Signal Processing for MRI

Richard S. Spencer, M.D., Ph.D.

National Institutes of Health
National Institute on Aging, Baltimore, MD
spencer@helix.nih.gov

A Philosophical Debate Do we live in a digital world or an analog world?

Auguste Rodin, bronze, ca. 1880

An Engineering Reality We live in a digitized world.

Fundamental fact:

- MRI data is acquired in k-space
- x-space is just a derived quantity (which we happen to be interested in)

Therefore, we need to understand:

Data

Image

Plan: to demonstrate that

- The basic concepts of time/frequency signal processing can be carried over to MRI
- Δk_{x} and Δk_{y} are the relevant sampling intervals
- The imaging equation defines the transformation between conjugate variables--Fourier
- Sampling and other operations on data are performed in k-space; the convolution theorem supplies the resulting effect in the image
- Both DSP and physical effects must be considered

Digitization of a Time-Domain Analog Signal

Sampling Interval T_{s}

$g(t)$
$g_{\text {samp }}(t)$

$$
g_{\text {samp }}(t)=g(t) \bullet \sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{s}\right)=\sum_{n=-\infty}^{+\infty} g\left(n T_{s}\right) \delta\left(t-n T_{s}\right)
$$

Data spaced at intervals T_{s}

Sampling during MRI signal acquisition

Sampling in k-space

Read direction

$$
\mathrm{k}_{\mathrm{x}}=\nsim \mathrm{G}_{\mathrm{x}} t
$$

$$
\Delta \mathrm{k}_{\mathrm{x}}=\nsim \mathrm{G}_{\mathrm{x}} T_{\mathrm{s}}
$$

Phase direction

$$
\mathrm{k}_{\mathrm{y}}=\gamma \mathrm{G}_{\mathrm{y}} \tau
$$

$$
\Delta \mathrm{k}_{\mathrm{y}}=\gamma \Delta \mathrm{G}_{\mathrm{y}} \tau
$$

For both dimensions: data is spaced at intervals $\Delta \mathrm{k}$
$\psi \equiv \gamma / 2 \pi$

Data in k-space is (usually) regularly sampled on a grid.

This sampling is entirely analogous to sampling of time-domain data:
intervals are $\Delta \mathrm{k}_{\mathrm{x}}$ and $\Delta \mathrm{k}_{\mathrm{y}}$ instead of interval T_{s}

Significance of this:

- From a post-processing point of view, read and phase directions in MRI can be handled in an identical fashion
- Much of what you already know about signal processing of sampled time-domain signals can be immediately carried over to MRI

The k-space sampling function is written:

\mathbf{N}, number of sampled points in k_{x} or k_{y}

k-space data are numbers assigned to each grid point: These are the samples $s_{\text {samp }}\left(k_{x}, k_{y}\right)$

Conceptually, we can consider $\mathrm{s}_{\text {samp }}\left(\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}\right)$ to be a sampled version of some continuous function, $s\left(k_{x}, k_{y}\right)$

The above dealt with signal acquisition

To proceed: consider the physics

Relationship Between Signal and Precessing Spins During Read

Signal and Spins During Read

$$
\begin{aligned}
& \left.\begin{array}{|c|}
\hline v=\neq x G_{r} \\
\hline k_{x}=\nsim t G_{r}
\end{array}\right\} \rightarrow v t=k_{x} x
\end{aligned} \iiint \begin{aligned}
& \text { Integrate over } \\
& \text { all excited spin }
\end{aligned}
$$

Consideration of the phase encode gradient leads to the celebrated imaging equation

...relates k-space data, $s\left(k_{x}, k_{y}\right)$ to the image, $\rho(x, y)$

$$
\begin{gathered}
s\left(k_{x}, k_{y}\right)=\iint \rho(x, y) e^{-i \pi\left(k_{x} x+k_{y} y\right)} d x d y \equiv \mathfrak{J}[\rho(x, y)] \\
\rho(x, y)=\iint s\left(k_{x} k_{y}\right) e^{+i \pi\left(k_{x} x+k_{y} y\right)} d k_{x} d k_{y} \equiv \mathfrak{J}^{-1}\left[s\left(k_{x}, k_{y}\right)\right]
\end{gathered}
$$

