Skip CCR Main Navigation National Cancer Institute National Cancer Institute U.S. National Institutes of Health www.cancer.gov
CCR - For Our Staff| Home |

Our Science – Guy Website

H. Robert Guy, Ph.D.

Selected Publications

1)  Shafrir Y, Durell SR, Guy HR.
Models of the Structure and Gating Mechanisms of the Pore Domain of the NaChBac Ion Channel.
Biophys. J. 2008.
[Journal]
2)  Shafrir Y, Durell SR, Guy HR.
Models of Voltage-dependent Conformational Changes in NaChBac Channels.
Biophys. J. 2008.
[Journal]
3)  Stary A, Kudrnac M, Beyl S, Hohaus A, Timin E, Wolschann P, Guy HR, Hering S.
Molecular Dynamics and Mutational Analysis of a Channelopathy mutation in the IIS6 Helix of CaV1.2.
Channels. 2: 216-223, 2008.
[Journal]
4)  Hering S, Beyl S, Stary A, Kudrnac M, Hohaus A, Guy HR, Timin E.
Pore stability and gating in voltage-activated calcium channels.
Channels. 2: 61-69, 2008.
[Journal]
5)  Stary A, Shafrir Y, Hering S, Wolschann P, Guy HR.
Structural model of the CaV1.2 pore.
Channels. 2: 210-215, 2008.
[Journal]
6)  Beyl S, Timin EN, Hohaus A, Stary A, Kudrnac M, Guy RH, Hering S.
Probing the architecture of an L-type calcium channel with a charged phenylalkylamine: evidence for a widely open pore and drug trapping.
J. Biol. Chem. 282: 3864-70, 2007.
[Journal]
7)  Tseng GN, Sonawane KD, Korolkova YV, Zhang M, Liu J, Grishin EV, Guy HR.
Probing the outer mouth structure of the HERG channel with peptide toxin footprinting and molecular modeling.
Biophys. J. 92: 3524-40, 2007.
[Journal]
8)  Shrivastava I, Guy HR. Kubalski A, Martinac B, eds.
Glutamate-activated Channels. In: Bacterial Ion Channels and Their Eukaryotic Homologs. Volume .
Washington, D.C.: ASM Press; 2005. p. 83-96 [Book Chapter]
9)  Shrivastava I, Guy HR. Kubalski A, Martinac B, eds.
Inward Rectifier K+ Channels. In: Bacterial Ion Channels and Their Eukaryotic Homologs. Volume .
Washington, D.C.: ASM Press; 2005. p. 123-132 [Book Chapter]
10)  Sukharev S, Anishkin A, Chiang C, Betanzos M, Guy HR. Kubalski A, Martinac B, eds.
MscL, a Bacterial Mechanosensitive Channel. In: Bacterial Ion Channels and Their Eukaryotic Homologs. Volume .
Washington, D.C.: ASM Press; 2005. p. 259-290 [Book Chapter]
11)  Guy HR, Shrivastava I. Kubalski A, Martinac B, eds.
Voltage-gated K+ channels. In: Bacterial Ion Channels and Their Eukaryotic Homologs. Volume .
Washington, D.C.: ASM Press; 2005. p. 97-122 [Book Chapter]
12)  Zhang M, Liu J, Jiang M, Wu DM, Sonawane K, Guy HR, Tseng GN.
Interactions between charged residues in the transmembrane segments of the voltage-sensing domain in the hERG channel.
J. Membr. Biol. 207: 169-81, 2005.
[Journal]
13)  Tseng GN, Guy HR.
Structure-function studies of the outer mouth and voltage sensor domain of hERG.
Novartis Found Symp. 266: 19-35; discussion 35-45, 2005.
[Journal]
14)  Guy HR.
Transmembrane interactions of alpha/beta integrin signaling.
Structure (Camb). 13: 683-4, 2005.
[Journal]
15)  Shrivastava IH, Durell SR, Guy HR.
A Model of Voltage Gating Developed Using the KvAP Channel Crystal Structure.
Biophysical Journal. 87: 2255-2270, 2004.
[Journal]
16)  Durell SR, Shrivastava IH, Guy HR.
Models of the structure and voltage-gating mechanism of the shaker K+ channel.
Biophys. J. 87: 2116-30, 2004.
[Journal]
17)  Sukharev SI, Blount P, Martinac B, Guy HR, Kung C.
MscL: a mechanosensitive channel in Escherichia coli.
Soc. Gen. Physiol. Ser. 51: 133-41, 1996.
[Journal]
18)  Kato N, Akai M, Zulkifli L, Matsuda N, Kato Y, Goshima S, Hazama A, Yamagami M, Guy HR, Uozumi N.
Role of positively charged amino acids in the M2D transmembrane helix of Ktr/Trk/HKT type cation transporters.
Channels (Austin, Tex.). 1: 161-71, , ,.
[Journal]
19)  Shafrir Y, Guy HR.
STAM: simple transmembrane alignment method.
Bioinformatics. 20(5): 758-69, 2004.
[Journal]
20)  Kuner T, Seeburg PH, Guy HR.
A common architecture for K+ channels and ionotropic glutamate receptors?.
Trends Neurosci. 26: 27-32, 2003.
[Journal]
21)  Anishkin A, Gendel V, Sharifi NA, Chiang CS, Shirinian L, Guy HR, Sukharev S.
