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SUMMARY

A method, PIAMOD (Prevalence, Incidence, Analysis MODel), which allows the estimation and pro-
jection of cancer prevalence patterns by using cancer registry incidence and survival data is presented.
As a �rst step the method involves the �t of incidence data by an age, period and cohort model to
derive incidence projections. Prevalence is then estimated from modelled incidence and survival esti-
mates. Cancer mortality is derived as a third step from modelled incidence, prevalence and survival.
An application to female breast cancer is given for the Connecticut State by using data from the Con-
necticut Tumor Registry (CTR), 1973–1993. The age, period and cohort model �tted incidence quite
well and allowed us to derive long-term projections up to 2030. Patients’ survival was also projected
to future years according to a scenario approach based on two extreme hypotheses: steady, that is, no
more improvements after 1993 (conservative), and continuously improving at the same rate as during
the observation period. Age-standardized estimated incidence shows a changing trend around the year
2005, when it starts decreasing. Age-standardized prevalence is expected to increase and change trend
at a later date. Breast cancer mortality is projected as decreasing, as the combined result of no fur-
ther increase in incidence and improving cancer patients’ survival. An easy-to-use PIAMOD software
package, on which work is in progress, will be made available to individual cancer registries and=or
health planning institutions or authorities once it is developed. The use of the PIAMOD method for
cancer registries will allow them to provide results of paramount importance for the whole community
involved in the assessment of future disease burden scenarios in an evolving society. Copyright ? 2002
John Wiley & Sons, Ltd.
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INTRODUCTION

Incidence, mortality and survival are the basic measures used to describe disease patterns.
When related to cancer, they allow the burden to be monitored and evidence the progress
achieved in the struggle against cancer. Prevalence, de�ned as the number and=or the
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proportion of people with past or present diagnosis of a certain disease (for example, cancer),
within a well-de�ned population at a �xed point in time, provides an additional direction
in this context. Prevalence is intrinsically related to the other three measures and gives a
comprehensive view of the simultaneous e�ect of incidence, survival and mortality patterns
on the cancer load for a population. In addition, prevalence provides relevant information
for practical use, that is, for: (i) planning health services; (ii) allocating health resources;
(iii) administering medical care facilities; (iv) designating appropriate research expenditures;
(v) assessing the relative burden of cancer with respect to mortality and life quality depriva-
tion.
Whereas incidence and mortality are directly derived from data collected, respectively, by

cancer registries and national health statistics, survival and prevalence can only be derived
from incidence and mortality data. The task is particularly cumbersome for prevalence, which
requires a very long time series of cancer registry data to compute complete prevalence
measures [1, 2], that is, including all patients in the population, irrespective of time since
diagnosis. Prevalence estimates derived from cancer registry data are always partial, as they
do not include cases occurring before the start of the registration activities. The degree of this
bias is variously relevant depending on the length of observation period. Correction factors
can be identi�ed and used to obtain estimates of total prevalence also with limited observation
period [3].
The existing approaches to estimate cancer prevalence may be clustered into two categories,

according to data used: direct and indirect methods. Any of these two categories can include
either numerical or statistical methods.
Direct methods [1, 2, 4–6] exploit individual incidence and life status follow-up data to

count patients living in the population at a de�ned time. Lost-to-follow-up cases cannot be
properly taken into account, since their own life status is actually not known, and their own
contributions to prevalence have to be estimated statistically [6]. Depending on the length
of the cancer registry observation period, direct prevalence estimates of this kind are partial
to a variable degree. A theoretical correction factor obtained by modelling the observed and
unobserved part of actual prevalence [3] can be computed and used to obtain total prevalence
estimates from partial measures. Although existing direct methods are essentially numerical,
they necessarily involve some statistical correction factors. The major limits of numerical
direct methods are that they can provide prevalence results for areas covered by a cancer
registry only and invariably referred to the past.
Indirect approaches include statistical methods [7, 9] which make use of cancer mortality

data and an estimate of patient survival to back-calculate cancer incidence and prevalence,
and to provide short-term and middle-term projections of both incidence and prevalence. The
MIAMOD method [7, 8] was extensively applied to provide national cancer incidence and
prevalence estimates and projection in Italy [10–13]. The MIAMOD method is currently being
widely applied in European countries, within the EC BIOMED-II EUROPREVAL project, and
in the U.S.A. [14].
The aim of this work is to present a new statistical direct method, PIAMOD, developed to

provide estimates of complete prevalence from cancer registry data as well as medium-term
projections to the future. An application is given to female breast cancer for Connecticut to
show the use and the performance of the proposed method. Female breast cancer was chosen
as one of the most important cancer sites in the U.S. giving great concern for the expected
cancer load.
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METHOD

