Classifier construction via. Boosting

Yutaka Yasui, Ph.D.

Division of Public Health Sciences Fred Hutchinson Cancer Research Center

The aligned datase for searching signature markers profiles

Completion of preanalysis processing

Yasui et al. J. Biomed. & Biotecl (Special Issue on Proteomics) 20

Basic Study Design

Biomarker Discovery

Phases of Biomarker Discovery & Validation

Pre-clinical Exploratory	PHASE 1	Pepe et al. JNCI 2001 Promising directions identified		
Clinical Assay Validation	PHASE 2	Clinical assay detects established disease		
Retrospective Longitudinal	PHASE 3	Biomarker detects pre-clinical disease and a "screen positive" rule defined		
Prospective Screening	PHASE 4	Extent and characteristics of disease detected by the test and the false referral rate are identified		
Cancer Control	PHASE 5	Impact of screening on reducing burden of disease on population is quantified		

100% sensitivity & specificity in classifying cases vs. controls

 \neq

Identification of biomarkers for cases

Three Principles of Case-Control Design (Wacholder et al. Am J Epidemiol 1992)

- 1. A common study base for cases and controls
- 2. Controlling for confounding effects
- 3. Comparable accuracy and precision in exposure measurements

1. Common Study Base

- Define a common study base (who, where, when) and sample both cases and controls from it
- Cases and controls from different institutions
 Cases from a past study, controls from an ongoing study

Disease is not the only difference between cases and controls

2. Controlling for confounding

O Balance age and race between cases and controls (or adjust for in the analysis)

 \times Study base = 30-75 women in Montreal in 2003 Breast cancer cases = Tend to be older Controls = Younger

Markers for age, not cancer, will distinguish cases and controls

3. Comparable measurement errors

 Unify the sample collection, processing, storage, and assay methods for cases and controls.

Balance the use of machines, technicians, chips, and wells between cases and controls.

lf not,

True marker-disease relation is distorted

Use of multiple markers

in classifying disease classes

Biomarker Discovery

Marker A

Likely overlap of intensity distributions of a <u>single</u> <u>marker</u> between cases and controls

Need to combine information from multiple markers!

Building Classifiers

- Classical Discriminant Analysis
- Logistic Regression
- CART
- Neural Network
- Support Vector Machine
- Boosting

. . .

ancer vs. control classification in a given datas

The design of the EVMS biomarker analysis

How to assess over-fitting in the training set ?

Cross-validation of the training data

Use 90% to form the marker set & 10% to test Repeat 10 times and summarize

Logistic regression with forward variable selection with various stopping p-values

Use of the test set

Enable unbiased assessment of classification erro

if no modification/selection of the classifierconstruction method is made with the test set

e.g., Construct 2 classifiers with the training set and report the one with the better test-set performance

(2 feature selection methods, stepwise stopping, etc

Boosting for supervised and partially supervised learning

Method for classifier building and its modification for partially-incorrect class labels

Heterogeneity / subtypes within cancer

Real AdaBoost Algorithm ($y^* = 1 vs. y^* = -1$)

Friedman, Hastie, Tibshirani (Annals of Statistics, 2000)

- 1. Let $w_i \equiv 1/N$ for i = 1, 2, ..., N
- 2. Repeat for m = 1, 2, ..., M
 - Fit a classifier with weights {w_i} to get p_m(x) = Pr(Y*=1|x, {w_i})
 - Set $w_i = w_i \times exp\{-0.5 y_i^* \times logit p_m(x_i)\}$
 - Renormalize $\{w_i\}$ such that $\sum_i w_i = 1$
- 3. The final classifier: $\eta_M(x) = \text{logit } p_1(x) + \text{logit } p_2(x) + \dots + \text{logit } p_M(x) > c$

Performance of the boosting classifier (1st stage: Abnormal vs. Normal)

Correct classification

Cancer/BPH Normal Training dataset 245/245 (100%) 81/ 81 (100%) Test dataset 44/45 (97.8%) 15/15 (100%)

Why does this work?

AdaBoost = "Best off-the-shelf classifier" (Brieman)

 $\alpha_{m}, \beta_{m}, X^{(m)}) = \arg\min\sum_{i=1}^{m-1} e^{-\frac{y_{i}^{*}}{2}\sum_{j=1}^{m-1} (\hat{\alpha}_{j} + \hat{\beta}_{j}X_{i}^{(j)})} \ln\{1 + e^{-y_{i}^{*}(\alpha + \beta X_{i})}\}$

osting = Stage-wise minimization of a loss function

$$(\alpha_{m}, \beta_{m}, X^{(m)}) = \underset{(\alpha, \beta, X)}{\operatorname{arg min}} \sum_{i} L_{i}^{*}(y_{i}^{*}, \eta_{\phi_{m}}(X_{\phi_{i}}^{(m)}))$$

$$= \underset{(\theta_{i}=(\alpha,\beta),X)}{\operatorname{arg min}} \sum_{i} L_{i}^{*}(y_{i}^{*}, \eta_{(\theta,\phi_{m-1})}(X, X_{\phi_{i}}^{(m-1)}))$$

$$(\theta_{i}=(\theta_{i}, \dots, \theta_{\phi_{m}})$$

$$X_{i}^{(m-1)} = (X^{1}, \dots, X^{(m-1)})$$

$$Y_{i}^{(m-1)} = (X^{1}, \dots, X^{(m-1)})$$

$$Y_{i$$

Boosting = Stage-wise minimization of a loss function L^* given previously selected biomarkers $X^{(m-1)}$ and their parameters $\phi_{(m-1)}$

