Issues in the Analysis of SELDI-TOF-MS Data

Zhen Zhang, PhD
Associate Professor and Associate Director

Center for Biomarker Discovery

Johns Hopkins University School of Medicine

Issues in the Analysis of SELDI-TOF-MS Data (and Other Protein **Expression Profile Data)** from Clinical Samples for Biomarker Discovery

The Usage and Abusage of Bioinformatics Tools

Protein Expression Profile

- Extreme dynamic range in expression levels of different proteins (10¹⁰);
- Dynamic changes of the same proteins over time and varying conditions;
- Biological variability among individuals within the same populations;
- Sample preprocessing also introduces additional analytical variability.

Expression Data from Clinical Samples

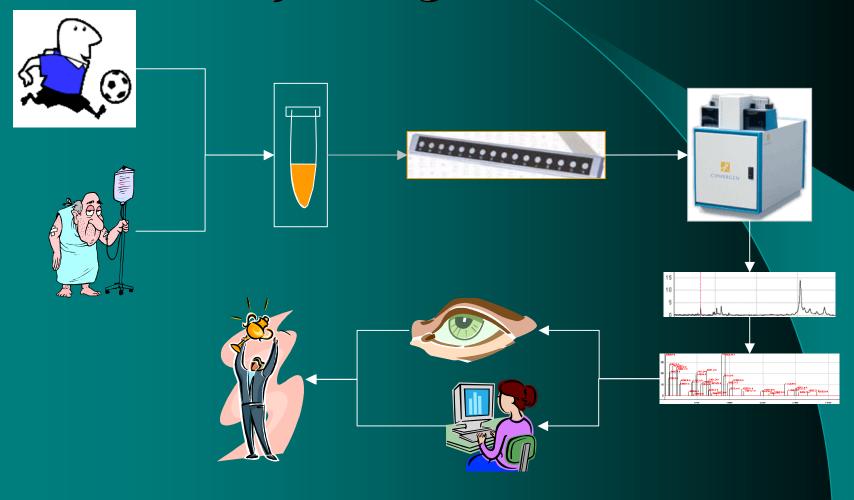
In addition to p >> n, we also have:

- Much more significant within-class variability due to biological variability or sub-phenotypes.
- Possible systematic biases due to preanalytical variables.
- Difference in sample populations.
- Possible mislabeling of clinical samples.

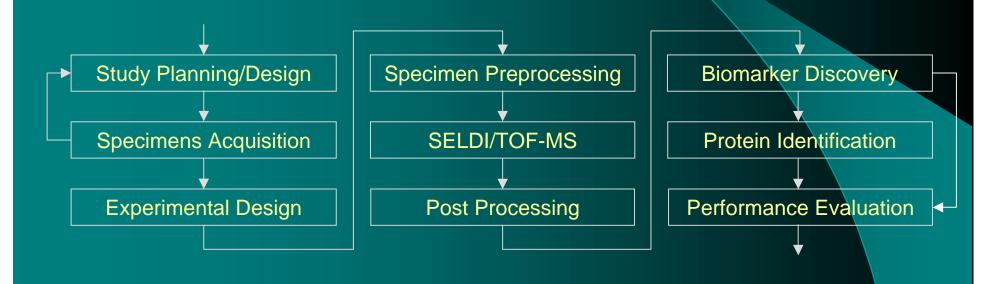
Analysis for Biomarker Discovery

- Most are case-controlled studies;
- Most use supervised approaches;
- Sensitive to systematic biases in data;
- Thousands of candidates does not mean any of them have to be good.