The Prevalence and Incidence Analysis MODel (PIAMOD) is presented here as a method to
obtain statistical estimates and projections of prevalence by basically using individual incidence
and patient follow-up data, as usually used for population-based survival analyses. The method
takes advantage of the MIAMOD formulation [7, 8]. Presentation of the method is given in
separate sections, each one devoted to a speci�c internal task.

Estimating cancer prevalence

Prevalence of an irreversible disease, such as cancer, is de�ned as the probability �i of being
found in the population at age i, having had present or past diagnosis for the disease.
For a birth cohort, prevalence can be expressed as a convolution of incidence and patients’

survival time distribution [7], as follows:

�i=
i−1∑
j=0
(1− �j)�j�ij (1)

where the cohort-speci�c prevalence �i at exact age i is expressed as the summation over all
ages up to i of the probability �j of becoming ill between age j and j+1 (with j less than i)
times the probability of surviving the risk of dying up to exact age i, say �ij. The term (1−�j)
represents the proportion of healthy people at age j within the cohort, that is, the appropriate
denominator where new cancer cases can come from. Since the e�ect of general mortality
pattern on the birth cohort is implied in the age pro�le of the cohort itself, the appropriate �ij
in equation (1) should express the probability of surviving the extra death hazard speci�cally
due to cancer disease, that is, cumulative relative survival rate. Relative survival is de�ned as
the ratio of the observed survival rate in the group of patients to the survival rate expected in
a group of people in the general population, who are similar to the patients, at the beginning
of follow-up period, with respect to all possible factors a�ecting survival except for the
disease under observation. In principle, relative survival should represent the survival rate if
the disease of interest were the only cause of death, that is, accounting for the extra risk of
dying in sick people compared with the general healthy population.
Equation (1) gives the estimated age-speci�c prevalence probability for a birth cohort,

provided that disease incidence and patient survival are known. A system of equations (1),
including one equation for each birth cohort involved in the observation period, allows us
to reconstruct cross-sectional prevalence series for the entire observation period. Average
prevalence proportions over one year Ni(t) is computed from birth cohort speci�c exact age
prevalence �(z)i as follows:

Ni(t)= (�
(z)
i + �(z−1)i+1 )=2

where z is the birth cohort and t= z + i the index calendar year.
Starting from complete cohort incidence, either observed or estimated, these prevalence

estimates include all cancer patients with a past history of cancer, irrespective of date of
diagnosis, that is, total prevalence.
When incidence can be projected into the near future, projected prevalence can be obtained

accordingly.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3511–3526
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Estimating cancer mortality

By using the relationships between incidence, prevalence, survival and mortality, cancer mor-
tality can be derived from incidence, prevalence and survival [7]. For a birth cohort, expected
age speci�c cancer mortality, Mi, can be expressed as following:

Mi=
i∑
j=0
(1− �j)�j�ij�ij (2)

where �ij represents the crude probability of death from cancer at age i for cancer patients
diagnosed between age j and j + 1, and surviving up to exact age i. The probability �ij is
derived from the cumulative relative survival curve as follows:

�ij=
(
1− �i; j

�i; j+1

)
(1− q∗i )

where q∗i is the probability of death from competing causes at age i for people belonging to
the birth cohort surviving at i, and �i; j the relative survival rate at age i for patients diagnosed
at age j, that is, i−j years before (see equation (6)). Owing to a lack of speci�c information,
mortality from competing causes for cancer patients, q∗i , can be assumed to be the same as
the general population, qi, in practical applications.
Equation (2) gives the estimated age-speci�c mortality probabilities for a birth cohort,

provided that disease incidence (either observed or estimated), �j, prevalence, �j, and patients’
survival �ij are known. A system of equations (2), including one equation for each birth cohort
involved in the observation period, allows us to reconstruct cross-sectional mortality series
for calendar years involved in the observation period. When incidence and prevalence can be
projected to the near future, projected mortality can be obtained accordingly.