Classifier changes slightly at each stage = Slow learning

$$(\alpha_m, \beta_m, X^{(m)}) = \arg \min_{(\alpha, \beta, X)} \sum_i^{m-1} e^{-\frac{y_i^*}{2} \left[\sum_{j=1}^{m-1} (\hat{\alpha}_j + \hat{\beta}_j X_i^{(j)}) \right] + (\alpha + \beta X_i)}$$

$$= \arg \min_{(\alpha,\beta,X)} \sum_{i} L_{i}^{*}(y_{i}^{*},\eta_{\phi_{m}}(X_{0}^{(m)}))$$

Does this form of the loss function make sense?

Large margin classifiers

 $Margin_{i} \equiv y_{i} \ \eta(x_{i})$ $> 0 \text{ if } \eta(x_{i}) \text{ is correct}$ $< 0 \text{ if } \eta(x_{i}) \text{ is wrong}$

Higher confidence in classification
 Increased generalizability

Large margin classifiers

Discrete AdaBoost Algorithm ($y^* = 1$ vs. $y^* = -1$)

- 1. Let $w_i \equiv 1/N$ for i = 1, 2, ..., N
- 2. Repeat for m = 1, 2, ..., M
 - Fit a base classifier $f_m(x_i) \in \underline{\{-1,1\}}$ (e.g., a decision tree) with weights $\{w_i\}$
 - $ERR_m = \sum w_i \mathbf{1}\{y_i \neq f_m(x_i)\}$
 - $C_m = log\{(1 ERR_m) / ERR_m\}$
 - Set $w_i = w_i \times exp\{-0.5 C_m y_i^* \times f_m(x_i)\}$
 - Renormalize $\{w_i\}$ such that $\sum_i w_i = 1$
- 3. The final classifier: $C_1f_1(x) + C_2f_2(x) + ... + C_Mf_M(x) > c$

It worked well for Cancer/BPH vs. Normal

But ...

Performance of the boosting classifier (2nd stage: Cancer vs. BPH)

Correct classification

Cancer

BPH

Training dataset 160/167 (95.8%) 70/ 78 (89.7%) Test dataset 28/30 (93.3%) 7/15 (46.7%)

European Prostate Cancer Detection Study

Protocol:

Biopsy 1,051 men with PSA 4-10 ng/mlIf negative, take another biopsy 6 weeks laterIf negative again, take another 8 weeks later

119 cance

missed b

Biopsy 1

Cancer detection: 231 were detected by Biopsy 1

83 were detected by Biopsy 2

36 were detected by Biopsy 3

 \therefore A single biopsy can miss > 1/3 of cancers in PSA 4-10 patients

Cancer label = 100% correct Non-cancer label < 100% correct

= Partially Supervised Learning

How can we "learn" from potentially partially mislabeled data?

• If correct labels y_i*s are available:

$$(\alpha_{m}, \beta_{m}, X^{(m)}) = \underset{(\alpha, \beta, X)}{\operatorname{arg\,min}} \sum_{i} e^{-\frac{y_{i}^{*}}{2} \sum_{j=1}^{m-1} (\hat{\alpha}_{j} + \hat{\beta}_{j} X_{i}^{(j)})} \frac{\ln\{1 + e^{-y_{i}^{*}(\alpha + \beta X_{i})}\}}{\ln\{1 + e^{-y_{i}^{*}(\alpha + \beta X_{i})}\}}$$
weights

High (low) weights for incorrectly (correctly) classified observation

Results of $(m-1)^{th}$ classification \Rightarrow

Who should "speak louder" at mth stage

- If correct labels y_i*s are <u>NOT</u> available:
- \Rightarrow We cannot determine whether the (m-1)th classification was correct or not
- \Rightarrow Unclear who should speak louder at the mth stage

PROPOSAL

Let the observations that are likely to be misclassified at (m-1)th stage speak louder at mth stage

$$\Pr[y_{i}^{*} = -1 | \phi_{(m-1)}, X_{0/0}^{(m-1)}, y] \times = \frac{-1}{2} \int_{j=1}^{j} (\hat{a}_{j} + \hat{\beta}_{j} X_{i}^{(j)}) \int_{j}^{j} (\alpha + \beta X_{i}) d\alpha + \beta X_{i}^{(j)} d\alpha + \beta X_{i}^{(j)} + \beta$$

• If correct labels y_i^* s are available: $\underset{\substack{(\theta = (\alpha, \beta), X) \\ \psi_0}}{\operatorname{arg\,min}} \sum_i L_i(\theta, X; \phi_{(m-1)}, X_{0}^{(m-1)}, y_i^*)$

