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Matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI MS) can detect sub-
stantial changes in expression of proteins in tissues,
such as cancer cells. A more challenging problem is
detecting the smaller changes expected in normal
development or complex diseases. Here we address
methodological issues regarding the acquisition and
analysis of MALDI MS data from tissue sections, in a
study of mouse cerebellum at different stages of
development. Sections of the cerebellar cortex
were analyzed at the peak of granule neuron produc-
tion [postnatal day (P) 7], during synapse formation
(P14), and in adults. Data were acquired (Voyager-
DETM STR Biospectrometry Workstation; seven
acquisitions of 50 shots per section, 3.5–50 kDa), pre-
processed (Data Explorer 4.3), and averaged. Among
846 peaks detected, in at least 50% of at least one
group, 122 showed significant group differences (Krus-
kal-Wallis ANOVA) after Bonferroni correction. Factor
analyses revealed two age-related factors, possibly
reflecting gradients of expression during development.
Predictive analysis of microarrays generated a model
from half of the sample that correctly predicted devel-
opmental groups for the second half. Intraclass correla-
tion coefficients, measuring within-mouse consistency
of peak heights from three tissue sections, were
acceptable at lower m/z and for larger peaks at higher
m/z. Low mass was the best predictor of significant
group differences. The analysis demonstrates that
MALDI MS of normal tissue sections at different ages
can detect consistent, significant group differences.
Further work is needed to increase the sensitivity of the

methods and to apply them reliably to brain regions
and to subproteomes with relevance to diverse brain
functions and diseases. VVC 2005 Wiley-Liss, Inc.
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High-throughput mass spectrometry (MS) is a
method for simultaneously detecting a large number of
proteins in a biological tissue or extract. MS methods
such as matrix-assisted laser desorption/ionization-time-
of-flight MS (MALDI MS) can detect hundreds of peaks
that are for the most part proteins (Karas et al., 1987;
Hillenkamp et al., 1991). The protonated molecular
weight for each protein is defined by the centroid of the
peak at the measured mass [mass/charge (m/z) ratio].

MALDI MS has been used successfully for detect-
ing patterns of substantial overexpression of proteins in
cancer cells (Yanagisawa et al., 2003; Schwartz et al.,
2004). There is also considerable interest in applying this
method to the study of complex biological states, for
example, to determine differences in protein expression
between knockout and wild-type mice for a candidate
gene or in brain tissue from patients with a disease such
as schizophrenia compared with controls. In studies of
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cellularly complex tissues, specific cell populations can
be studied by acquiring data directly from tissue sections
that preserve spatial resolution for the detection of
uniquely expressed proteins. Through absorption of the
energy from the laser pulse, surface molecules are des-
orbed and ionized by proton transfer processes and the
resulting ions are related to their m/z through measure-
ment of their time-of-flight to the detector (Knochen-
muss and Zenobi, 2003).

Currently, it is not known whether or how reliably
this method can detect differences in expression across
experimental groups for a large number of proteins
across the range of molecular weights and under differ-
ent experimental conditions. Methodological advances
are needed for optimization of sample preparation, selec-
tion and application of the matrix material necessary for
the MALDI process, MS instrument settings for data
acquisition, and preprocessing of digitized data for indi-
vidual spectra. Perhaps most critically, there are substan-
tial challenges for the analysis of complex data sets
derived from multiple spectra across samples and experi-
mental groups.

To address several of these methodological issues,
we designed an experiment on brain tissue sections in
wild-type mice comparing experimental groups in
which one could expect both larger and smaller differ-
ence in protein expression across a range of molecular
weights. We have studied as a model system the devel-
oping cerebellar cortex in three groups of C57Bl6
mice: pups at postnatal day (P) 7 (the peak of granule
neuron production), P14 (during synapse formation),
and in adults, when neural circuits are mature. There
are advantages to studying the cerebellum in this type
of experiment; this brain structure exhibits stereotypic
development in well-defined epochs, contains only
eight major cell types, and is a spatially well-defined
region (Sotello, 2004), which facilitates histological
localization at low magnification for accurate placing of
the matrix spots in the same area of consecutive sec-
tions. These features make the developing cerebellum
an ideal model for determining the extent to which
high-throughput MS can be applied successfully to pro-
tein expression to detect reproducible age-related dif-
ferences in the measured proteome.

