Quantcast
Environmental Health Perspectives Free Trail Issue
Author Keyword Title Full
About EHP Publications Past Issues News By Topic Authors Subscribe Press International Inside EHP Email Alerts spacer
Environmental Health Perspectives (EHP) is a monthly journal of peer-reviewed research and news on the impact of the environment on human health. EHP is published by the National Institute of Environmental Health Sciences and its content is free online. Print issues are available by paid subscription.DISCLAIMER
spacer
NIEHS
NIH
DHHS
spacer
Current Issue

EHP Science Education Website




Comparative Toxicogenomics Database (CTD)

spacer
Environmental Health Perspectives Volume 103, Number 3, March 1995 Open Access
spacer
Tissue Repair Response as a Function of Dose in Thioacetamide Hepatotoxicity

Raja S. Mangipudy, Sanjay Chanda, and Harihara M. Mehendale

Division of Pharmacology and Toxicology, College of Pharmacy and Health Sciences, Northeast Louisiana University, Monroe, LA 71209-0470 USA

Abstract

The purpose of the present study was to establish a dose-response relationship for thioacetamide (TA) , where tissue regeneration as well as liver injury were two simultaneous but opposing responses. Male Sprague-Dawley rats were injected intraperitioneally with a 12-fold dose range of TA, and both liver injury and tissue repair were measured. Liver injury was assessed by serum enzyme elevations. Serum alanine aminotransferase (ALT) elevation did not show any dose response over a 12-fold dose range up to 24 hr. A dramatic ALT elevation was evident after 24 hr and only for the highest dose (600 mg/kg) . Tissue regeneration response was measured by 3H-thymidine (3H-T) incorporation into hepatocellular DNA and by proliferating cell nuclear antigen (PCNA) procedure during a time course (6, 12, 24, 36, 48, 72, and 96 hr) . Tissue regeneration, as indicated by 3H-T incorporation, peaked at 36 hr after administration of a low dose of TA (50 mg/kg) . With increasing doses, a greater but delayed stimulation of cell division was observed until a threshold was reached (300 mg/kg) . Above the tissue repair threshold (600 mg/kg) , because stimulated tissue repair as revealed by 3H-T incorporation in hepatonuclear DNA was significantly delayed and attenuated, injury assessed by serum enzyme elevations was remarkably accelerated, indicating unrestrained progression of injury leading to animal death. These findings suggest that, in addition to the magnitude of tissue repair response, the time at which this occurs is critical in restraining the progression of injury, thereby determining the ultimate outcome of toxicity. Whereas dose-related stimulation of tissue repair leads to recovery, delayed and diminished tissue repair response at the high dose leads to progression of liver injury, leading to hepatic failure and animal death. These findings impact on the concept of employing maximally tolerated doses in cancer bioassays. Maximum tolerated doses might represent maximal stimulation of cell proliferation, thereby enhancing the likelihood of errors in DNA replication. Measuring tissue repair and injury as simultaneous biological responses to toxic agents might increase the usefulness of dose-response paradigms in predictive toxicology and in risk assessment. Key words: , , , , , , . Environ Health Perspect 103:260-267 (1995)


Address correspondence to Harihara M. Mehendale, Division of Pharmacology and Toxicology, College of Pharmacy and Health Sciences, Northeast Louisiana University, Monroe, LA 71209-0470 USA.

Preliminary results of this study were presented at the fall meeting of the American Society for Pharmacology and Experimental Therapeutics, San Francisco and published in Pharmacologist [35:149 (1993) ].

This work was supported by a starter grant from The Burroughs Wellcome Fund. We thank Harvey J. Clewell, senior project officer, ICF Kaiser International, Ruston, Louisiana, for helpful discussion and suggestions concerning the modeling approach.

Received 26 September 1994 ; accepted 7 December 1994.


The full version of this article is available for free in HTML format.
spacer
 
Open Access Resources | Call for Papers | Career Opportunities | Buy EHP Publications | Advertising Information | Subscribe to the EHP News Feeds News Feeds | Inspector General USA.gov