Regression analysis of incidence data

Let mit be the number of incident cases at age i (i=0; 1; : : : ; I) and time t in years (t=1; 2; : : : ;
T ), as recorded on a de�ned population by a cancer registry that has been operating for T
years at least.
Age, period and cohort trends of incidence are modelled by conventional log or logistic

regression in order to identify independent age, period and cohort e�ects with only a small
number of parameters. Incidence probability at age i and time t, as needed to be plugged into
equations (1) and (2) is assumed as a polynomial function of age, period of diagnosis and
birth cohort, throughout a link function �:

�(�it)= const +
k1∑
k=1
akik +

k2∑
k=1
bkt k +

k3∑
k=1
ck(t − i)k (3)

where �=(const; a1; : : : ; ak1 ; b1; : : : ; bk2 ; c1; : : : ; ck3) is the vector of the parameters to be esti-
mated. According to the generalized linear model theory [15] the link function can be either
the natural logarithm or logit. Both logarithm and logit functions give the same results for
small argument, such as annual cancer incidence rates usually expressed as per 100000. A
log link function was actually used in the application.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3511–3526



ESTIMATION AND PROJECTIONS OF CANCER PREVALENCE 3515

The degree of the polynomials, k1; k2 and k3, have to be chosen to give the best �t of
the I×T matrix of observed cancer incidence counts mit . Since the cohort term is a linear
combination of age and year (cohort =year − age) the linear term of period of diagnosis will
be excluded in order to avoid colinearity problems when estimating the parameters.
Observed cancer incidence counts mit is assumed to be a random variable following the

Poisson distribution with expected value

E(mit)=�itPit (4)

where Pit represents age and time speci�c population size. The likelihood function is expressed
as

log L(�)=
∑

[mit log [Pit�̂it(�)]− Pit�̂it(�)] (5)

The maximum-likelihood estimate of the parameter vector � can be obtained by maximizing
equation (5), by using standard techniques. The degree of the polynomials, k1; k2 and k3, are
identi�ed by a stepwise procedure based on likelihood ratio statistics (LRS) [7]. An asymptotic
standard errors estimate of the maximum likelihood parameters may be obtained from the
second-order derivatives of log-likelihood function (5), in the same way as in reference [7].

Estimation of survival

Relative survival estimates are needed for prevalence estimation (see equation (1)) and they
can be directly derived from incidence and follow-up data and population life-tables, using
standard methods [16, 17]. Tabulated relative survival estimates along with their standard
errors can be modelled by mixture models [18] to extrapolate quite far back and forward
in time as needed by the PIAMOD method and to facilitate making clear assumptions when
projecting into the future. The essential features of the mixture modelling approach are brie�y
recalled here.
Let k represent the kth stratum for the data, either sex or age group or period of diagnosis,

the relative survival model is given by

�k(d)= �k + (1− �k) exp(−(�kd)	k ) (6)

where �k represents the proportion of patients potentially cured from cancer, �k the hazard
and 	k the scale parameters of the Weibull distribution that describes the time to death for
the proportion (1 − �k) of fatal cases. Relative survival parameters �; 	 and � in the relative
survival model were estimated by �tting the relative survival values Sk(dl) at times since
diagnosis dl (l=1; : : : ; Lk) by sex, age group and period, together with the corresponding
standard errors. The SAS NLIN procedure [19] was used, with the inverse of the variances
of the observations used as weights.
Owing to right truncation of survival data, a complete strati�ed analysis by period of

diagnosis is likely to give biased results, particularly for breast cancer with a high and slightly
declining survival curve. Including period of diagnosis as covariate in model (6) is a more
robust way to proceed. Formally, for each stratum k, for example age class, we express

�k(t)=1=(1 + 
0 exp(
t)); �k(t)=�0 exp (�t)

where 
0, 
; �0 and � are unknown parameters to be estimated and t the time of diagnosis.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3511–3526
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Two indicators will be considered to summarize the results obtained from these models.
The �rst one is the proportion of cured patients, �. The second one is the mean survival time
for fatal cases, T , which is given by