Here we report a study of developing murine cere-
bellar cortex with MALDI MS, utilizing a combination
of analytical strategies to demonstrate three patterns of

protein expression that correspond to the specific age
groups, with excellent internal consistency within each
group of samples. This finding suggests that our methods
were robust in quantifying relative levels of protein
expression for a large number of proteins in a single step,
but there are limitations in the degree to which the full
protein complexity in the brain can be detected.

MATERIALS AND METHODS

Animal and Sample Preparation

Cerebellar specimens from 77 C57Bl6 mice (Mus mus-
culus domesticus) were analyzed: 42 adults at 8 weeks of age
(female n ¼ 25, male n ¼ 17), 19 pups at P14 (female n ¼ 9,
male n ¼ 10), and 16 pups at P7 (sex unknown). All animal
procedures were performed in accordance with the Vanderbilt
University Guide for Care and Use of Laboratory Animals
and were approved by the Institutional Animal Care and Use
Committee. Mice were anesthetized by isofluorane and sacri-
ficed by decapitation. The brains were dissected, immersed in
liquid nitrogen for rapid freezing, and immediately stored at
–808C until sectioning on a cryostat. For each mouse, each of
three consecutive frozen sections (bregma –6.5 to –6.7 mm)
was collected at 14 lm thickness and was deposited and dried
on gold plate, and a double spot of 0.1 ll of matrix was
applied under the microscope to ensure consistency of spot
areas (Fig. 1). The matrix solution was saturated in 3,5-dime-
thoxy-4-hydroxycinnamic acid (sinapinic acid; Sigma, St.
Louis, MO) in acetonitrile/H2O/trifluoroacetic acid 50/50/
0.3. Tissue section thickness (10–16 lm), drying time in vac-
uum (10 min to 2 hr), and matrix solution applications (sina-
pinic acid from 10 mg/ml to saturation) were varied to iden-
tify optimized conditions for which the highest intensity and
lowest noise was observed in the protein spectra (data not
shown).

Mass Spectrometer Data Acquisition

Mass spectra were acquired with a Voyager-DETM STR
Biospectrometry Workstation (Applied Biosystems, Foster City,
CA). This instrument was equipped with a nitrogen laser
(337 nm), and data were obtained by using the linear acquisition
mode under delayed extraction conditions. The laser spot size
on target was approximately circular, with a diameter of 25 lm.
Instrument settings were an accelerating voltage of 25 kV, 91%
grid voltage, 0.05% guidewire voltage, delay time of 220 nsec,
and bin size of 2 nsec. Three spectra (each an average of
7 acquisitions of 50 shots each) were acquired for each mouse,

Fig. 1. Placement of matrix spots and laser impact on tissue
sections. Shown are examples of coronal tissue sections at each
stage of development. In each section, the bright-colored
circle in the cerebellar region is the spot of matrix solution.
The black oval drawn within each spot illustrates the area in
which the laser impact would be targeted (average of 7 acquisi-
tions of 50 shots each, spread within the oval area).
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one on each of the three sections described above. Each raw
spectrum (N ¼ 231, 3 for each of 77 mice) was preprocessed by
applying noise filtering with a correlation factor of 0.7. Internal
calibration standards were single-charged alpha and beta hemo-
globin chains (MWs 14.982 and 15.617 kDa), thymosin beta-4
and thymosin beta-10 (MWs 4.965 kDa and 4.937 kDa), cyto-
chrome c oxidase polypeptide VIIC (MW 5.444 kDa), ubiquitin
(MW 8.565 kDa), and calmodulin (MW 16.791), which have
been identified in Bl6C57.