Note: the Fourier transform arises from the physics

Combine Fourier transforms with convolution to make use of the all-powerful Convolution Theorem

Convolution of $x(t)$ and $h(t)$

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=x(t) * h(t)
$$

fold \rightarrow slide \rightarrow multiply \rightarrow integrate

Arises naturally when considering:

othe observable effects of intended or unintended actions on data
-digital filters

Convolution of $\mathbf{x}(\mathbf{t})$ and $\mathbf{h}(\mathbf{t})=\quad y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau=x(t) * h(t)$

The Convolution Theorem

Ingredients:
$h(t)$ and $g(t)$, and their Fourier transforms $H(v), G(v)$
$\mathfrak{I}=$ Fourier transform
$\mathfrak{J}^{-1}=$ Inverse Fourier transform

- = multiplication
* $=$ the convolution operator

4 ways of writing the convolution theorem:

$$
\begin{aligned}
& \text { I. } \mathfrak{J}\left\{f^{*} g\right\}=F \cdot G \\
& \text { II. } \mathfrak{J}\{f \cdot g\}=F^{*} G \\
& \text { III. } \mathfrak{J}^{-1}\{F \cdot G\}=f^{*} g \\
& \text { IV. } \mathfrak{J}^{-1}\left\{F^{*} G\right\}=f \cdot g
\end{aligned}
$$

Our application is based on the imaging equation:

$$
\begin{aligned}
& \mathfrak{J}\{\rho(x, y)\}=s\left(k_{x}, k_{y}\right) \\
& \mathfrak{J}^{-1}\left\{s\left(k_{x}, k_{y}\right)\right\}=\rho(x, y)
\end{aligned}
$$

Version III. $\mathcal{I}^{-1}\{\mathrm{~s} \cdot \mathrm{H}\}=\underbrace{\rho^{*} \mathrm{~h}}_{\text {Various non-idealities or filters }}$ Visible effect on Ideal data in k space

$$
\rho=\text { the ideal image }
$$

With this, we can understand the effects that sampling, truncation, and relaxation in k-space have on the image

-Aliasing
direct sampling effect
-The point spread function truncation--signal processing relaxation--physics

Aliasing

aka wrap-around, aka fold-over

Equally good digital choices!

Thus, high frequency sinusoids, when sampled, can be mis-assigned to a lower frequency!

To avoid this, sample at a rate $v_{S}=1 / T_{s}$ which satisfies

$$
v_{S}>2 \cdot v
$$

where v is the frequency of the sinusoid

This rate, $2 \cdot v$ is called the Nyquist rate, v_{N}
To avoid aliasing: $v_{S}>v_{N} \equiv 2 \cdot v$

Fourier decomposition permits extension of this theorem to a general bandlimited $\left(-v_{\max }, v_{\max }\right)$ signal, described as:

$$
g(t)=\int_{-v_{\max }}^{v_{\max }} G(v) e^{i 2 \pi u} d v
$$

Then aliasing is avoided by ensuring

$$
v_{\mathrm{S}}>v_{\mathrm{N}} \equiv 2 \cdot v_{\max }
$$

Note: for a non-bandlimited signal, apply an anti-aliasing prefilter:

The convolution theorem defines the effect on the image of sampling

$$
\operatorname{Comb}(k ; \Delta k)=\sum_{-\infty}^{\infty} \delta(k-m \Delta k)
$$

A straightforward calculation shows:
$\mathfrak{J}^{-1}\{\operatorname{Comb}(k ; \Delta k)\}=1 / \Delta k \cdot \operatorname{Comb}(x ; 1 / \Delta k)$