Tk = �−1k �(1 + 	
−1
k ) (7)

where � is the gamma function.
Once the two parameters � and T are estimated, a given survival curve is represented

by these parameters and easily made available to the PIAMOD computer programme. When
projecting to the future, with respect to available data, this formulation allows us to make
very clear-cut assumptions on each of the parameters, for example, increasing proportion of
cured patients and decreasing, or steady survival time for fatal cases, as a potential e�ect for
screening practices.

Deriving projections

A number of hypotheses need to be adopted to derive and project morbidity rates into the
future: major hypotheses involve incidence and survival, minor ones the population evolution
patterns.
Projection of modelled incidence to calendar years following the observation period can be

derived by assuming the persistence of both age and cohort e�ect identi�ed into the future.
For cancer disease this hypothesis is quite reasonable because cancer risk in adulthood is
generally thought of as determined by past exposure to several known and unknown risk
factors. Conversely, hypotheses on period e�ects, that is, changes in incidence a�ecting all
the age groups simultaneously, although present for past years, cannot be kept for subsequent
years, and are not then considered for projections. Only the drift already expressed by the
cohort linear term, that is indistinguishable from linear period trend, is considered. When
the linear extrapolation of the drift is based on a logarithmic link function then implausible
exponential asymptotic growth can even occur. When this is the case the use of logit link
function is preferable.
Hypotheses on cancer patient survival are also needed for projecting purposes. As in any

scenario approach, the most appealing choice is not to try to adopt the best hypothesis that
can be taken, but to provide a plausible range for projected rates. To do this, one conservative
and one optimistic hypothesis are proposed. A reasonable, but pessimistic, hypothesis consists
in assuming cancer patients’ survival as remaining stable for projected years, that is, survival
improvements will no longer be observed in the projected years as they have been observed in
the past years. Conversely, in a rather optimistic scenario, we assume cancer patients’ survival
as continuing to improve at the same rate as observed in recent past years.
Minor ad hoc hypotheses on the population evolution patterns have to be adopted. The

number of new born and the age speci�c general non-breast-cancer mortality are kept constant
all along the projection period, being equal to the respective values for the last calendar year
for which actual data are available, that is, the last period of estimation. Population at older
age classes is estimated by accounting for members of cohort incrementing age and expected
number of deaths.
Projected prevalence and speci�c mortality patterns are then reconstructed from projected

incidence and survival according to the technique shown above.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3511–3526
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DATA SOURCES

Incidence and follow-up data from the Connecticut Tumor Registry (CTR), 1973–1993, were
extracted from the SEER Public Use CD-ROM [20]. Population data, mortality for breast
cancer and all-causes mortality for the state of Connecticut were kindly provided by the
National Cancer Institute (NCI, NIH, Bethesda, MD, U.S.A.), by single year of age, 0–84
years, for 21 calendar years, 1973–1993.

APPLICATION TO BREAST CANCER PREVALENCE IN CONNECTICUT

An application of the PIAMOD method to breast cancer data for Connecticut is given to
show its potential and performance in providing a complete scenario of projected morbidity
and mortality indicators that can be useful for cancer control and health planning purposes.
Although the CTR is famous for having one of the longest time series of cancer incidence in
the world, we chose to use the limited 1973–1993 series in our application just to show the
potential of the method to be widely used with most European and U.S. cancer registry data.
As a �rst step we provide mixture model estimation and analysis of breast cancer relative

survival for Connecticut, 1973–1993. The age trend of breast cancer relative survival by time
since diagnosis and period of diagnosis is reported in Figure 1. Survival markedly improved
during the two-decade period from 1973 to 1993 during the expansion of screening activities
in the U.S. [21, 22], both at short-term and long-term. The age pro�le, although rather �at,

Figure 1. Modelled female breast cancer relative survival by age and time since
diagnosis, Connecticut: (a) 1973; (b) 1993.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3511–3526
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Table I. Proportion per cent of breast cancer women cured, P, and mean survival time for uncured
patients, T (years), by age and time of diagnosis, Connecticut, 1973–1993.

