Full Text View  
  Tabular View  
  Contacts and Locations  
  No Study Results Posted  
  Related Studies  
Growth Hormone Signaling in Vivo in Humans
This study has been completed.
Sponsored by: University of Aarhus
Information provided by: University of Aarhus
ClinicalTrials.gov Identifier: NCT00512473
  Purpose

Objective: GH induces insulin resistance in muscle and fat and in vitro data indicate that this may involve crosstalk between the signaling pathways of the two hormones.

Aim: To investigate GH and insulin signaling in vivo in human muscle and fat tissue in response to GH, GH receptor blockade and insulin stimulation..


Condition Intervention
Intracellular Signaling Peptides and Proteins
Drug: Saline infusion
Drug: Human Growth Hormone
Drug: Pegvisomant

Drug Information available for: Insulin Sodium chloride Somatotropin Somatropin
U.S. FDA Resources
Study Type: Interventional
Study Design: Basic Science, Randomized, Single Blind, Placebo Control, Crossover Assignment, Pharmacodynamics Study
Official Title: Growth Hormone (GH) Signaling in Vivo in Human Muscle and Adipose Tissue: Impact of Insulin, Substrate Background and gh Receptor Blockade

Further study details as provided by University of Aarhus:

Primary Outcome Measures:
  • GH-receptor signaling [ Time Frame: hours ]

Secondary Outcome Measures:
  • Insulin sensitivity [ Time Frame: hours ]

Enrollment: 8
Study Start Date: September 2005
Study Completion Date: April 2006
Arms Assigned Interventions
A: Placebo Comparator
I.v. saline for 8 hours
Drug: Saline infusion
0.9 % NaCl
GH: Experimental
Growth hormone (0.5 mg s.c. at t = 0 hours)
Drug: Human Growth Hormone
0.5 mg genotropin administered as a bolus at t = 0
Pegvisomant: Experimental
Pegvisomant injection 30 mg 36 hours prior to the study
Drug: Pegvisomant
30 mg Somavert administered at t = - 36 hours

Detailed Description:

The molecular mechanisms by which GH promotes insulin antagonism are still unclear. Stimulation of lipolysis could be of importance since high plasma FFA levels have been shown to interfere with insulin receptor signaling via inhibition of insulin-stimulated insulin receptor substrate (IRS)-1 associated phosphatidylinositol (PI) 3-kinase activity in human skeletal muscle, resulting in a decreased GLUT4 translocation and glucose transport (6). A recent study, however, was unable to document a suppression in the insulin-stimulated activity of either IRS-1 associated PI 3-kinase or the serin/threonin kinase Akt after GH administration to healthy humans, despite induction of lipolysis and insulin resistance (7). Other studies have shown that acute GH exposure induces insulin resistance in skeletal muscle rapidly and before the subsequent rise in plasma FFA (1;7;8). These observations indicate that GH may cause insulin resistance via a non-FFA mediated mechanism.

The predominant GH signal transduction cascade comprises activation of the GHR dimer, phosphorylation of JAK2 and subsequently activation of Stat5. The intact JAK2/Stat5 pathway is necessary for normal statural growth (9). There is animal and in vitro evidence to suggest that insulin and GH share post-receptor signaling pathways (10). Convergence has been reported at the levels of Stat5 and SOCS3 as well as on protein kinases comprising the major IR signaling pathway; IRS 1/2, PI 3-kinase, Akt and ERK 1/2 (11-14).

Pegvisomant is a GH analog and a competitive reversible GH receptor antagonist, which blocks peripheral GH signal transduction (15). Pegvisomant has been shown to inhibit the necessary conformational change of the GHR dimer and thus constitutes an optimal negative control in GH signaling studies.

The aim of this work was to further study GH signal transduction pathways in vivo in muscle and adipose tissue from healthy subjects in response to acute and more prolonged GH exposure as well as during hyperinsulinemia. The design also included administration of pegvisomant in an attempt to correct for spontaneous GH secretion.

  Eligibility

Ages Eligible for Study:   20 Years to 40 Years
Genders Eligible for Study:   Male
Accepts Healthy Volunteers:   Yes
Criteria

Inclusion Criteria:

  • Male
  • Healthy
  • Not taking medication

Exclusion Criteria:

  • Insulin resistance
  Contacts and Locations
Please refer to this study by its ClinicalTrials.gov identifier: NCT00512473

Locations
Denmark
Medical Research Laboratories
Aarhus, Denmark, 8000
Sponsors and Collaborators
University of Aarhus
Investigators
Principal Investigator: Lars C Gormsen, MD Aarhus University Hospital, Department M
  More Information

Publications of Results:
Publications indexed to this study:
Study ID Numbers: 20050113
Study First Received: August 6, 2007
Last Updated: August 6, 2007
ClinicalTrials.gov Identifier: NCT00512473  
Health Authority: Denmark: The Danish National Committee on Biomedical Research Ethics

Keywords provided by University of Aarhus:
GH, GH receptor blockade, GH signaling, insulin resistance

Study placed in the following topic categories:
Insulin Resistance
Insulin

ClinicalTrials.gov processed this record on January 15, 2009