How Much Do SNPs Improve Models to Predict Breast Cancer Risk?

Personal Genomics Meeting, December 17, 2008

Mitchell H. Gail

Biostatistics Branch
Division of Cancer Epidemiology and Genetics

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Outline

- Models to predict breast cancer risk
 - BCRAT (Gail model 2)
 - BCRATplus7
- Improvements from BCRATplus7
 - Discriminatory accuracy (AUC)
 - Deciding to take tamoxifen
 - Deciding to have a mammogram
 - Allocating scarce public health resources for mammography

Breast Cancer Risk Assessment Tool (BCRAT)

- The NCI's BCRAT or "Gail Model 2"
 - Risk factors in BCRAT
 - Age
 - Age at first live birth
 - Age at menarche
 - Number of mother/sisters with breast cancer
 - Number of previous benign breast biopsies and whether atypical hyperplasia present on any
 - Well calibrated
 - Discriminatory accuracy modest

SNPs Associated with Breast Cancer

Location	Disease Allele Frequency	Odds Ratio per Allele	Reference
FGFR2	0.38	1.26	1
TNRC9 (or TOX3)	0.25	1.20	1
MAP3K1	0.28	1.13	1
LSP1	0.30	1.07	1
CASP8	0.87	1.136	2
8q	0.40	1.08	1
2q35	0.497	1.20	3

Geometric mean 1.15

- 1. Easton et al., Nature 2007;447:1087-1095
- 2. Cox et al., Nature Genetics 2007;39:352-358
- 3. Stacey et al., Nature Genetics 2007;39:865-869

Comparisons of Discriminatory Accuracy

Model	Age-specific AUC
7-SNPs	0.574
14-SNPs	0.604
BCRAT	0.607
BCRAT+ 7-SNPS	0.632

Decision to Take Tamoxifen in 100,000 Women Aged 50-59

Health Outcome	Relative Risk	# Cases If No Tamoxifen	# Cases If All Tamoxifen
Invasive Br. Ca.	0.51	246.6	125.8
Hip Fracture	0.55	101.6	55.9
Endometrial Ca.	4.01	81.4	326.4
Stroke	1.59	110	174.9
Pulmonary Emb.	3.01	50	150.5
Total		589.6	833.5

Threshold Risk r* for Optimal Decision

Expected net benefit from tamoxifen for woman with BC risk r

$$r(1-0.51)+101.6(1-0.55)+81.4(1-4.01)+110.0(1-1.59)+50.0(1-3.01)$$

= 0.49 r - 364.7.

Expected net benefit positive if $r > 364.7/0.49 = 774.3 \equiv r^*$

Life-Threatening Events with Various Prevention Strategies

Strategy	Expected Life- Threatening Events
All get tamoxifen	833.5
None get tamoxifen	589.6
BCRAT > r*	588.2
BCRAT+7 SNPs > r*	587.8
Perfect Model	469.7

Percentage Improvement in Expected Events vs BCRAT

For women aged 50-59

```
- BCRATplus7 0.07%
```

- Perfect model 20.1%
- For women aged 40-49
 - BCRATplus7 0.81%
 - Perfect model 29.0%

Losses in population screening to recommend mammography

Screening recommendation	Breast cancer present	No breast cancer
No mammography	C01=1271	C00=0
Mammography	C11=0.75 x 1271=953	C10=1

threshold $\equiv r^* = 241.4 \times 10^{-5}$ (risk in women aged 50-54 years)

 $sens = Pr(estimated risk > r^* | detectable breast cancer)$

 $spec = Pr(estimated risk \le r^* | no detectable breast cancer)$

Expected Loss =

$$C_{11}\mu(sens) + C_{01}\mu(1-sens) + C_{10}(1-\mu)(1-spec) + C_{11}(1-\mu)(spec)$$

Expected Losses¹ for 3 Models

	BRCAT	BCRAT + 7 SNPs	Perfect Model
Sensitivity	0.476	0.549	1.0
Specificity	0.678	0.638	1.0
Expected loss	3.834	3.801	2.991
% improved	Baseline	0.86%	22.0%

1. Expected losses computed for 50-54 year old women with average BC prevalence of

$$\mu = 1.3 \times 241.4 \times 10^{-5} = 313 \times 10^{-5}$$
.

Allocating Mammograms When Only Enough Money for Half the Population

Screen with

Proportion of lives

% Improvement

saved compared to

giving mammograms

to all women

No Screen

0.500

BCRAT

0.632

Baseline

BCRATplus7

0.667

5.5%

Conclusions

- Compared BCRATplus7 with BCRAT
- Very modest improvements from BCRATplus7
 - Discriminatory accuracy (AUC) (4.1%)
 - Deciding whether to take tamoxifen (0.1% or 0.8%)
 - Deciding to have mammogram (0.8% or 0.1%)
 - Allocating scarce mammogram resources (5.5%)
- BCRATplus7 needs to be validated in independent data on individuals

Conclusions (continued)

- Usefulness of SNPs depends on the application, validity of model, and costs
- To achieve high discriminatory accuracy (AUC=0.8) would require hundreds of SNPs

References

- Fisher et al. JNCI 1998; 90:1371-1388
- Gail, JNCI 2008;100:1037-1041
- Gail & Pfeiffer, Biostatistics 2005;6:227-239
- Gail, Costantino et al., JNCI 1999;91:1829-1846
- Pharoah et al., Nat Genet 2002;31:33-36
- Pharoah et al., NEJM 2008;358:2796-2803
- Easton et al., Nature 2007;447:1087-1095
- Stacey et al., Nat Genet 2007;39:865-869
- Cox et al., Nat Genet 2007;39:352-358