An Outsider's View of Biomarker Discovery Using SELDI MS-TOF



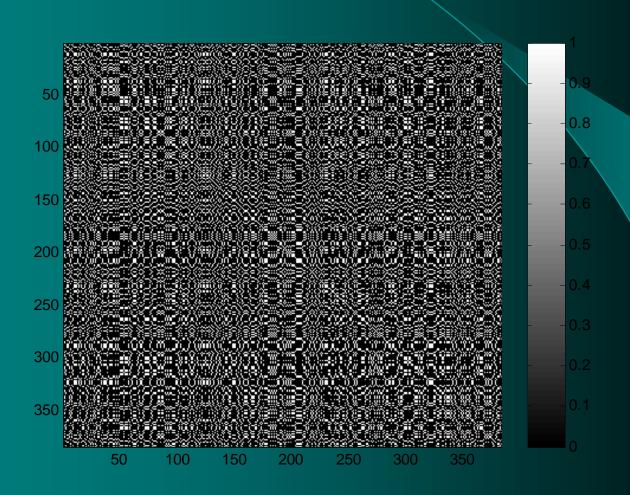
The Insider's (??) View of Biomarker Discovery Using SELDI MS-TOF



Issues w.r.t. Bioinformatics

Experimental Design and Execution

Experimental Design



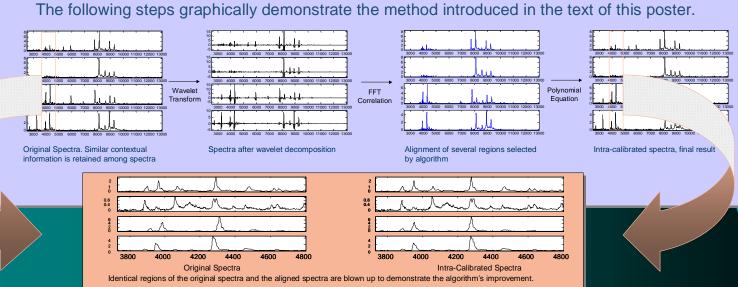
Issues w.r.t. Bioinformatics

Spectra Processing

Spectrum Alignment

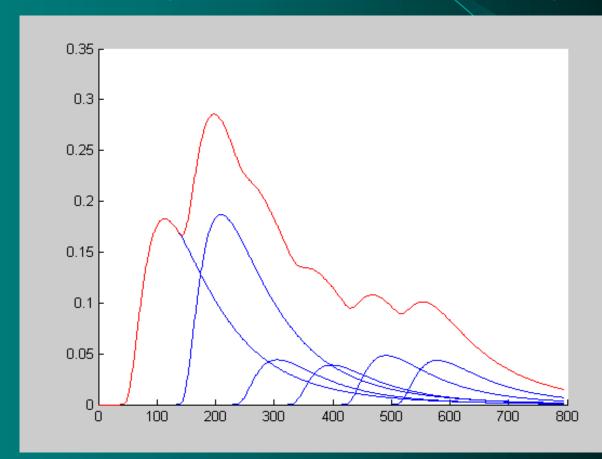
C. Nicole White, Z. Zhang

The Software Tool: Intra-Calibration



Peak Decomposition

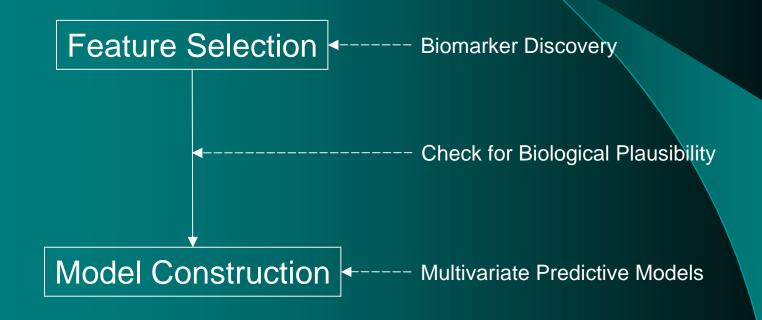
H. Zhang, C. Nicole White, Z. Zhang



Issues w.r.t. Bioinformatics

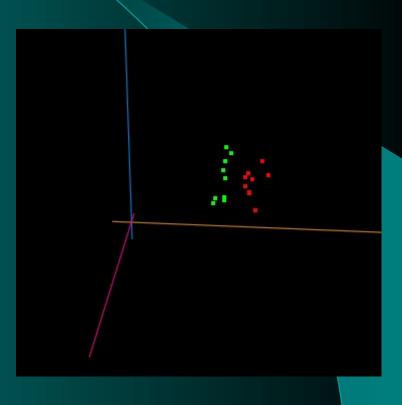
Variable (biomarker) Selection

A One-Step or Two-Step Process?