On the Conformation of the COOH-terminal Domain of the Large Mechanosensitive Channel MscL.
J Gen Physiol. 121: 227-44, 2003.
[Journal]
22)  Betanzos M, Chiang CS, Guy HR, Sukharev S.
A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension.
Nat Struct Biol. 9: 704-10, 2002.
[Journal]
23)  Guy HR.
Computational simulations of peptide binding to proteins: how scorpions sting K+ channels.
Biophys J. 83: 2325-6, 2002.
[Journal]
24)  Durell SR, Guy HR.
A family of putative Kir potassium channels in prokaryotes.
BMC Evol Biol. 1: 14, 2001.
[Journal]
25)  Durell SR, Guy HR.
A putative prokaryote voltage-gated Ca(2+) channel with only one 6TM motif per subunit.
Biochem Biophys Res Commun. 281: 741-6, 2001.
[Journal]
26)  Sukharev S, Durell SR, Guy HR.
Structural models of the MscL gating mechanism.
Biophys J. 81: 917-36, 2001.
[Journal]
27)  Sukharev S, Betanzos M, Chiang CS, Guy HR.
The gating mechanism of the large mechanosensitive channel MscL.
Nature. 409: 720-4, 2001.
[Journal]
28)  Durell SR, Bakker EP, Guy HR.
Does the KdpA subunit from the high affinity K(+)-translocating P-type KDP-ATPase have a structure similar to that of K(+) channels.
Biophys J. 78: 188-99, 2000.
[Journal]
29)  Cho HC, Tsushima RG, Nguyen TT, Guy HR, Backx PH.
Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
Biochemistry. 39: 4649-57, 2000.
[Journal]
30)  Lee B, Sharron M, Blanpain C, Doranz BJ, Vakili J, Setoh P, Berg E, Liu G, Guy HR, Durell SR, Parmentier M, Chang CN, Price K, Tsang M, Doms RW.
Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function.
J Biol Chem. 274: 9617-26, 1999.
[Journal]
31)  Durell SR, Hao Y, Nakamura T, Bakker EP, Guy HR.
Evolutionary relationship between K(+) channels and symporters.
Biophys J. 77: 775-88, 1999.
[Journal]
32)  Durell SR, Guy HR.
Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K(+) channel.
Biophys J. 77: 789-807, 1999.
[Journal]
33)  Durell SR, Hao Y, Guy HR.
Structural models of the transmembrane region of voltage-gated and other K+ channels in open, closed, and inactivated conformations.
J Struct Biol. 121: 263-84, 1998.
[Journal]
34)  Antz C, Geyer M, Fakler B, Schott MK, Guy HR, Frank R, Ruppersberg JP, Kalbitzer HR.
NMR structure of inactivation gates from mammalian voltage-dependent potassium channels.
Nature. 385: 272-5, 1997.
[Journal]
35)  Guy HR, Durell SR.
Developing three-dimensional models of ion channel proteins.
Ion Channels. 4: 1-40, 1996.
[Journal]
36)  Blount P, Sukharev SI, Moe PC, Schroeder MJ, Guy HR, Kung C.
Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli.
EMBO J. 15: 4798-805, 1996.
[Journal]
37)  Durell SR, Guy HR.
Structural model of the outer vestibule and selectivity filter of the Shaker voltage-gated K+ channel.
Neuropharmacology. 35: 761-73, 1996.
[Journal]
38)  Reid JD, Lukas W, Shafaatian R, Bertl A, Scheurmann-Kettner C, Guy HR, North RA.
The S. cerevisiae outwardly-rectifying potassium channel (DUK1) identifies a new family of channels with duplicated pore domains.
Receptors Channels. 4: 51-62, 1996.
[Journal]
39)  Tzounopoulos T, Guy HR, Durell S, Adelman JP, Maylie J.
min K channels form by assembly of at least 14 subunits.
Proc Natl Acad Sci U S A. 92: 9593-7, 1995.
[Journal]
40)  Guy HR, Durell SR.
Structural models of Na+, Ca2+, and K+ channels.
Soc Gen Physiol Ser. 50: 1-16, 1995.
[Journal]
41)  Durell SR, Guy HR, Arispe N, Rojas E, Pollard HB.
Theoretical models of the ion channel structure of amyloid beta-protein.
Biophys J. 67: 2137-45, 1994.
[Journal]
42)  Guy HR, Durell SR.
Using sequence homology to analyze the structure and function of voltage-gated ion channel proteins.
Soc Gen Physiol Ser. 49: 197-212, 1994.
[Journal]
43)  Guy HR, Durell SR, Schoch C, Blumenthal R.
Analyzing the fusion process of influenza hemagglutinin by mutagenesis and molecular modeling.
Biophys J. 62: 95-7, 1992.
[Journal]
44)  Durell SR, Guy HR.
Atomic scale structure and functional models of voltage-gated potassium channels.
Biophys J. 62: 238-47; discussion 247-50, 1992.
[Journal]