Age 15–year relative Average Time of diagnosis
survival SE of P

1973–1977 1978–1982 1993–1987 1988–1993
P T P T P T P T

35–44 53 0.61 53 6.0 57 6.5 59 7.1 61 7.8
45–54 58 0.55 57 6.7 60 7.5 62 8.6 65 9.9
55–64 51 0.81 47 8.3 51 9.8 54 11.8 57 14.3
65–74 50 4.28 40 13.2 49 14.0 58 14.8 67 15.6
75–84 44 7.65 34 17.8 45 19.4 57 21.2 70 23.3
∗Period of diagnosis 1973–1977.

presents a peak with better survival for women aged 45–54 as frequently found in several
breast cancer survival analyses [23, 24]. This e�ect is not con�ned to short-term, instead it
looks more pronounced as time from diagnosis increases.
Table I reports the estimated proportion of cured breast cancer women (P) (that is, not

bound to die from breast cancer) and the mean survival time (T ) for uncured patients by
age class, as obtained by mixture model application. Average standard error (SE) of P and
15-year relative survival for patients diagnosed in 1973–1977 are reported in addition. The
cured proportion decreases with age, although long-term relative survival is not so sensitive
to age (see Figure 1). The proportion of women cured of breast cancer markedly increased
during the period 1973–1993, as also clearly re�ected by the improvement of relative survival
�gures. Overall, more than 60 per cent of women diagnosed with breast cancer in 1988–1993
are expected to be cured, whereas this proportion was less than 50 per cent in average for
those diagnosed during the 1970s. Proportion of cured women is lower than 15-year survival,
particularly for elderly women, thus indicating that a residual excess death hazard still persists
after 15 years from diagnosis. This apparent inconsistency between the age pattern of 15-year
relative survival and the proportion of breast cancer female patients that are cured is due
to changes in the shape of the age-speci�c survival curve. Also improvements in survival
attained with time a�ect the shape of the survival curves, thus leading to di�erent asymptotic
expectations.
An incidence model including an eighth-order polynomial in age and a second-order poly-

nomial in cohort was selected in a stepwise procedure as based on LRS test. As an example,
to compare two nested models with a and a+b parameters, respectively, we compute the dif-
ference of the corresponding LRS and interpret it as a �2 statistic with b degrees of freedom.
Table II shows the model selection procedure. The minimum of the LRS was found for model
5. Further increasing of LRS, although not expected, might occur in practice for numerical
reasons. The eighth-order polynomial is required to model the complex age pattern of breast
cancer incidence. This result is consistent with a previous application in Italy [10] in which
the same polynomial order was identi�ed as the best �t. The second-order cohort polynomial
is required to model the change in incidence age pro�le with time. Figure 2 reports estimated
and observed incidence age pro�le in 1973 and 1993 as an indication of the goodness of the �t
operated by the selected model on CTR incidence data. Although observed incidence present
large variability in the rates, the model was able to properly catch the so-called ‘Clemmesen’s

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3511–3526
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Table II. APC model identi�cation procedure.

Step Model Number of parameters LRS

1 A6P0C0 7 6192
2 A6P0C2 9 5848
3 A8P0C0 9 2653
4 A8P0C1 10 2541
5 A8P0C2 11 2405
6 A8P0C3 12 2408
7 A8P0C2 14 2440
8 A9P0C2 12 3345

Figure 2. Comparison of estimated and observed female breast cancer incidence
for the years, 1973 and 1993. Rates per 100000.

hook’ at ages near 45–49 [25]. Incidence increased during the study period, particularly for
women aged 60 and over.
Table III reports estimated and projected breast cancer mortality, incidence and prevalence

by age class for women in Connecticut. Projections refer to the more conservative (pessimistic)
hypothesis on survival, that is, with the relative survival remaining stable in the projection
period. Projected population is also reported in addition. For younger women aged less than
50 there is a systematic decline from 1990 onwards. Prevalence is estimated as still increasing
during the 1990–2000 period, and declining thereafter. Conversely, for women over 65 all the
indicators show an increase. For intermediate age classes between young and older women,
changing trends were estimated as for a transition area between the two regimens. Overall
ages, crude mortality, incidence and prevalence rates increases from 1990 to 2030. When
considering age-adjusted rates, mortality decreases from 41 per 100000 in 1990, to 33 per
100000 in 2030, and incidence increases with a decreasing speed from 1990 to 2000 and
it is expected to decrease by near 10 per cent from 2000 to 2030. Also for prevalence a
slight decline is expected from 2000 to 2030. The so called ‘baby boom’ phenomenon, that
is, persons born between 1946 and 1964, clearly shown as a moving pinch in the population