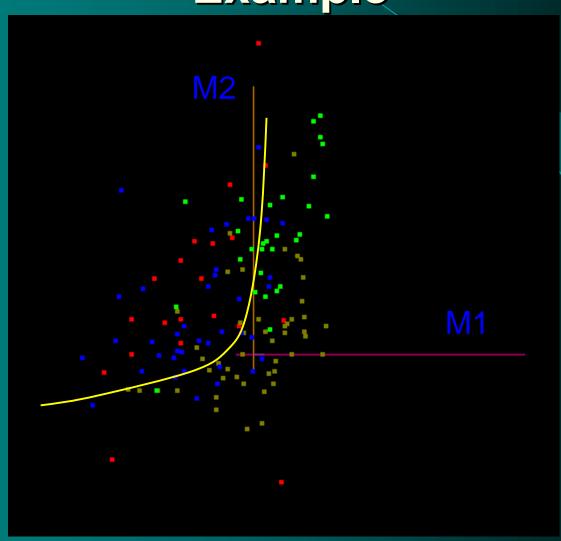


Signature of Diseases?

- Nonlinear combination of variables from a large number of peaks (10² – 10⁴) could result in an astronomically large number of "signatures." By chance, some of them could be uniquely linked to groups of samples of small sizes.
- 20 simulated "samples" each with 150 "peaks", all data generated with random numbers.
- It's very easy to find a subset of peaks that in combination perfectly separate two arbitrarily labeled groups.



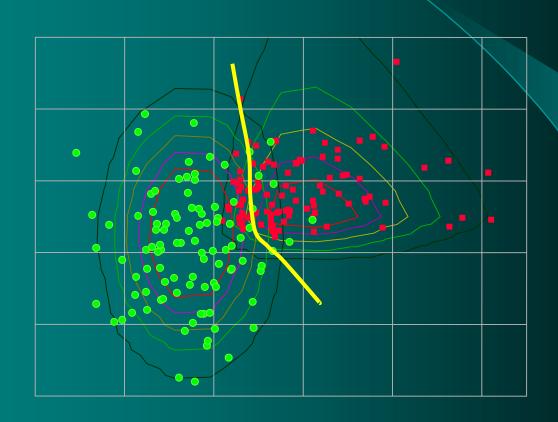
Check Carefully: A Real Data Example



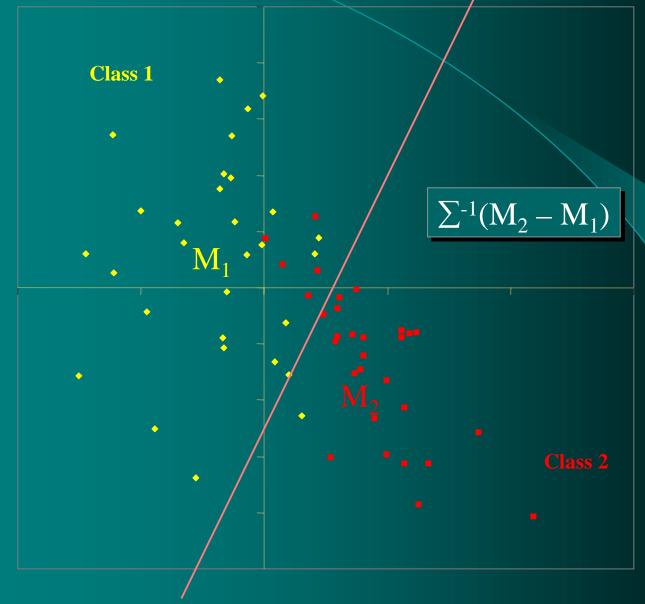
A Basic Supervised Approach for Biomarker Discovery

- Derive a classifier that best separate the groups of samples;
- Determine the contributions of individual variables;
- Select a subset of most informative variables;
- Evaluate the performance of the selected variables.