• If correct labels y_i^* s are <u>NOT</u> available: $\underset{\substack{\theta=(\alpha,\beta),X}{\%}}{\operatorname{arg\,min}} \sum_{i} \sum_{\substack{y_i^*=-1\\y_i^*=-1}}^{y_i^*=1} L_i(\theta, X; \phi_{(m-1)}, X_{\%}^{(m-1)}, y_i^*) \operatorname{Pr}[y_i^* | \phi_{(m-1)}, X_{\%}^{(m-1)}, \phi_{\%}^{(m-1)}, \phi_{\%}^{$

Yasui et al. (Biometrics, 2004

Questions in the simulation study

Q1: Can we recover the cancer/BPH samples that were incorrectly labeled as "normal"?

Q2: How do the classifiers constructed from the incorrectly labeled training dataset perform when tested against the test dataset?

Learning methods compared

- (1) Forward-selection logistic regression with BIC as the model-selection criteria
- (2) Real AdaBoost with logistic regression
 (stopped at m=100th iterations)
- (3) EM-Boost with $P_0 = 0.1, 0.3, 0.5$ (stopped at m=100th iterations)

Study (1): Training Dataset Results

LEARNING METHOD	AREA UNDER THE ROC CURVE (P-VALUE)	SENSITIVITY AT 95% SPECIFICITY
Forward-selection BIC	0.9584 (0.0393)	65.4
Real AdaBoost	0.9741 (Reference)	79.0
EM-Boost $P_0 = 0.1$ $P_0 = 0.3$ $P_0 = 0.5$	0.9926 (0.0024) 0.9932 (0.0040) 0.9919 (0.0068)	97.5 97.5 96.3

Study (1): <u>Test Dataset</u> Results

LEARNING METHOD	AREA UNDER THE ROC CURVE (N = 60)	PREDICTION ERROR (N = 60)
Forward-selection BIC	0.807	19 (31.7%)
Real AdaBoost	0.816	15 (25.0%)
EM-Boost		
$P_0 = 0.1$	0.925	6 (10.0%)
$P_0 = 0.3$	0.919	7 (11.7%)
$P_0 = 0.5$	0.936	5 (8.3%)

Study (2): Training Dataset Results

LEARNING METHOD	AREA UNDER THE ROC CURVE (P-VALUE)		SENSITIVITY AT 95% SPECIFICITY
Forward-selection BIC	0.9064	(0.0018)	50.6
Real AdaBoost	0.9462	(Reference)	58.0
EM-Boost $P_0 = 0.1$ $P_0 = 0.3$ $P_0 = 0.5$	0.9623 0.9740 0.9812	(0.0358) (0.0015) (0.0001)	75.3 80.2 82.7

Study (2): Test Dataset Results

LEARNING METHOD	AREA UNDER THE ROC CURVE (N = 60)	PREDICTION ERROR (N = 60)	
Forward-selection BIC	0.671	28 (46.7%)	
Real AdaBoost	0.790	26 (43.3%)	
EM-Boost			
$P_0 = 0.1$	0.880	12 (20.0%)	
$P_0 = 0.3$	0.913	8 (13.3%)	
$P_0 = 0.5$	0.920	11 (18.3%)	

Summary

- Pre-analysis processing is crucial for a proper analysis
- Avoiding overfitting is the key in classifier building with multiple biomarkers
- In biomedical applications, imperfect class labels are common
- EM-Boost modifies the boosting algorithm to accommodate potential mislabeling: allows "learning" in partially supervised settings

 $\frac{\Pr[y_i^* | \phi_{(m-1)}, X_{0}^{(m-1)}, y]}{\frac{9}{6}}$

In

$$\begin{cases} \Pr[y_i^* = 1 \mid \phi_{(m-1)}, X_{0}^{(m-1)}, \underline{y_i} = 1] = 1\\ \gamma_0^{0} & \gamma_0^{0} \\ \Pr[y_i^* = -1 \mid \phi_{(m-1)}, X_{0}^{(m-1)}, \underline{y_i} = 1] = 0\\ \gamma_0^{0} & \gamma_0^{0} \end{cases} \end{cases}$$

$$\pi_{i}^{(m)} = \Pr[y_{i}^{*} = 1 | \phi_{0}(m-1), X_{0}(m-1), y_{i} = -1]$$

$$\ln \frac{\pi_{i}^{(m)}}{1 - \pi_{i}^{(m)}} = \ln \frac{\pi_{i}^{(m-1)}}{1 - \pi_{i}^{(m-1)}} + \beta_{m-1}(X_{i}^{(m-1)} - \overline{X}^{(m-1)})$$

$$\prod_{i=1}^{m-1} \frac{\pi_{i}^{(0)}}{1 - \pi_{i}^{(0)}} + \sum_{j=1}^{m-1} \beta_{j}(X_{i}^{(j)} - \overline{X}^{(j)})$$
itial value: P_{0}