We can now calculate:

$$
\rho_{\text {samp }}(x)=\mathfrak{J}^{-1}\{s(k) \cdot \operatorname{Comb}(k ; \Delta k)\}
$$

$$
\begin{aligned}
& =\mathfrak{J}^{-1}\{\mathbf{s}(\mathbf{k})\} * \mathfrak{J}^{-1}\{\operatorname{Comb}(\mathbf{k} ; \Delta \mathbf{k})\} \\
& =\rho(x) * \operatorname{Comb}(x ; 1 / \Delta k)
\end{aligned}
$$

Obtain replicates, spaced at a distance $1 / \Delta \mathrm{k}$ apart

Replication:

Provided $1 / \Delta k>L$, there is no overlap and correct reconstruction is possible

Using only the convolution theorem, we found that we can avoid aliasing by selecting

$\cdot \Delta k_{x}<1 / L_{x}$
$\cdot \Delta k_{\mathrm{y}}<1 / \mathrm{L}_{\mathrm{y}}$

This is equivalent to the Nyquist sampling theorem
i) $\Delta \mathrm{k}_{\mathrm{x}}=\gamma \mathrm{G}_{\mathrm{x}} T_{\mathrm{s}}$ (definition)
ii) $\Delta k<1 / L$ (the condition derived above)
i) and ii) \Rightarrow
iii) $\nsim G_{x} T_{s}<1 / L$
which can be written:
iv) $T_{s}<\frac{1}{\psi G_{\mathrm{x}} L}$
using the value of $v_{\text {max }}$, we obtain

$$
v=0 \quad v_{\text {max }}=\psi \frac{\mathrm{L}}{2} G_{x}
$$

v) $T_{s}<1\left(2 v_{\max }\right)$ which can also be written: $v_{s}>2 v_{\max }=$ The Nyquist condition

Thus, to fit the entire object into the image, one needs to sample in k-space such that $\Delta k<1 / L$ is satisfied

This was derived for the read direction, but identical considerations apply in the phase encode direction

FOV $=7.5 \mathrm{~cm}$
Aliased in phase encode

FOV = 15 cm
Non-aliased

Point Spread Function Due to Signal Processing

Actual data are samples from truncated k-space

Actual: $\mathrm{s}(\mathrm{k}) \rightarrow \square \cdot \mathrm{s}(\mathrm{k})=\mathrm{s}_{\text {trunc }}(\mathrm{k})$

The convolution theorem can help define the result of this truncation

The resulting 1-D image is given by:

$$
\begin{aligned}
\rho_{\text {trunc }}(\mathbf{x})= & \mathfrak{S}^{-1}\left\{\mathbf{S}_{\text {trunc }}(\mathbf{k})\right\} \\
& =\mathfrak{S}^{-1}\left\{\operatorname{Rect}(\mathbf{k}) \cdot \mathbf{s}\left(\mathbf{k}_{\mathrm{x}}\right)\right\} \\
& =\mathfrak{J}^{-1}\{\operatorname{Rect}(\mathbf{k})\} * \mathfrak{J}^{-1}\{\mathbf{s}(\mathbf{k})\} \\
& =\frac{\sin \left(2 \pi k_{\max } x\right)}{2 \pi k_{\max } x} * \rho(x)
\end{aligned}
$$

Therefore, a delta function density distribution in one dimension becomes:

Ideal point object

Smearing from truncation

Actual image: blurred

More truncation gives more blurring

We can now calculate the combined effects of sampling and truncation:

$$
\rho_{\text {samp, trunc }}(x)=\mathfrak{J}^{-1}\{s(k) \cdot \operatorname{Rect}(k) \cdot \operatorname{Comb}(k ; \Delta k)\}
$$

$$
\begin{aligned}
& =\mathfrak{S}^{-1}\{\mathbf{s}(\mathbf{k})\} * \mathfrak{S}^{-1}\{\operatorname{Rect}(\mathbf{k})\} * \mathfrak{S}^{-1}\{\operatorname{Comb}(\mathbf{k} ; \Delta \mathbf{k})\} \\
& =\rho(x) * \operatorname{Comb}(x ; 1 / \Delta k) * \frac{1}{\Delta k} 2 k_{\max } \frac{\sin \left(2 \pi k_{\max } x\right)}{2 \pi k_{\max } x}
\end{aligned}
$$