Classifiers Based on Estimated Conditional Distributions



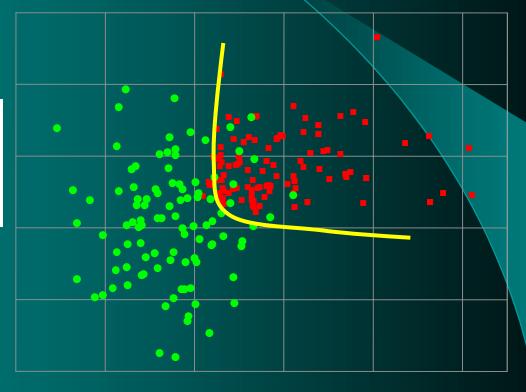
Fisher's LDA

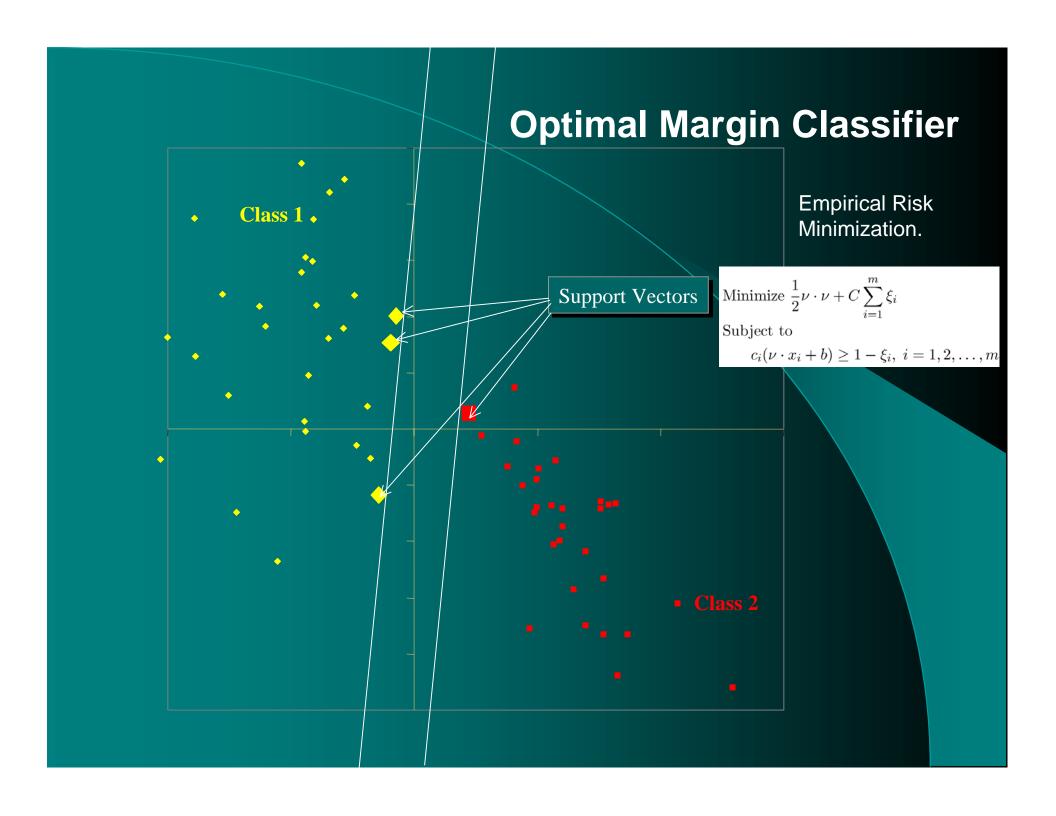


Based on data distribution information.

Classifiers by Empirical Risk Minimization

$$R_{\text{emp}}(\alpha) = \frac{1}{l} \sum_{i=1}^{l} Q(z_i, \alpha)$$
$$= \frac{1}{l} \sum_{i=1}^{l} (y_i - f(x_i, \alpha))^2$$





The Unified Maximum Separability Analysis (UMSA) Algorithm

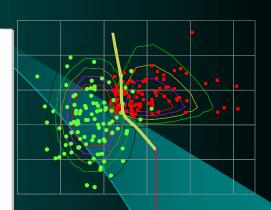
Subject to

$$c_i(\nu \cdot x_i + b) \ge 1 - \xi_i, \ i = 1, 2, \dots, m,$$

$$p_i = K\phi(\delta_i), \blacktriangleleft$$

A typical choice for the function $\phi(\cdot)$ would be

$$\phi(x) = e^{-x^2/\sigma^2}$$



UMSA Component Analysis

- Find a projection vector d along which two classes of data are optimally separated for a given set of UMSA parameters.
- Project the data onto a subspace perpendicular to d.
- Iteratively, apply UMSA to compute a new projection vector within this subspace, until a desired number of components have been reached.