Data Analysis

Baseline correction. By using software written in this
laboratory, the chemical noise present in each spectrum was
estimated by determining the minimal measured intensity
value in successive 100 m/z windows. A function fit to these
minima by least squares was defined as baseline and subtracted
from the spectrum.

Binning of peaks. Data were analyzed for the MW
range of 3.5–50 kDa; peaks above 50 kDa were poorly
defined, and so were not included in this study. The three
spectra from each mouse were averaged arithmetically (Origin
Pro 7), and automated peak detection was carried out on
these averaged spectra in Data Explorer 4.3 software, which
determines the centroid mass (m/z), height, m/z for the 50th
percentile of the lower and upper boundary of the peak, and
area and signal-to-noise ratio for each peak. We used a signal-
to-noise threshold of 2, a 5-kDa window for computing
noise, and 50% centroid to define peak width. Then, a grand
average spectrum was obtained (Fig. 2a); to give equal weight
to each group, the average of the spectra for each age group
was determined, and then these three averages (illustrated in
Fig. 2b) were averaged. Peaks (N ¼ 945) were detected from
this grand average spectrum by using an S/N ratio of 1.5 and
a noise window width (m/z) of 1.024 kDa. For each grand
average peak, the 50th percentile upper and lower boundary
was defined as a ‘‘bin.’’ For each mouse, if there was a peak
whose centroid mass fell within that range, the peak and its
parameter values (height, area) were assigned to the bin, or, if
not, values of 0 were assigned for height and area. We selected
for further analysis the 846 peaks identified by this method in a
minimum of 50% mice in at least one of the age groups.

Statistical analyses. Primary analyses considered peak
heights, although analysis of peak area yielded similar results.
Although areas would generally be considered more closely
correlated with protein signal under conditions that were opti-
mized for a specific protein, under high-throughput condi-
tions without such optimization, height was considered a
more reliable measure of relative quantity. Two height varia-
bles were created for the binned peaks for each mouse. 1)
Ranked height was the rank from 846 (largest height) to 1
(smallest) of the heights among the 846 peaks for that mouse;
identical values (such as 0 heights) were assigned the average
of the range of ranks for that value. 2) Normalized height was
calculated as follows: given an observed intensity, hi,j, of peak
i for mouse j; a sum, Hj, of all hi for mouse j (for the 846
selected peaks); and an average, A of H, across all mice, then
the normalized height (Ht) was calculated as

Htij ¼ hij
Hj

A: ð1Þ

Analyses of group differences were carried out by using
ranked heights. This was intended as a conservative approach
to analysis; i.e., ranking the heights within each mouse avoids
assumptions regarding the absolute relationships among larger
and smaller peak heights, permitting analysis only of changes
in relative expression of proteins. Group differences in ranked
peak height were analyzed by using Kruskal-Wallis analyses of
variance. An alpha of 0.05 was selected as the threshold of sig-

Fig. 2. Examples of averaged spectra. (a) Grand Average Spectrum (aver-
age of the 3 group averages) for the range 3.5–30 kDa. The Y-axis value is
the percentage of the maximum intensity value in the spectrum. The inten-
sity range has been truncated at 45% to permit visualization of smaller
peaks. (b) Detail of the 3 group averages (6.2–6.350 kDa). The arrows mark
three peaks with significant age-related differences in height, with centroid
masses in the grand average spectrum at 6.224, 6.251 and 6.310 kDa.
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nificance, with Bonferroni correction for the 846 peaks that
were analyzed. The corrected threshold of significance was
therefore 1 – (1 – 0.05)1/846 ¼ 0.00006. Split-half consistency
was analyzed by dividing the sample into the first and last half
of males and females tested in each group, assuming that
experimental conditions would vary maximally across these
subsets (tested over a 6-month period). Kruskal-Wallis analyses
of group differences were carried out separately in each half-
sample to determine consistency of significant differences.

