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Recent advances in genetic technology have spurred a mini-revolu-
tion in the study of toxicology. Toxicologic studies are a national
imperative, and the importance of the application of transgenic
mice and knock-out technologies to these studies is widely recog-
nized. For example, the use of Tg.AC transgenic mice, carrying an
inducible v-H-ras gene, and p53+/-mice speeds the outcomes of the
traditional 2-year bioassay of chemicals nominated for study (1–8).
Mechanistic studies have been greatly enhanced by Big Blue trans-
genic animals that allow “shuttle” mutagenesis studies (9–11). 

These genetic approaches have enhanced our knowledge of
mechanisms that are important to molecular toxicology as well. By
knocking out gamma-glutamyl transpeptidase, the paradoxical
reduction of intracellular glutathione was found to be associated with
the accumulation of DNA damage (12). Mechanistic roles for repair
enzyme genes in toxocologic damage have been revealed with this
technology. For example, mouse models of xeroderma pigmentosa
produced by creating null mutations of xpc gene prove the critical
function nucleotide excision repair by the xpc system in ultraviolet
radiation-induced damage leading to skin cancer (13). By combining
mutations, the overlapping roles of p53 (Trp53) and xpc, as well as
base excision repair and mismatch repair, were revealed (14).

Similarly, this approach established the role of β-pol in long
patch repair and established that the failure of this repair system can
lead to chromosomal breakage and apoptosis (15,16). β-pol null
cells were used to show that removal of 5´-deoxyribose phosphate
moiety from DNA is a key step in base excision repair (17). The
promise now is that knock-out technology, particularly combined
with widespread application of gene array studies, will enhance the
Environmental Genome Project goal of establishing mechanisms of
gene–environment interaction (18). 

The application of these technologies through model systems
(fruitfly and Caenorhabditis elegans) that establish “the usual suspect”
genes by sequence similarities was recently boosted with the comple-
tion of both the Drosophila and C. elegans genome projects (19).
These projects revealed a surprising level of sequence conservation to
the human. In the case of Drosophila, sequence homology to humans
is estimated to be approximately 50%, and > 60% of a subset of
human disease genes (68% of human cancer genes) had orthologs in
the Drosophila annotated genome. We know this conservation
extends to important aspects of complete pathways as well, such as
the Sonic hedgehog–Patched–GLI pathway (20). 

The ability to take information from the model system to func-
tional gene study with gain of function (e.g., transgenic) and loss of
function (e.g., knock-out) mutations in analogous experimental sys-
tems such as the mouse is extremely powerful because of the genetic
information available in mouse strains. It is important to remember
that complete exploitation of this approach requires careful pheno-
typic analysis, which is often not available or difficult to obtain in
the mouse. 

Much of these data are already available or easily obtainable in the
rat, however. Using the rat, physiologic and pathophysiologic data for
common diseases and metabolic pathways have been gathered for
nearly a century from models of diseases that are important to the

national public health. Often the rat
model most closely resembles the
human from among acceptable
experimental systems. Important rat
models of human diseases include
those for cardiovascular diseases,
neurodegenerative diseases, behav-
ioral disorders, metabolic disorders,
and carcinogenesis, all of which have

important environmental overlays that are often poorly understood at
the mechanistic level (21,22). 

The genomic resources for using rat models of human disease
conditions are robust and growing rapidly (23,24). Particularly
important in this regard is the recent announcement that the rat
genome will be sequenced. Currently, over 97% of the rat genome is
covered at high density by anonymous markers, and the rat expressed
sequence tag project has about 60,000 National Center for
Biotechnology Information (Bethesda, MD) UniGene clusters.
Polymorphisms in genes relevant to human toxicologic exposure have
been studied in the rat for many decades. Recently, there have been
several national initiatives to establish centers to maintain and distrib-
ute important rat strains of known genetic and microbiologic quality,
and these should be available to environmental health scientists in the
next few years. However, the full impact of these resources on mecha-
nistic genetic studies is currently limited by the inability to produce
knock-out rats. Indeed, at the time of this writing, knock-outs have
only been successfully produced in the mouse. 

This limitation may be overcome by establishing methods for
nuclear transfer or cloning for the rat (25). Nuclear transfer is the
process of removing the nuclear chromosomal material from unfertil-
ized oocytes and replacing it with a nucleus from another cell, often
an adult cultured cell (26). The nucleus reprograms, presumably by
resetting methylated gene imprints, and the nuclear transfer oocyte
can develop to term (27). The offspring from this process carries the
genetic traits (including targeted mutations if present) of the cultured
cells. Knock-out mice are currently produced by growing embryo-
derived pluripotent stem cells in culture, creating targeted mutations
in them and then transplanting them into preimplantation mouse
embryos to produce a chimera that comprises normal recipient lin-
eages as well as lineages derived from the mutant cells. If the chimera
has functional germ cells that are derived from the targeted cells, then
the mutation can be bred from the chimeras to produce heterozygous
or homozygous mutant mice. As mentioned previously, this does not
work in other animals because stem cells capable of producing germ
line chimeras have not, so far, been reproducibly isolated except from
certain strains of mice. On the other hand, nuclear transfer has been
successful in producing clones of animals from several mammalian
species (28–32), and results with the rat to date are encouraging. At
this point it is possible to obtain advanced preimplantation stages
from nuclear transfer rat oocytes, which is a prerequisite to developing
animals. We have transfected embryonic fibroblasts with green fluo-
rescent protein marker transgenes, and after selection, we used the
cells as nuclear donors for nuclear transfer experiments. The genetically

The “New” Genetics and Mammalian
Cloning in Environmental Health
Research

PERSPECTIVES
Editorial

Important rat models of human diseases include those for cardiovascular diseases, 
neurodegenerative diseases, behavioral disorders, metabolic disorders, and carcinogenesis.
Mammalian cloning may enhance these models.



modified rat cells are as efficient nuclear donors as unmodified cells
are, so this method of making knock-out rats should work. 

There are problems with this approach, however. The efficiency
of producing cloned mammals appears to be approximately 2% of
manipulated embryos, a number that seems not to be affected by the
species used or the type of cell used as a nuclear donor. Currently,
large-scale efforts to improve this efficiency are under way for several
species of mammals. There is a high frequency of gestational loss of
nuclear transfer fetuses with a wide variety of abnormalities, includ-
ing high frequencies of placental abnormalities, regardless of the
species used. The biochemical reprogramming required by the nucle-
us after transfer does not occur in a completely successful manner for
the vast majority of embryos. Just what effect this would have on the
phenotypic analysis of traits in animals produced this way is unclear.
Nevertheless, making lines of animals with specific genetic traits in
this way seems entirely feasible. 

There are some very interesting questions that cloning raises inde-
pendent of their potential utility in mechanistic genetic toxicology:
What is nuclear reprogramming? What is the age of the animals rela-
tive to the age of the cells used as nuclear donors? What is the nature
of the abnormalities in some of the clones? Why is the efficiency of
cloning low and seemingly invariant? How do imprinted genes
behave in cloned animals? What is the mechanism of methylation
maintenance in cloned animals? Regardless of these questions and
challenges, nuclear transfer offers the promise of providing a route to
loss of function mutations in the rat. Nuclear transfer may provide
the opportunity to exploit the marriage of phenotypic data, genomic
data, expressed-gene data, and sequence conservation in pursuit of the
goal of complete functional analysis of genes that modulate environ-
mental exposure in human health. It is an exciting time for developing
embryologic approaches to toxicology. 
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