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:3511–3526
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Figure 3. Estimated and projected age-adjusted incidence, mortality and prevalence rates for female
breast cancer in Connecticut, according to two hypotheses on projected patients’ survival. Observed
incidence rates 1973–1993 are reported (dots) for goodness-of-�t evaluation. Female Connecticut

population in 1973 was used as standard.

structure all along 1990 to 2030 of Table III, is expected to a�ect the elderly (65 and over)
population in 2030, thus placing a burden on the medical care system. The reduction of
breast cancer incidence in young generations completely involves the baby boomers. Owing
to this decline in breast cancer incidence, the burden of breast cancer in 2030 is limited with
respect to what can be expected by simple linear projection of recently observed incidence
and prevalence trends to projected population of 2030.
Figure 3 shows trends of age-adjusted breast cancer mortality, incidence and prevalence

rates, 1973–2030. The Connecticut population in 1973 was used as standard in order to
eliminate the e�ect of population ageing. Within the estimation period, 1973–1993, incidence
is the resulting curve of model �tting on CTR data, while both prevalence and mortality
are the expected rates on the basis of incidence and patients’ survival. Within the projection
period, 1994–2030, prevalence and mortality are considered in both the conservative and the
optimistic hypotheses as discussed above, generating an interval with extremes within which
the results for mortality and prevalence are most likely to be found. Of course no e�ect
is given on incidence by di�erences in relative survival. By the year 2030, breast cancer
prevalence is estimated as ranging between 1438 and 1610 per 100000 women, with expected
breast cancer mortality ranging from 25 to 34 per 100000 women, and incidence equal to
113. Comparatively, in 1993 we had incidence and mortality almost at the same levels, 124
and 32, respectively, prevalence at lower level, 1260 per 100000 women.
Table IV reports estimates of female breast cancer prevalence from di�erent sources for

comparison. PIAMOD estimates are fully consistent with estimates derived from CTR data,
that is, by using the counting method PREVAL (PREVALence) (Micheli et al., [26]), and the
method by Feldman [2], as reported in references [27, 28]. Conversely, prevalence estimates
derived by the U.S. National Health Interview Survey (NHIS) [27] for 1997 appear to be
grossly underestimated with respect to any other method.
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Table IV. Comparison of female breast cancer prevalence estimates
by di�erent sources proportion per 100000 women.

Year PIAMOD PREVAL∗ NHIS† CTR† Merril‡

1987§ 1422 1332 1485

1992§ 1616 1612
1993¶ 1637 1581

∗Micheli et al. [26].
†Byme, 1992 [27].
‡Merril et al. 2000 [28].
§Crude proportions, all ages.
¶Crude proportions, 0–89 years of age.

DISCUSSION

In this paper a statistical method is presented that may provide estimates and projections of
cancer incidence, prevalence and mortality by �tting incidence data from population-based
cancer registries. This method can greatly expand the potential of cancer registries to provide
updated and useful information for health planning, resource allocation and cancer control
activities.
The PIAMOD method was formulated in discrete time just because practical applications

usually deal with discrete data, although it has its more basic representation in continuous
time [7]. Some approximation is necessarily involved in the model even when 1 year age
and calendar year classes are in use. We assumed that events (that is, diagnosis, death) can
only occur at the midpoint between two consecutive birthdays, except for those who become
sick and die within the same calendar year and to whom an average disease duration of six
months is assigned. This leads to discrete survival times as well. Estimated incidence and
mortality account for annual probabilities. Prevalence at exact age is basically estimated by
the model, while it is usually needed as a proportion at a de�ned point in time. Therefore,
estimated prevalence at exact age is averaged between contiguous age classes to obtain an
average prevalence proportion during the year, as based on the idea that population birthdays
are almost uniformly distributed within each calendar year.
To obtain meaningful results for projection, the method involves assumptions on the data