Procedure: UMSA component analysis for a two-class dataset with *m* variables and *n* samples

inputs:

UMSA parameters C and σ ; number of components $q \le \min(m, n)$; data $X = (x_1, x_2, ..., x_n)$; and class labels $L = (I_1, I_2, ..., I_n), I_i \in \{-1, +1\}$.

initialization:

component set $D \leftarrow \{\}$;

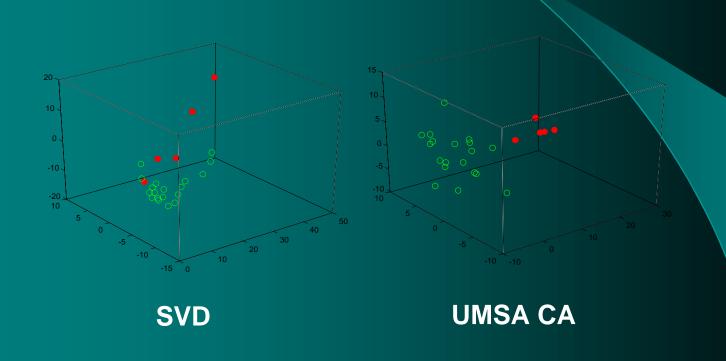
$$k \leftarrow 1$$
.

while $k \le q$

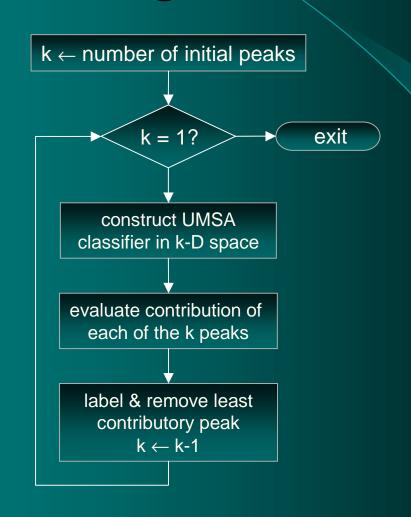
- 1. applying UMSA(σ , C) on $X = (x_1, x_2, ..., x_n)$ and L;
- 2. $d_k \leftarrow v/||v||$; $D \leftarrow D \cup \{d_k\}$;
- 3. $x_i \leftarrow x_i (x_i^T d_k) d_k$, i = 1, 2, ..., n;
- 4. $k \leftarrow k+1$.

return D.

UMSA Component Analysis vs. PCA/SVD



Backward Stepwise Variable Ranking/Selection



Procedure: Stepwise backward UMSA variable selection for a two-class dataset with *m* variables and *n* samples

inputs:

UMSA parameters C and σ ,

data
$$e = \{e_{ii} | j = 1, 2, ..., m; i = 1, 2, ..., n\}$$
; and

class labels
$$L = (l_1, l_2, ..., l_n), l \in \{-1,+1\}.$$

initialization:

$$G_k \leftarrow G_m = \{g_i = (e_{i1}, e_{i2}, ..., e_{in})^T, j = 1, 2, ..., m\};$$

score vector
$$w = (w^1, w^2, ..., w^m)^T \leftarrow (0, 0, ..., 0)^T$$
.

while $|G_k| > 1$

1. forming
$$X = (x_1, x_2, ..., x_n) \leftarrow (g_1, g_2, ..., g_k)^T$$
.

2. applying UMSA(σ ,C) on X and L;

$$s_k \leftarrow 2/\|v\|$$
 and $d_k \leftarrow v/\|v\|$.