Obtain:

- replication, spaced at a distance 1/ $\Delta \mathrm{k}$ apart - smearing

In two dimensions: two dimensional truncation!

$$
s\left(k_{x}, k_{y}\right) \rightarrow \uparrow \cdot s\left(k_{x}, k_{y}\right)=s_{\text {trunc }}\left(k_{x}, k_{y}\right)
$$

The image is given by:

$$
\rho_{\text {trunc }}(x, y)=\mathfrak{J}^{-1}\left\{s_{\text {trunc }}\left(k_{x}, k_{y}\right)\right\}
$$

$$
\begin{aligned}
\text { Conv Thm } \rightarrow \quad & =\mathfrak{J}^{-1}\left\{\operatorname{rect}\left(k_{x}, k_{y}\right)\right\} * \mathfrak{J}^{-1} s\left(k_{x}, k_{y}\right) \\
& =\frac{\sin \left(2 \pi k_{x, \max } x\right)}{2 \pi k_{x, \max } x} \cdot \frac{\sin \left(2 \pi k_{y, \max } y\right)}{2 \pi k_{y, \max } y} * \rho(x, y)
\end{aligned}
$$

What does this point spread function look like?

Truncation pattern in 2D k-space

PSF in 2D x-space

As in 1 dimension, width of point spread function is inverse to width of truncation

Truncation pattern in 2D k-space

Next example: Point Spread Function Due to Physics

The effect of $T_{2}{ }^{*}$ decay

In the gradient echo experiment, both T_{2} and T_{2} ' decay start from the beginning of each k-space line, at - $\mathrm{k}_{\max }$

Gradient echo sequence

$$
s(k) \bullet \operatorname{rect}(k) \rightarrow s(k) \bullet \operatorname{rect}(k) \bullet e^{-t / T_{2}^{*}}
$$

Rewrite in terms of k :

$$
k=\nsim G_{r}(t-T E)
$$

Therefore:

$$
e^{-t / T_{2}^{*}}=e^{-T E / T_{2}^{*}} e^{-k / \gamma G T_{2}^{*}}
$$

$s(k) \bullet \operatorname{rect}(k) \rightarrow s(k) \bullet \operatorname{rect}(k) \bullet e^{-T E / T_{2}^{*}} e^{-k / \nLeftarrow G T_{2}^{*}}$

$$
\operatorname{PSF}(x)=\mathfrak{J}^{-1}\left(\operatorname{rect}(k) \bullet e^{-T E / T_{2}^{*}} e^{-k / \nmid \epsilon G T_{2}^{*}}\right)
$$

$$
=e^{-T E / T_{2}^{*}} \int_{-k_{m}}^{k_{m}} e^{2 \pi i k x} e^{-k / \nLeftarrow G T_{2}^{*}} d k
$$

$$
\text { Note: } T_{s}=\frac{2 k_{m}}{\nsim G_{\text {read }}}
$$

Therefore:

$$
P S F=P S F\left(x ; T_{s} / T_{2}^{*}\right)
$$

$$
|\operatorname{PSF}|=\left|\operatorname{PSF}\left(x ; T_{\mathrm{s}} / T_{2}^{*}\right)\right|
$$

$T_{2}{ }^{*}$ negligible:
PSF as for truncation

Point Spread Function Due to T_{2} decay

$$
1 / T_{2}^{*}=1 / T_{2}+1 / T_{2}^{\prime}
$$

In the spin echo experiment

- T_{2} decay starts from the beginning of each k -space line, at $-\mathrm{k}_{\text {max }}$
- T_{2}^{\prime} effectively "starts" at $k=0$, in the middle of acquisition

This PSF can be described by its full width at half-maximum (FWHM)

Conclusions:

- The basic concepts of time/frequency signal processing can be carried over to x-space/k-space in MRI
- The imaging equation defines the relevant Fourier conjugate variables
- Δk_{x} and Δk_{y} are the sampling intervals, analogous to T_{s}
- Sampling and other operations on data are performed in k-space; the convolution theorem supplies the resulting effects on the image

