet-off) and tTA transactivator (tTA) adenoviruses in the

absence or presence of 1 mg/ml tetracycline. After �18 hr, cells were

assayed for HRP uptake and HA-dyn2 K44A expression by western

blotting (anti-HA, 12CA5). Three independent experiments were per-

formed in duplicate, averaged, and normalized to the quantity of

HRP internalized in control cells.

For dextran uptake, cells were grown on coverslips and incubated in

the presence of 10 kD Alexa-568 fixable dextran (Invitrogen), fixed with

4% PFA, mounted on a coverslip, and imaged with a 40X Fluar, 1.3NA

objective (Zeiss) on an upright Zeiss Axiophot epi-fluorescence micro-

scope. Images were collected using an AxioCam HRm digital camera

(Zeiss).

Protein Expression and Purification

Recombinant human Arp2/3 complex (Goley et al., 2004), rabbit skel-

etal muscle actin (Spudich and Watt, 1971), and pyrene-labeled actin

(Kouyama and Mihashi, 1981) were prepared as described previously.

Rabbit muscle myosin II was provided by Ron Milligan (TSRI).

GST- and His-tagged SNX9 derivatives and His-DEVH1 N-WASP

(aa138–501) were expressed in BL21-DE3 E. coli, and cell lysates

were subjected to affinity purification using glutathione-Sepharose

4B (Amersham Bioscience) for GST-fusion proteins or Ni-NTA agarose

(QIAGEN) for His-tagged proteins according to the manufacturer’s in-

structions. Except for GST-syndapin II, all peak fractions were further

purified over a Superose 6 10/300 gel filtration column into control

buffer (20 mM HEPES [pH 7.4], 100 mM KCl, 1 mM EDTA, 1 mM

EGTA, 2 mM MgCl2, 10% glycerol, and 0.5 mM DTT). Untagged syn-

dapin II was cleaved from GST-syndapin II with PreScission protease

(GE Healthcare) and purified by gel filtration. Bovine 6xHis-N-WASP

was expressed in Tn5 cells using the baculovirus expression system.

Thawed cell pellets were resuspended in 50 mM NaPhosphate

(pH 8.0), 400 mM KCl, centrifuged, and purified as above, except

that the control buffer contained 300 mM KCl.

Actin Assembly Assays

Pyrene actin assembly assays were performed as previously de-

scribed (Cooper et al., 1983). Unless otherwise stated, pyrene assays

were in the presence of the dimeric SNX9 species. All pyrene curves

shown are representative of at least duplicate experiments.

Microscopy-based actin polymerization assays were based on

previous studies (Kovar et al., 2006; Kuhn and Pollard, 2005). NEM-

treated rabbit muscle myosin was coated on acid-washed glass cov-

erslips and mounted on a slide with two strips of double-sided tape

spaced �0.5 cm apart. Actin assembly was initiated and then trans-

ferred to the slide chamber. The coverslip was sealed and immediately

imaged by TIR-FM with 100–300 ms exposures, 5 s intervals using the

microscope system described in Adams et al. (2004). This micros-

copy-based assay allows the detection and analysis of those F-actin

structures captured on the coverslip and cannot be used to analyze

bulk kinetics of the entire population of F-actin.

Liposome Preparation/Binding

Liposomes (100 mol% PC; 15 mol% PI4,5P2 + 85 mol% PC; 15 mol%

nickel NTA (DOGS) + 85 mol% PC [Avanti]) were prepared as previ-

ously described (Soulet et al., 2005).

For liposome-binding experiments, 2 mM protein was incubated with

400 mM liposomes for 45 min in liposome buffer (50 mM HEPES,

100 mM NaCl, 0.5 mM DTT) and centrifuged for 20 min at 20,000 g.

The supernatant was removed and the pellet resuspended in an equal

buffer volume. Equal volumes of supernatant and pellet samples were

analyzed by SDS-PAGE.

To observe liposome-induced SNX9 oligomerization, 2.0 mM SNX9

was incubated with 200 mM liposomes (400 nm) or in liposome buffer
54 Developmental Cell 13, 43–56, July 2007 ª2007 Elsevier Inc
alone for 30 min at room temperature. Samples were treated with

0.7% Triton X-100 (11.9 mM) for 4 min and analyzed by 3%–8%

Tris-Acetate Native electrophoresis (Invitrogen).

Sucrose Gradient

150 ml of 6xHis-SNX9 was run on a 2 ml 5%–20% sucrose gradient in

control buffer at 50 k rpm for 8 hr at 4�C. 150 ml fractions were taken

from the top of the tube and analyzed by SDS-PAGE. Sedimentation

was compared to standards: BSA (4.3 S), aldolase (7.35 S), catalase

(11.3 S), and thyroglobulin (19.4 S).

Supplemental Data

Supplemental Data include nine movies and seven figures and can be

found with this article online at http://www.developmentalcell.org/cgi/

content/full/13/1/43/DC1/.
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