Signal Processing for MRI

Richard S. Spencer, M.D., Ph.D.

National Institutes of Health National Institute on Aging, Baltimore, MD

spencer@helix.nih.gov

A Philosophical Debate Do we live in a digital world or an analog world?

Auguste Rodin, bronze, ca. 1880

An Engineering Reality We live in a digitized world.

Andrew Lipson, LEGO bricks, ca. 2000

Fundamental fact:

MRI data is acquired in k-space
x-space is just a derived quantity (which we happen to be interested in)

Therefore, we need to understand:

Data

Image

Plan: to demonstrate that

 The basic concepts of time/frequency signal processing can be carried over to MRI

• Δk_x and Δk_v are the relevant sampling intervals

 The imaging equation defines the transformation between conjugate variables--Fourier

 Sampling and other operations on data are performed in k-space; the convolution theorem supplies the resulting effect in the image

Both DSP and physical effects must be considered

Digitization of a Time-Domain Analog Signal

Sampling Interval T_s

Data spaced at intervals T_s

Sampling during MRI signal acquisition

Sampling in k-space

For both dimensions: data is spaced at intervals Δk

Data in k-space is (usually) regularly sampled on a grid.

This sampling is entirely analogous to sampling of time-domain data: intervals are ∆k_x and ∆k_y instead of interval T_s

Significance of this:

• From a post-processing point of view, read and phase directions in MRI can be handled in an identical fashion

 Much of what you already know about signal processing of sampled time-domain signals can be immediately carried over to MRI

The k-space sampling function is written:

$$Comb(k;\Delta k) = \sum_{n=-N/2}^{+N/2} \delta(k - n\Delta k)$$

N, number of sampled points in k_x or k_y

k-space data are numbers assigned to each grid point: These are the samples s_{samp}(k_x, k_y)

Conceptually, we can consider $s_{samp}(k_x, k_y)$ to be a sampled version of some continuous function, $s(k_x, k_y)$

The above dealt with signal acquisition

To proceed: consider the physics

Relationship Between Signal and Precessing Spins During Read

Signal and Spins During Read

Signal from dx dy: $s(t; x, y) dx dy = \rho(x, y) e^{-i 2\pi v t} dx dy$

Consideration of the phase encode gradient leads to the celebrated *imaging equation*

...relates k-space data, $s(k_x, k_y)$ to the image, $\rho(x,y)$

$$s(k_{x,k_y}) = \iint \rho(x,y) e^{-i\pi(k_x x + k_y y)} dx dy \equiv \Im \big[\rho(x,y) \big]$$

$$\rho(x,y) = \iint s(k_x,k_y) e^{+i\pi(k_xx+k_yy)} dk_x dk_y \equiv \mathfrak{I}^{-1} \left[s(k_x,k_y) \right]$$

Note: the Fourier transform arises from the physics

Combine Fourier transforms with convolution to make use of the all-powerful *Convolution Theorem*

Convolution of x(t) and h(t)

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t) * h(t)$$

fold \rightarrow slide \rightarrow multiply \rightarrow integrate

Arises naturally when considering:

the observable effects of intended or unintended actions on data

digital filters

The Convolution Theorem

Ingredients: h(t) and g(t), and their Fourier transforms H(v), G(v) S = Fourier transform S⁻¹ = Inverse Fourier transform • = multiplication * = the convolution operator

4 ways of writing the convolution theorem:

I. ℑ {f*g} = F • G
II. ℑ {f • g} = F * G
III. ℑ⁻¹{F • G} = f * g
IV. ℑ⁻¹{F * G} = f • g

Our application is based on the imaging equation:

$$\Im \{\rho(\mathbf{x}, \mathbf{y})\} = \mathbf{s}(\mathbf{k}_{\mathbf{x}}, \mathbf{k}_{\mathbf{y}})$$

 $\Im^{-1} \{ \mathbf{s}(\mathbf{k}_{\mathbf{x}}, \mathbf{k}_{\mathbf{y}}) \} = \rho(\mathbf{x}, \mathbf{y})$

Visible effect on the image

Version III. \Im^{-1} {s • H} = ρ^* h

Various non-idealities or filters

Ideal data in k space

 ρ = the ideal image

With this, we can understand the effects that sampling, truncation, and relaxation in k-space have on the image

•Aliasing direct sampling effect

•The point spread function *truncation--signal processing relaxation--physics*

Aliasing aka wrap-around, aka fold-over

Thus, high frequency sinusoids, when sampled, can be mis-assigned to a lower frequency!

To avoid this, sample at a rate $v_s = 1/T_s$ which satisfies $v_s > 2 \cdot v$ where v is the frequency of the sinusoid

This rate, 2 • v is called the *Nyquist* rate, v_N To avoid aliasing: $v_S > v_N \equiv 2 \cdot v$ Fourier decomposition permits extension of this theorem to a general bandlimited ($-v_{max}$, v_{max}) signal, described as:

$$g(t) = \int_{-v_{\text{max}}}^{v_{\text{max}}} G(v) e^{i2\pi v t} dv$$

Then aliasing is avoided by ensuring $v_{\text{S}} > v_{\text{N}} \equiv 2 \bullet v_{\text{max}}$

Note: for a non-bandlimited signal, apply an anti-aliasing prefilter:

The convolution theorem defines the effect on the image of sampling

$$Comb(k;\Delta k) = \sum_{-\infty}^{\infty} \delta(k - m\Delta k)$$

A straightforward calculation shows:

 $\Im^{-1} \{ Comb(k; \Delta k) \} = 1/\Delta k \cdot Comb(x; 1/\Delta k) \}$

We can now calculate:

 $\rho_{samp}(x) = \Im^{-1} \{s(k) \cdot Comb(k; \Delta k)\}$ $= \Im^{-1} \{s(k)\} * \Im^{-1} \{Comb(k; \Delta k)\}$ $= \rho(x) * Comb(x; 1/\Delta k)$ Obtain replicates, spaced at a distance 1/ \Delta k apart

Provided 1/ $\Delta k > L$, there is no overlap and correct reconstruction is possible

Using only the convolution theorem, we found that we can avoid aliasing by selecting

L/2

This is equivalent to the Nyquist sampling theorem i) $\Delta k_x = \gamma G_x T_s$ (definition)

ii) $\Delta k < 1/L$ (the condition derived above)

i) and ii) \Rightarrow iii) $\gamma G_x T_s < 1/L$

which can be written:

iv) $T_s < \frac{1}{\gamma G_x L}$

using the value of v_{max} , we obtain **v** = 0 $v_{max} = \frac{\gamma}{2} \frac{L}{2} G_x$ **v**) T_s < 1/(2 v_{max}) which can also be written: $v_s > 2 v_{max} = The Nyquist condition$ Thus, to fit the entire object into the image, one needs to sample in k-spac<mark>e such that ∆k < 1 / L is</mark> satisfied

 Δk is called the FOV

This was derived for the read direction, but identical considerations apply in the phase encode direction

FOV = 7.5 cm Aliased in phase encode

FOV = 15 cm Non-aliased

Point Spread Function Due to Signal Processing Actual data are samples from truncated k-space

Actual:
$$s(k) \rightarrow \bullet s(k) = s_{trunc}(k)$$

The convolution theorem can help define the result of this truncation

We will use:
$$\Im^{-1}\{$$
 (k)} = $\bigvee^{(k)} = \bigvee^{(k)} \bigvee^{(k)/x} = \bigvee^{($

The resulting 1-D image is given by:

 $\rho_{trunc}(\mathbf{x}) = \mathfrak{I}^{-1}\{\mathbf{s}_{trunc}(\mathbf{k})\}$

= \mathfrak{I}^{-1} { Rect(k) • s(k_x)}

= ℑ⁻¹{ Rect(k)} * ℑ⁻¹{s(k)}

$$= \frac{\sin(2\pi k_{\max}x)}{2\pi k_{\max}x} * \rho(x)$$

Therefore, a delta function density distribution in one dimension becomes:

Ideal point object

Smearing from truncation

Actual image: blurred

More truncation gives more blurring

In two dimensions: two dimensional truncation!

$$s(k_x, k_y) \rightarrow s(k_x, k_y) = s_{trunc}(k_x, k_y)$$

The image is given by:

$$\rho_{trunc}(x, y) = \mathfrak{I}^{-1}\left\{s_{trunc}(k_x, k_y)\right\}$$

Conv Thm
$$\rightarrow = \mathfrak{I}^{-1}\left\{rect(k_x, k_y)\right\} * \mathfrak{I}^{-1}s(k_x, k_y)$$

$$=\frac{\sin(2\pi k_{x,\max}x)}{2\pi k_{x,\max}x} \cdot \frac{\sin(2\pi k_{y,\max}y)}{2\pi k_{y,\max}y} * \rho(x,y)$$

What does this point spread function look like?

Truncation pattern in 2D k-space

PSF in 2D x-space

As in 1 dimension, width of point spread function is inverse to width of truncation

Truncation pattern in 2D k-space

PSF in 2D x-space

Next example: Point Spread Function Due to *Physics* The effect of T_2^* decay

In the gradient echo experiment, both T_2 and T_2 decay start from the beginning of each k-space line, at $-k_{max}$

Gradient echo sequence

$$s(k) \bullet rect(k) \rightarrow s(k) \bullet rect(k) \bullet e^{-t/T_2^*}$$

Rewrite in terms of k:

Therefore:

$$e^{-t/T_2^*} = e^{-TE/T_2^*}e^{-k/\varphi GT_2^*}$$

$$s(k) \bullet rect(k) \rightarrow s(k) \bullet rect(k) \bullet e^{-TE/T_2^*} e^{-k/\varphi GT_2^*}$$

$$PSF(x) = \mathfrak{I}^{-1}\left(rect(k) \bullet e^{-TE/T_2^*} e^{-k/\mathscr{V} GT_2^*}\right)$$

$$= e^{-TE/T_{2}^{*}} \int_{-k_{m}}^{k_{m}} e^{2\pi i k x} e^{-k/\varphi GT_{2}^{*}} dk$$
Note: $T_{s} = \frac{2k_{m}}{\varphi G_{read}}$
Therefore: $T_{s} = \frac{-k_{m}}{T_{s}} \int_{-k_{m}}^{G_{read}} \int$

$\left| PSF \right| = \left| PSF(x;T_s/T_2^*) \right|$

PSF as for truncation

Point Spread Function Due to *T*₂ *decay*

 $1/T_2^* = 1/T_2 + 1/T_2^{\prime}$

In the spin echo experiment • T₂ decay starts from the beginning of each k-space line, at -k_{max}

• T₂['] effectively "starts" at k = 0, in the middle of acquisition

This PSF can be described by its full width at half-maximum (FWHM)

Conclusions:

• The basic concepts of time/frequency signal processing can be carried over to x-space/k-space in MRI

• The imaging equation defines the relevant Fourier conjugate variables

• Δk_x and Δk_y are the sampling intervals, analogous to T_s

 Sampling and other operations on data are performed in k-space; the convolution theorem supplies the resulting effects on the image