Analyses of variability in peak heights across the three
individual spectra for each mouse were carried out by using
normalized heights, with two-way random effects intraclass
correlation coefficients (ICC) without interaction (McGraw
and Wong, 1996). This coefficient, which is similar to Cron-
bach’s alpha, measures consistency of individual measurements
in relation to the average of the (three) individual values,
which is the measure of interest here. It is computed by carry-
ing out an analysis of variance for each peak with the model
NrmHt ¼ Constant þ Mice þ Spectra, and computing ICC
as (MS[Mice] – MS[Error])/MS[Mice] (McGraw and Wong,
1996). This analysis was carried out by using 231 individual
spectra from the 77 mice. Peak lists were generated and peaks
were binned for each spectrum as described above, except that
the signal-to-noise setting of 1.5 was used to maximize the
number of spectra in which each peak was detected. Relation-
ships among variables (log of the mean normalized height, m/z,
ICC, and log of the Kruskal-Wallis statistic for group differences
in the entire sample) were analyzed by using Pearson correla-
tions and multiple regression analyses. Kruskal-Wallis, correla-
tion, and analysis of variances tests were carried out in Systat 8.0.

Relationships among the 122 ranked peak heights that
showed group differences were examined by subjecting them
to principal-components factor analyses with varimax rotation,
first for the entire sample, and then for the first and second
half-samples separately. Correlations were computed between
the factor loadings for the two half-samples.

Analysis of group membership prediction was carried
out with prediction analysis of microarrays (PAM; Tibshirani
et al., 2002). This method was developed to identify subsets
of gene expression values that predict group membership,
based on a form of cluster analysis using the shrunken cent-
roids method. We used the first half-sample as a training set
to determine the prediction model with the lowest prediction

error with the smallest number of ranked heights and then
applied the model to the second half-sample. The analysis was
repeated with normalized heights, with similar results (not
shown), but, with ranked heights, prediction error was lower,
and few peaks were required for classification.

An additional set of analyses was carried out of reprodu-
cibility of individual spectra and of group differences, by using
ANOVA-principal components analysis (Harrington et al.,
2005a,b) of individual spectral points in Matlab 7.0.4 (The
Mathworks Inc., Natick, MA) and a fuzzy rule-building
expert system (FuRES; Harrington, 1993) to predict group
membership. Details of these analyses will be reported else-
where; we note here that these methods detected age-related
group differences similar to those reported here but no sex-
related or litter-related differences.

RESULTS

Group Differences

Significant group differences for ranked heights
were observed for 122 peaks by Kruskal-Wallis (K-W)
analysis of variance (nominal P < 0.00006). Among
these, 87 peaks showed significant group differences at
the corrected P < 0.001 level (nominal P < 0.0000012).
Table I gives the distribution of analyzed peaks and of
significant peaks across the range of m/z values. Among
the 122 significant peaks, 105 (86.1%) had m/z values
less than 25 kDa, representing 42.9% of the 245 analyzed
peaks in this range; although larger numbers of peaks were
detected at higher m/z values, few of these produced sig-
nificant group differences. Factors influencing peak detec-
tion and significance are discussed further below.

To examine split-half consistency, we first deter-
mined the nominal P value (0.00314) that, if observed
in both half-samples, would result in an overall P value
of <0.00006 when combined using Fisher’s (1954) for-
mula. Overall, 124 peaks achieved this level of signifi-
cance in the first half, 108 in the second half, and 85 in
both halves (i.e., 69.8% of all peaks that were significant
in the entire sample). Among the 122 peaks that were
significant overall, 109 (89.3%) achieved P ¼ 0.00314 in
the first half, and 96 (78.0%) did so in the second half.