45)  Pollard HB, Guy HR, Arispe N, de la Fuente M, Lee G, Rojas EM, Pollard JR, Srivastava M, Zhang-Keck ZY, Merezhinskaya N.
Calcium channel and membrane fusion activity of synexin and other members of the Annexin gene family.
Biophys J. 62: 15-8, 1992.
[Journal]
46)  Cruciani RA, Barker JL, Durell SR, Raghunathan G, Guy HR, Zasloff M, Stanley EF.
Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes.
Eur J Pharmacol. 226: 287-96, 1992.
[Journal]
47)  Durell SR, Raghunathan G, Guy HR.
Modeling the ion channel structure of cecropin.
Biophys J. 63: 1623-31, 1992.
[Journal]
48)  Resnick NM, Maloy WL, Guy HR, Zasloff M.
A novel endopeptidase from Xenopus that recognizes alpha-helical secondary structure.
Cell. 66: 541-54, 1991.
[Journal]
49)  Guy HR, Durell SR, Warmke J, Drysdale R, Ganetzky B.
Similarities in amino acid sequences of Drosophila eag and cyclic nucleotide-gated channels.
Science. 254: 730, 1991.
[Journal]
50)  Pollard HB, Rojas E, Pastor RW, Rojas EM, Guy HR, Burns AL.
Synexin: molecular mechanism of calcium-dependent membrane fusion and voltage-dependent calcium-channel activity. Evidence in support of the.
Ann N Y Acad Sci. 635: 328-51, 1991.
[Journal]
51)  Raghunathan G, Seetharamulu P, Brooks BR, Guy HR.
Models of delta-hemolysin membrane channels and crystal structures.
Proteins. 8: 213-25, 1990.
[Journal]
52)  Guy HR, Conti F.
Pursuing the structure and function of voltage-gated channels.
Trends Neurosci. 13: 201-6, 1990.
[Journal]
53)  Williams WV, Guy HR, Cohen JA, Weiner DB, Greene MI.
Structure and regulation of internal image idiotypes.
Chem Immunol. 48: 185-208, 1990.
[Journal]
54)  Guy HR, Raghunathan G.
Structural models of alpha helical membrane peptides and the GABA receptor channel.
Prog Clin Biol Res. 289: 231-43, 1989.
[Journal]
55)  Williams WV, Guy HR, Weiner DB, Greene MI.
Three dimensional structure of a functional internal image.
Viral Immunol. 2: 239-46, 1989.
[Journal]
56)  Williams WV, Guy HR, Cohen JA, Weiner DB, Greene MI.
Molecular and immunologic analyses of a functional internal image formed by an anti-receptor antibody.
Ann Inst Pasteur Immunol. 139: 659-75, 1988.
[Journal]
57)  Williams WV, Guy HR, Rubin DH, Robey F, Myers JN, Kieber-Emmons T, Weiner DB, Greene MI.
Sequences of the cell-attachment sites of reovirus type 3 and its anti-idiotypic/antireceptor antibody: modeling of their three-dimensional structures.
Proc Natl Acad Sci U S A. 85: 6488-92, 1988.
[Journal]
58)  Forte M, Guy HR, Mannella CA.
Molecular genetics of the VDAC ion channel: structural model and sequence analysis.
J Bioenerg Biomembr. 19: 341-50, 1987.
[Journal]
59)  Spouge JL, Guy HR, Cornette JL, Margalit H, Cease K, Berzofsky JA, DeLisi C.
Strong conformational propensities enhance T cell antigenicity.
J Immunol. 138: 204-12, 1987.
[Journal]
60)  Guy HR, Seetharamulu P.
Molecular model of the action potential sodium channel.
Proc Natl Acad Sci U S A. 83: 508-12, 1986.
[Journal]
61)  Guy HR.
Amino acid side-chain partition energies and distribution of residues in soluble proteins.
Biophys J. 47: 61-70, 1985.
[Journal]
62)  Guy HR.
A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations.
Biophys J. 45: 249-61, 1984.
[Journal]
63)  Guy HR.
Structural models of the nicotinic acetylcholine receptor and its toxin-binding sites.
Cell Mol Neurobiol. 1: 231-58, 1981.
[Journal]
64)  Dekin MS, Guy HR, Edwards C.
Effects of organophosphate insecticides on the cholinergic receptors of frog skeletal muscle.
J Pharmacol Exp Ther. 205: 319-25, 1978.
[Journal]
65)  Dekin MS, Guy HR.
Recovery of acetylcholine response of denervated muscle following exposure to alpha-bungarotoxin.
Life Sci. 22: 353-8, 1978.
[Journal]
66)  Guy HR, Dekin MS, Morello R.
Effect of denervation on the permeability of acetylcholine-activated channels to organic cations.
J Neurobiol. 8: 491-506, 1977.
[Journal]
67)  Guy HR, Connor JA.
A study of the effects of p-chloromercuribenzene sulfonic acid on acetylcholine-induced responses of molluscan neurons.
J Pharmacol Exp Ther. 198: 146-54, 1976.
[Journal]

This page was last updated on 9/25/2008.