### Signal and Noise: Garbage in Garbage out

O. John Semmes

#### Director, Center for Biomedical Proteomics Department of Microbiology and Molecular Cell Biology Virginia Prostate Center Eastern Virginia Medical School Norfolk, VA



Eastern Virginia Medical School Discovery Laboratory









#### **THINGS WE CAN DO TO MAKE THE PATTERNS BETTER**

- **1. Some things to do before the Mass Spec (TOF-tube)**
- **2. Some things to do after the Mass Spec (TOF-tube)**



### Achieving Reproducibility in SELDI

- Get a gatekeeper for experimental design and interpretation.
- Use "standard" samples; external (spiked) proteins, internal proteins, serum sample for QC.
- 3. Synchronization/optimization of instrument output using the QC sera. Laser/detector settings.
- 4. Constant monitoring and adjustment of parameters.
- 5. Automation of sample processing steps.
- 6. Find out what the peaks are! (robustness)



#### Table 1. QC spectra criteria

|                     | Signal to Noise Ratio (S/N) | Resolution |
|---------------------|-----------------------------|------------|
| Protein             |                             |            |
| Insulin             | N/A                         | 600        |
| lgG                 | 700                         | N/A        |
| Peak1: 5906 ± 0.2%  | >40                         | >400       |
| Peak 2: 7768 ± 0.2% | >80                         | >400       |
| Peak 3: 9289 ± 0.2% | >80                         | >400       |

Quality control assessment of the PBSII is based on signal to noise ratio (s/n) and resolution. The table provides the s/n and resolution required for each QC protein used in Phase IA for a site to proceed to Phase II.



#### Table 2b Inter-Lab variability

|        |         | Mass    | Intensity | S/N    | Resolution |
|--------|---------|---------|-----------|--------|------------|
| Peak 1 | average | 5906.47 | 26.57     | 163.06 | 460.73     |
|        | stdev   | 6.70    | 9.67      |        | 107.72     |
|        | CV      | 0.0011  | 0.36      |        | 0.23       |
| Peak 2 | average | 7768.61 | 35.94     | 242.75 | 505.54     |
|        | stdev   | 8.41    | 6.25      |        | 82.77      |
|        | CV      | 0.0010  | 0.17      |        | 0.16       |
| Peak 3 | average | 9289.18 | 30.96     | 244.03 | 439.28     |
|        | stdev   | 9.89    | 4.70      |        | 77.35      |
|        | CV      | 0.0011  | 0.15      |        | 0.18       |

#### **Summary of Biomarker Discovery and Identification**



CENTER FOR BIOMEDICAL PROTEOMICS EASTERN VIRGINIA MEDICAL SCHOOL Things to do after the tube

### **Analysis of Source of Variation**

Metrologic Analysis of SELDI-TOF Process.
Spectral Analysis of Output.

### **Proteomics Using SELDI Technology**

#### Surface Enhanced Laser Desorption



←Surface Chemistries Each chip binds a specific set of proteins based on the chromatographic surface of the ProteinChip®.



#### ← Protein Chips

Each spot on the chip will contain sample from a control or diseased/treated source. The spots are analyzed separately and a mass spectra is created for each spot representing the proteins bound to the chip surface.



# ProteinChip Technology: Protein Binding

- Crude sample is placed (and processed) on a ProteinChip Array
- Proteins bind to chemical or biological "docking sites" on the ProteinChip surface



ProteinChip Technology: Washing Reduces Non-Specific Binding

Non-binding proteins, salts, and other contaminants are washed away, eliminating sample "noise"





# ProteinChip Technology: Addition of EAM

 EAM (Energy Absorbing Molecule) is applied to facilitate desorption and ionization in the ProteinChip Reader





### **Desorption Surface**



### Limited Inefficient Desorption



## Nano-Scale Surface Polishing

### Peak Jitter Between Single Laser Shots Reduced Resolution



### Automatic Dejitter



# **Denoising Filters**



### **Trace Add-Back Filters**



### Model based target filtering

### **Trace Add-Back Filters**

SELDI

Filtered Target Vas

1648

2175

1100

1650

2180



Peptide standards with SIMS-resolved isotopic structure

Best approach may involve Internal Standards with known isotope structure

Placing external proteins in data valleys

The success of denoising filters depends on defining baseline

### **Spectral Analysis**



#### **Detector Overload**





### Effect of Detector Overload On Baseline



### Variance Rescaling

### Effect of Default Moving Average Filter



#### Mass dependence of peak width and default MAV



### Mass Dependence of Variance



# Variance Rescaling: Stationary Noise, Increased Sensitivity



# Putting it all together

### **Enhanced Resolution of Calibrant Peaks**



### Enhanced Resolution in Pooled Serum



### Default BKG-Sub, MAV, Var-Rescale



### Summary

Improving the processing of data output can dramatically improve sensitivity, resolution and reproducibility.

The Fold improvement may equal that of the "High resolution" SELDI-QStar.

Lookout for default Settings

### Eastern Virginia Medical School Biomarker Discovery Laboratory

#### Investigators

John Semmes, Ph.D. John Davis, M.D. Jose Diaz, M.D., Ph.D. Rick Drake, Ph.D. Christine Laronga, M.D. Paul Schellhammer, M.D. Jeffery T. Wadsworth, M.D.

#### **Fellows**

Alberto Corica, M.D. Daniel Holterman, Ph.D. Gunjan Malik, Ph.D. Lining Qi, Ph.D.

#### **Staff**

Diane Brassil Lisa Cazares MaryAnn Clements Tarek Kendil Brian Main Michelle Moody Michael Ward



**Biostatistics/Computation** WMRI William Cooke, Ph.D. Dasha Malyrenko, Ph.D. Denis Manos, Ph.D. Michael Trossett, Ph.D. Eugene Tracy, Ph.D.