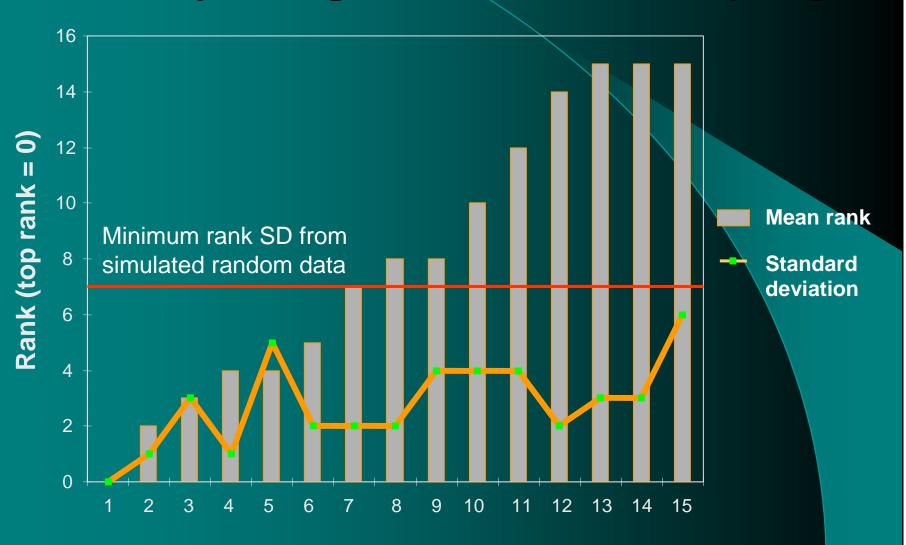
3. for all
$$g_j \in G_k$$
, if $s_k |d_k^j| > w^j$, $w^j \leftarrow s_k |d_k^j|$.

4.
$$G_{k-1} \leftarrow G_k - \{g_r\}$$
, where r is determined from $w^r = \min_{g_j \in G_k} \{w^j\}$.

return w.

Note: $w^{k-1} \le w^k$, for all k

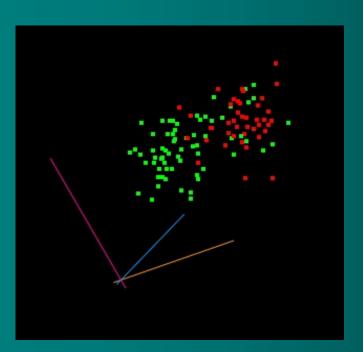
Alleviating Impact of Biological Variability Using Statistical Re-sampling



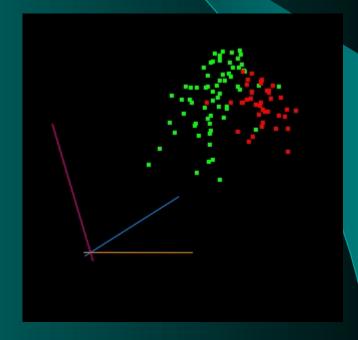
Example: Breast Cancer

Jinong Li, et al

A. All peaks



B. Three peaks



Issues w.r.t. Bioinformatics

Study Design

Considerations

- $V_{obs} = V_d + V_p + V_a + V_b + e.$
- Many variables are not independently and identically distributed (i.i.d.) across different sites
- Hopefully, the real biomarkers are i.i.d..

Analysis of Data from Multiple Sites

Dataset 1 Dataset 2

Cross-comparison of results from independently performed analyses of multiple datasets of diverse sources

To alleviate impact of site-specific systematic biases.

Candidate peaks with consistently high performance across multiple datasets

Independent Test

Final Candidate Peaks

Protein ID: Independent

Protein ID; Independent validation on larger populations or with different methods; etc..

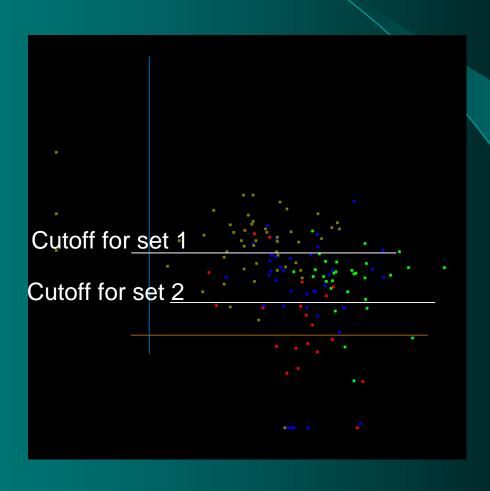
An Alternative (and Common) Approach

Pros: A more diversified dataset for biomarker discovery.
Cons: The discovery/

training set is artificially guaranteed to have the same distribution as the independent test set (i.i.d. condition).