TABLE I. Distribution of Significant Peaks by m/z Range and by Factor*

m/z Range (kDa) All 3.5–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40 40–45 45–50

Total N(peaks) 846 25 89 57 22 52 76 129 137 124 135

Total significant 122 5 50 36 8 6 9 4 1 3 0

Factor 1 30 0 11 15 3 0 1 0 0 0 0

Factor 2 32 0 18 8 3 1 0 1 0 1 0

Neither 60 5 21 13 2 5 8 3 1 2 0

Mean NrmHt 709 1,114 2,925 3,229 2,216 209 186 116 102 109 86

Mean RnkHt 423.5 479 657 642 600 472 484 370 343 349 288

*Shown are the numbers of peaks detected in the grand average file in each m/z range, the numbers of these peaks that showed significant differences

across age groups after Bonferroni correction (nominal P < 0.00006), the numbers of significant peaks that with loadings �0.5 or ��0.5 on factors 1

or 2 or not loading this strongly on either factor. Also shown are the mean normalized heights (NrmHt, in arbitrary units; see text) and ranked heights

(RnkHt) for all peaks within each range. It can be seen that the most significant group differences are detected in the range of 5–20 kDa, where the

largest peak heights are detected using this methodology.
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Factor analysis revealed two major components,
and, when a two-factor solution was specified, it
explained 38.7% of total variance. Further details about
the specific peaks loading on these factors are available
upon request. Among the 122 significant peaks overall,
30 loaded at >0.50 (or <–0.50) on factor 1 of the
rotated solution and 32 peaks on factor 2. The mean
correlations between factor loadings for the first and sec-
ond half-samples were 0.81 for factor 1 loadings and
0.85 for factor 2. Figure 3a,b illustrates group differences
for the peaks loading on factors 1 and 2, respectively,
showing the average Kruskal-Wallis (K-W) rank for each
age group for each peak. Note that the illustrated values
are not ranked heights; for each peak, the K-W test
ranks each mouse from 77 to 1 (or tied values) in order
of ranked peak height and determines whether the
groups differ in their sums of ranks. Figure 3a,b illus-
trates the average of these values (i.e., if summed ranks ¼
425 for 19 mice, then the average rank is 22.36). The
figures demonstrate that these 62 peaks were generally
detected in larger quantities either in adults or at P7,
with P14 typically intermediate. Thus, for each factor,
there appears to be one subset of proteins whose expres-
sion increases during development, and a second set
whose expression decreases during development, with
varying rates of developmental change as expected.

Variability of Individual Spectra

Peak detection was also carried out for the 231
individual spectra acquired from the 77 mice. Peaks

detected in these spectra were assigned to the bins repre-
senting the 846 peaks utilized in the analyses reported
here. Two-way random-effects ICC values were com-
puted for each peak by using normalized peak heights.
The mean ICC was 0.325, with mean ICC values of
0.432 for peaks with m/z below 25 kDa, 0.341 between
25 kDa and 34 kDa, and 0.257 between 34 kDa and
50 kDa. For the 122 peaks showing significant group
differences, mean ICC was 0.537 (considered fair to
good), vs. 0.289 (poor) for all other peaks. Figure 4 shows
the relationships among m/z, ICC, and whether each peak
showed significant group differences. Both lower m/z and
higher ICC were associated with detection of group dif-
ferences. In further exploratory analyses, a number of
interrelationships were observed among measures of
molecular weight (m/z), statistical significance of group
difference (the K-W statistic, log transformed to approxi-
mate a normal distribution more closely), consistency
across individual spectra (ICC), and the log of averaged
normalized peak heights. Table II lists Pearson correla-
tions (for the 846 peaks) among these measures (Spear-
man correlations were almost identical). Peak height was
strongly and negatively predicted by m/z, and peak
height was in turn the strongest predictor of consistency
(ICC) and significance (K-W statistic).

Table III shows the results of two multiple regres-
sion analyses carried out to explore these relationships
further, and Figures 5 and 6 illustrate some of these rela-
tionships. In the first analysis, the significance of group
differences for each of 846 peaks was strongly predicted
by m/z, with low m/z associated with more significant
group differences. The two other predictors interacted
with m/z: for peaks with higher m/z, larger peak height
(analyzed as the log of the mean normalized peak height
across mice) predicted more significant group difference;
whereas, for peaks with lower m/z, differences tended
to be significant regardless of height; and, for peaks with
lower m/z, larger ICC (consistency) predicted more sig-
nificant group differences. In the second analysis, consis-
tency (ICC) was predicted by m/z; by an interaction of
m/z and height, i.e., for peaks with higher m/z, larger
peak heights predicted higher ICC, whereas, for peaks
with lower m/z, consistency tended to be high regardless
of relative peak height (which was larger for peaks at
lower m/z).