that need to be discussed. For the incidence data only e�ects on generations, that is, age
and cohort e�ects, depending on past exposures, can be considered in the projection process
whereas this is not the case for e�ects involving all ages at the same time, that is, period
e�ects, apart from the �rst linear term. Patient survival is modelled as mixture model of fatal
and cured patients, thus providing an e�cient way to summarize information for use in the
PIAMOD software and to make speci�c assumptions on cured and not cured patients for
projection. Two extreme hypotheses are adopted, respectively, no more improvements in the
projection period (conservative) and steady improvement all along the projected period at the
same rate as observed in previous years (optimistic). In this way it is possible to test the two
extreme situations, and all the possible results for survival-related measures, that is, mortality
and prevalence, are likely to be within the interval de�ned by the results. The number of
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newborns and the non-breast cancer mortality in the population are kept constant all along
the projection period as those of the last calendar year for which estimations are possible.
General all-causes mortality is then variable within the projected years only as the result of
expected breast cancer mortality. Population size is then projected by incrementing each age
class with members of each cohort incrementing age and with decrement by the expected
number of deaths. Intermediate and older age classes are not a�ected by the assumption on
the number of newborns. This is not the case for younger ages, born at a constant rate after
1993 and diminished at a constant mortality rate, which will be always identical in di�erent
projected years after a �nite number of steps. Although strongly a�ected by the assumptions,
this younger component of the projected population is not relevant for breast cancer in that
it is a very rare disease in the under 30 age groups.
As an application to show all the potential of PIAMOD, a study on breast cancer data

from the Connecticut Tumor Registry (CTR), diagnosed in the period 1973–1993, has been
performed.
The mixture model technique for relative survival calculation allows the survival trends for

the disease to be determined and clearly evidenced, with marked improvements all along the
two-decade period. The proportion of women cured from breast cancer is always estimated as
lower than 15-year relative survival (see Table I and Figure 1), thus revealing the presence
of a residual excess death hazard still persisting after 10 years from diagnosis, particularly for
the elderly. Table I reports also 15-year relative survival for cases diagnosed during 1973–
1977 to show that a residual excess death hazard still persists even after 15 years from
the diagnosis. Completeness of follow-up might be an important issue when looking at very
long-term survival �gures. In particular, if deaths are missing the e�ect might be an arti�cial
proportion of cured. CTR is part of the SEER and this implies good quality of the data,
including both incidence and follow-up. We checked long-term relative survival for colon
cancer where a proportion cured is known to exist. Colon relative survival for the CTR cases
diagnosed 1973–1977 was 55 per cent at 5 years, 48 per cent at 10 years and 47 per cent at
20 years, thus remaining almost stable since 6 years since diagnosis. The e�ect of potential
missing deaths would be increasing in long-term relative survival in this case.
For the incidence model the best �t has been obtained with an eighth-order-in-age and

second-order-in-cohort polynomial, a model already obtained for the same cancer site in Italy
[10], an indication perhaps of an endogenous aetiology related to the physiology of women and
unrelated to external exposures. Such a model is anyhow needed to cope with the complicated
age pattern shown by breast cancer patients. Period e�ects did not appear signi�cant and
were not included in the model. Increases in mammography utilization, whether or not due
to organized screening programmes, are expected to result in an increase in both incidence
and patients’ survival. For Connecticut, as for most areas in the U.S.A., the utilization of
mammography examination spread widely since 1982 [29]. A smoothed rather than sharp
increase of breast cancer incidence was observed and modelled [30] as due to di�usion of
mammography screening practice in Connecticut and the U.S.A. Improvements in survival
were also attained progressively, as also results from our analysis (see Table I). Although
dissemination of breast cancer screening spread in the Connecticut population during the
1980’s and was responsible for most of the increase in breast cancer incidence, it did not
cause any major problem in our modelling application.
Goodness-of-�t of the model to breast cancer incidence data was rather good, as the model

was able to well capture both age and secular trends, as can be seen from Figures 2 and 3.
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Figure 4. Age class and calendar time-speci�c expected versus observed incidence cases, 1973–1993.