Dataset 1
Dataset 2
Dataset 3
Discovery
Training Set

Pros & Cons



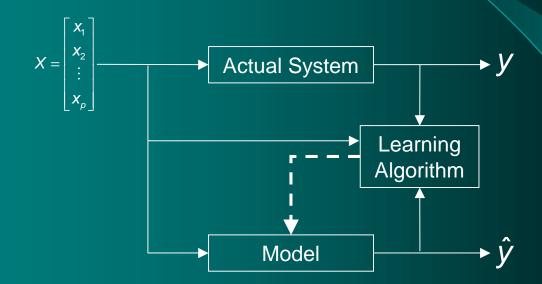
Issues w.r.t. Bioinformatics

Construction of Multivariate Models

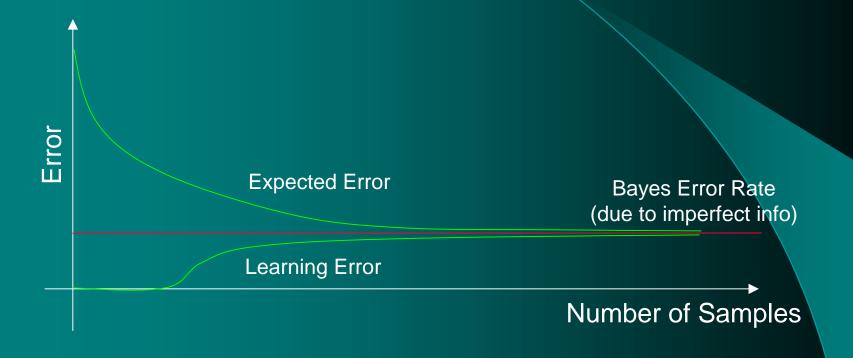
Two Separate Aspects

- Model's capacity to match complexity of problem.
- Learning algorithm's ability to use information in training data.

Model + Learning Algorithm

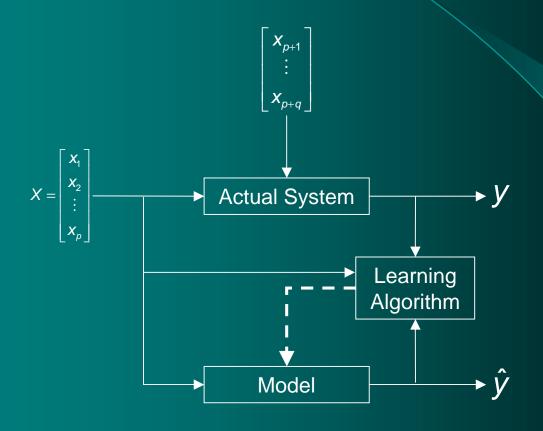


Efficiency in Information Use



Adopted from "The Nature of Statistical Learning Theory"

Imperfect Information



Easy vs. Hard vs. Impossible problems

Check Information in Input Variables

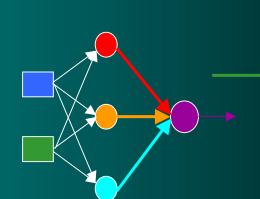
- Easy problem, almost anything works;
- Impossible problem, people still try.
- Hard problem, what really matters.

How to find out?

- For nonlinear models, there is no close form analytical solutions.
- Experimentally, the flip-flop phenomenon in learning/test (assuming the learning is done appropriately).

 Basis for the clusters in N-Dim space;

 Imposition of monotonicity (e.g. in ANN)



Lessens learned

- Bring "BIO" back into bioinformatics.
- It's an imperfect world;
- Study design/protocol and experimental design first. Bioinformatics cannot fix a faulty study;
- Knowledge of clinical and biological reality keeps us grounded. It takes knowledge to discover knowledge; and
- If it is too good to be true, ...