Prediction of Group Membership

Table IV shows the results of split-sample analysis
using PAM; group membership was correctly predicted
for all mice in the first half-sample at a threshold value
of 1.73 using 68 peaks, and this model also correctly
predicted group membership for all mice in the second
half-sample. The peaks were generally the same as those
that were significant in K-W analysis of group differen-
ces and that loaded on factors 1 and 2, particularly those
for which one group had substantially lower or higher
peak heights than the other groups.

Fig. 3. Average rank by group for significant peaks. Each line represents
the values, for one peak, for the average ranks (within the Kruskal-Wallis
test) achieved by mice in each group. Shown are 62 of the 122 peaks
with significant group differences: 30 peaks loading on Factor 1 and 32
peaks loading on Factor 2. Most peaks showed a distinct age gradient
(Adult> P14 > P7, or P7> P14 > adult).
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DISCUSSION

High-throughput MS was used to study protein
spectra in the cerebellum at different stages of mouse
development. Our goal was to determine whether
reproducible data could be obtained by MALDI MS
from tissue sections, after optimization of conditions for
data acquisition and data preprocessing and whether dif-
ferences in protein peaks could be reliably detected
among defined groups of mice. Although our long-term
goal is to study the more subtle changes that might be
expected in complex brain diseases, we carried out this
initial study with a simpler model, i.e., on mice with a
uniform genetic background, maintained in the same
environment (food, mouse house), and divided into
groups based on the straightforward variable of age
(developmental period), which could be expected to be
associated with substantial differences in protein profiles.

We found that MALDI MS applied directly to tis-
sue sections generated a large number of peaks (N ¼
846), among which 122 discriminated statistically among
the three age groups after conservative correction for
multiple testing. Factor analysis of these 122 peaks iden-
tified two major factors that accounted for 38.7% of the
variance among groups, primarily because of 62 peaks
that loaded strongly on one of these factors. The PAM
shrunken-centroids method was also able to predict
group membership based on 68 peak heights, overlap-
ping (as would be expected) with those that contributed

to the factor analysis. Thus, protein profiles generated
from tissue sections detected robust differences among
groups by several statistical methods.

The reproducibility of the results was examined in
several ways. Three complete spectra were obtained for
each mouse, from successive thin tissue sections using
identical coordinates, with each spectrum generated
from 350 laser shots. Normalized peak heights were
reasonably consistent across these three spectra for peaks
with lower molecular weights (<25 kDa), but less so
for those with higher molecular weights. Not surpris-
ingly, most of the significant group differences in peak
heights were observed for peaks in this lower mass
range, with mass emerging as the best single predictor
of the significance of group differences. Although it has
been suggested that current methods are most reliable
in the lower mass range (for review see Westmacott
et al., 2000), there are few empirical data sets that dem-
onstrate it. Our data do support this conclusion. The
factors responsible for this cannot be fully elucidated
from the present data. Mass was strongly and inversely
related to peak height, and mass and an interaction of
mass and peak height predicted the significance of
group differences. At lower molecular weights, peaks
were larger, showed more consistent heights (high
ICC) for individual spectra from the same mice, and
frequently were significantly different across age groups.
At higher molecular weights, peaks and ICC were

Fig. 4. ICC of peaks with and without significant group
differences. ICC values for each peak are plotted against m/z.
Filled squares represent peaks for which significant group
differences were observed; open triangles represent peaks for
which no significant group difference was observed.