Random variability strongly a�ects observed incidence rates since Connecticut is not a large
state (1.5 million women). We used a rather parsimonious model to catch most of the overall
trends having the objective to derive projections. Although the �t for the �rst calendar years
1973–1975 was rather poor, the overall trend is modelled satisfactorily. In Figure 2, we
reported a comparison of observed and estimated age incidence pro�le for the two extreme
calendar years of the data. Random variability strongly a�ects age speci�c observed incidence
rates and limits the consistency with estimates. We used a single age-cohort model to �t
the 84× 21 age-period data cells. Our estimates represent the average age pro�le among the
21 observed, with modulation made by the cohort e�ects. Distribution of age and calendar
year-speci�c residuals of estimated and observed incidence counts is reported in Figure 4.
Residuals are scattered across the line representing null residual. Although there are clusters
in the lower left corner, not very important for projections and corresponding to young ages
and �rst calendar years for which the �t was poor, the overall pattern for the adult and elderly
population looks as randomly distributed with mean zero and standard deviation 16.5, that is,
less than 10 per cent mean relative residual based on average 200 counts in each age-period
cell. The analysis of residuals showed the existence of a moderate extra-Poisson variation
(�=1:57) indicating that residuals are larger than expected simply on Poisson distribution.
The e�ect of this overdispersion does not in�uence the estimates and only informs us that
standard errors of the estimates might be underestimated to some extent.
In model formulation we assumed relative survival to be an independently known quantity.

asymptotic con�dence intervals for incidence estimates and projections we can derive from the
Poisson regression are partial, as they do not include any uncertainty deriving from relative
survival estimation and modelling. Developing a bootstrap procedure to evaluate the total
uncertainty for estimates and projections is planned for future work. Actually we validated
prevalence estimates with independent estimates from literature and provided a region for
plausible prevalence projections according to two hypotheses on patients’ survival.
When results for estimation and projection are obtained for both survival scenarios, and

corrected for population age structure, incidence is found to increase strongly in the period
1973–1993, slowly until the year 2000, and decreasing in 2000–2030. Towards 2030 an overall
stable to decreasing pattern is observed for mortality, 2008 versus 1990, and stable thereafter,
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according to the two hypotheses on survival trend. In the same time framework, prevalence
shows a changing trend from a moderate increase to decrease starting from 2018 in the stable
survival scenario, while faster increasing with delayed start to decrease in the improving
survival scenario. Overall we have very di�erent trends among incidence, prevalence and
mortality, making it very hard to guess each one from the others, and only a joint analysis
of the three indicators can give a consistent picture of how things are.
The ‘baby boom’ phenomenon, persons born between 1946 and 1964, is well taken into

account in the projection. Prevalence of breast cancer in the elderly is then estimated to
increase dramatically and almost double between 1990 and 2030, while being almost stable for
younger ages (see Table III). Breast cancer prevalence in the elderly is then the phenomenon
of major concern in the near future. Age-adjusted prevalence is expected to be no longer
increasing after 2020 as the e�ect of the expected decreasing trend of age-adjusted incidence
from 2010.
We compared the breast cancer prevalence estimates we derived by means of the Piamod

method applied to SEER CTR data, 1973–1993, with other estimates available from the liter-
ature. Consistency between all the methods involved was impressive, with the only exception
of the NIH survey estimate that actually refers to the whole of the U.S.A. not to the Con-
necticut state. Two types of comparison with results of counting processes were involved: (i)
partial prevalence derived from CTR data 1973–1993 and corrected for limited observation
period; (ii) almost total prevalence obtained from the historical CTR data 1940–1993, with
more than 50 years of observation. These results are an important validation step both for the
statistical PIAMOD method and the correction factor [3] used to correct partial prevalence
for a limited observation period.
The detail of the results obtained with PIAMOD highlights the need to develop an easy-to-

use software package (work in progress), to be made available to individual cancer registries
and=or health planning institutions or authorities as a fundamental instrument to provide results
of paramount importance for the whole community involved in the assessment of the future
disease burden scenarios in an evolving society.
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