TABLE II. Correlations Among Mass, Peak Height, Consistency of Individual Spectra (ICC), and Significance of Group Differences

(Kruskal-Wallis Statistic)*

Log(KW statistic) Mass Log(NrmHeight) ICC

Log(KW statistic) <0.00000001 <0.00000001 <0.00000001

Mass �0.578 <0.00000001 <0.00000001

Log(NrmHeight) 0.615 �0.840 <0.00000001

ICC 0.378 �0.315 0.401

*Shown are Pearson correlations (below the diagonal, with P-values above the diagonal) among selected variables for 846 peaks (Spearman correlations

were almost identical). ICC values are the two-way random effects intraclass correlation coefficients for consistency of the average normalized peak

height with the heights of the three-individual spectra for 231 spectra acquired from 77 mice. m/z Is the centroid mass for each peak in the grand

average spectrum (point-by-point average across all 231 spectra after calibration and baseline correction). Peak height is the average across 231 spectra

of the peak height from each spectrum after normalization (height divided by the sum of the heights of all 846 peaks, multiplied by the average sum

of heights). K-W statistic is from the test of group differences for the sample of 77 mice. These relationships are further explored in Table III.
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smaller, but Table III and Figures 4 and 5 demonstrate
that there was an even stronger positive association
among peak height, ICC, and detection of significant
group differences. Our data suggest that additional
technical advances will be needed to detect reproduci-
ble peaks and significant group differences for proteins
with higher molecular weights.

Reproducibility was also examined by carrying out
tests of group differences separately in the first and sec-
ond halves of the sample. Because the data were

acquired over a period of 6 months, one would expect
that, if there was any unknown variation in experimental
conditions, this would be greatest over the longest
period of time. Most of the peaks that were significant
by K-W analysis also contributed to the differentiation
among the three groups in each half of the sample with
PAM, and the model that assigned all mice to the cor-
rect group in the first half-sample was equally successful
at predicting group membership in the second half of
the sample. Thus, at least for lower molecular weights,

Fig. 5. Log(normalized height) of peaks with and without
significant group differences. Shown for each of 846 peaks
is the log of the averaged normalized peak height plotted
against m/z. Peaks that demonstrated significant differences
among age groups are designated by filled squares, and all
other peaks by open diamonds.

Fig. 6. Peak height, molecular weight and ICC. For each
of 846 peaks, the log of the average normalized peak
height is plotted against m/z. Black squares and open dia-
monds, respectively, represent peaks with values above and
below the median (0.336) intra-class correlation coefficient,
which measured reliability of each of the three individual
spectra acquired for each mouse with the average of those
spectra, in relation to variability for the same peak across
mice.

TABLE III. Peak Characteristics That Predict Detection of Group Differences and Consistency of Individual Spectra*

Dependent variable Overall F df P R2 Effects T p

Log(KW) 108.96 6;839 <0.00000001 0.44 m/z –4.69 <0.00001

Height 1.02 0.31

ICC 1.54 0.12

m/z 3 height 4.75 <0.00001

Height 3 ICC –0.12 0.90

m/z 3 ICC –3.03 0.0025

ICC 88.67 3;842 <0.00000001 0.24 m/z –8.71 <0.00001

Height 0.66 0.51

m/z 3 height 9.26 <0.00001

*Shown are results of multiple regression analyses of data for 846 peaks, to explore the relationships among the log of the mean normalized peak

height, the centroid mass (m/z), the consistency (ICC) of normalized heights of the three individual spectra acquired for each mouse, and the signifi-

cance of group differences in ranked peak height (log of the Kruskal-Wallis statistic) for each peak.
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group differences can be reliably detected from tissue
sections both within and across mice. High-throughput
MALDI MS of tissue sections has been used by our lab-
oratory for analysis of different cancers (Schwartz et al.,
2003, 2004; Yanagisawa et al., 2003). Both the glioma
and the lung cancer studies differentiated between dis-
ease and control specimens, with reproducible results
across halves of the sample. Yanagisawa et al. (2003) also
reported strong correlations between the intensities of
higher intensity peaks acquired from two cell lysates of
human bronchial epithelial cell tissue and from two slices
of the same lung tumor, as well as lower, though still
substantial, correlation for two different lung tumors.
Thus, analysis of a variety of tissue specimens, with
intact histological organization, can yield reproducible
spectra that differentiate among specimens from biologi-
cal subgroups.

Most proteomic studies of high-throughput MS
have involved attempts to differentiate between serum
samples of patients with early and/or late stages of vari-
ous cancers (brain, breast, colon, lung, ovary, and pros-
tate cancer) compared with controls. In many of these
studies, the groups of interest could be classified repro-
ducibly with small sets of 4–25 peaks. Several studies
have used SELDI-TOF methodology, including studies
of prostate cancer (Adam et al., 2002; Qu et al., 2002),
ovarian cancer (Petricoin et al., 2002; with reanalyses by
Baggerly et al., 2004, and by Li et al., 2004), and breast
cancer (Li et al., 2002). MALDI MS methods have also
been used in studies of serum samples in prostate cancer
(Baggerly et al., 2003; Wagner et al., 2003). In general,
these studies have relied on reproducibility of group dif-
ferences to establish the validity of their methods. Many
statistical approaches have been successfully applied in
these studies, as reviewed by Wu et al. (2003) and by Li
et al. (2004). Our data suggest that, when robust group
differences are detected in protein profiles, they can be
quantified by diverse statistical methods.

A major issue in the cancer proteomics literature is
that many of the putative biomarkers are nonspecific in
their biological functions, although in some cases specific
biological roles in carcinogenesis or metastasis could be
hypothesized (Yanagisawa et al., 2003). Diamandis

(2004) has reviewed the nonspecificity of most reported
cancer biomarkers and has pointed out that the cancer
literature is largely lacking in empirical studies of con-
founding factors such as 1) ‘‘variability in sample collec-
tion, processing and storage’’; 2) characteristics of study
subjects other than diagnosis; and 3) variations in ‘‘mass
spectrometric stability and protein chip performance’’ as
well as statistical methods. Several groups have begun to
address these issues. Cordingley et al. (2003) recently
reported one of the few comprehensive empirical studies
of reproducibility in this field, examining the effects of
11 experimental factors on protein spectra acquisition
with the SELDI-TOF platform. They identified sample
preparation and matrix preparation and application pro-
cedures that maximized reproducibility. Baggerly et al.
(2004), in a reanalysis of serum data from ovarian cancer
studies by Petricoin et al. (2002), addressed a number of
data processing issues that could introduce artifacts into
MS studies. The present study was designed to begin to
address some of these methodological issues by using
MALDI MS, in the context of examining tissue sections
from the brain, which is likely the most complex of tis-
sues at both the cellular and the molecular levels. The
use of an experimental model, the mouse, allowed us to
control for genetic and environmental variations, facili-
tating the examination of reproducibility both within
and across subjects. Identical sample preparation, storage,
and data processing procedures were applied to all speci-
mens. Our results, demonstrating that the same protein
peaks could differentiate among age groups in half-sam-
ples studied months apart, suggest that it is possible to
control essential experimental variables. Because we did
not systematically study the effects of each experimental
variable, as was done by Cordingley et al. (2003), it
remains possible that the results were confounded by
undetected artifacts. We conclude, however, that a sub-
stantial number of proteins can be reliably and reprodu-
cibly detected from sections of highly complex brain tis-
sue by using high-throughput MALDI MS, in the
molecular weight range of approximately 5–25 kDa,
with a well-defined set of standardized conditions.
Determination of the biological relevance of the findings
reported here awaits future studies to identify the pro-
teins that differentiated the age groups.
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TABLE IV. Prediction of Group Membership by PAM*

Group

First half-sample

(training data set)

Second half-sample

(test data set)

Adult P14 P7 Adult P14 P7

Adult 21 0 0 21 0 0

P14 0 9 0 0 10 0

P7 0 0 8 0 0 8

*Shown are the results of analyses with the predictive analysis of microar-

rays program (Tibshirani et al., 2002). Ranked heights for all 846 peaks

were submitted for the first half of the males and females tested in each

group (N ¼ 38) (training data set). Group membership could be predicted

without errors using 68 peak heights (threshold ¼ 1.73). The same model

also predicted group membership in the remaining mice (test data set).
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