APPENDIX E

NICEATM Summary of The Multicenter Evaluation of *In Vitro* Cytotoxicity (MEIC)

This document was provided in the Background Materials and Supplemental Information Notebook for the International Workshop on *In Vitro* Methods for Assessing Acute Systemic Toxicity [Section I, TAB 6].

The following ATLA (Alternatives To Laboratory Animals) excerpts are reprinted with permission from Professor Michael Balls, editor of ATLA.

- Clemedson et al., 1998. MEIC Evaluation of Acute Systemic Toxicity, Part IV. ATLA 26: 131-183. **[Table 1**]
- Ekwall et al., 1998. MEIC Evaluation of Acute Systemic Toxicity, Part V. ATLA 26: 571-616. [Tables II, III, IV, V, VI, IX]
- Ekwall et al., 2000. MEIC Evaluation of Acute Systemic Toxicity, Part VIII, ATLA 28 Suppl 1, 201-234. [Figures 1 and 10]
- Ekwall et al., 1999. EDIT: A new international multicentre programme to develop and evaluate batteries of in vitro tests for acute chronic systemic toxicity. ATLA 27: 339-349. [Table 1 and Figure 1]

The following table was reproduced with permission from Dr. Gary Hook (NIEHS).

• Wallum, E. 1998. Acute Oral Toxicity. EHP 106: 497-503. [reproduction of Table 1]

The Multicenter Evaluation of *In Vitro* Cytotoxicity (MEIC)

Summary

September 2000

National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)

TABLE OF CONTENTS

List	of Appendices	E-3
1.0	Introduction	E-5
2.0	Test Chemicals	E-5
3.0	In Vitro Test Assays	E-5
4.0	Assay Endpoints	E-5
5.0	Comparative Data	E-6
6.0	Statistical Analyses	E-7
7.0	Results	E-7
8.0	MEIC Conclusions and Recommendations	E-8
9.0	Evaluation-Guided Development of <i>In Vitro</i> Tests (EDIT)	E-9
10.0	Recommended Integration of MEIC/EDIT into the EPA High Production Volume (HPV) Program	E-9
11.0	MEIC Evaluation Guidelines Checklist	E-10
12.0	MEIC Related Publications (in chronological order)	E-11
	LIST OF APPENDICES	
I.	First Fifty Reference Chemicals	E-17
II.	Descriptions of the Essential Traits of 67 <i>in vitro</i> Methods (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part IV. ATLA 26:131-183)	E-18
III.	Oral LD50 Doses for Rat and Mouse and Mean Oral Lethal Doses for Humans (Source: E. Walum. 1998. Acute Oral Toxicity. EHP 106:497-503)	E-21
	Toxicity Categories (Sources: 1. U.S. EPA, Office of Pesticide Programs. Label Review Manual. Chapter 8: Precautionary Labeling. 2. National Ag Safety Database. Toxicity of Pesticides. http://www.cdc.gov/niosh/nasd/docs2/as18700.html. 3. 40 CFR 156.10(h) – Labeling	

	Requirements for Pesticides and Devices. Warnings and Precautionary Statements).	E-25
IV.	Oral Acute Single Lethal Doses in Humans (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616)	E-26
V.	Clinically Measured Acute Lethal Serum Concentrations in Humans (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26: 571-616)	E-30
VI.	Post-Mortem Acute Lethal Concentrations in Humans (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26: 571-616)	E-34
VII.	Human Kinetic Data (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26: 571-616)	E-37
VIII.	. Peaks from Approximate 50% Lethal Concentration (LC50) Curves (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26: 571-616)	E-40
IX.	Human Acute, Single-Dose Toxicity Data (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26: 571-616)	E-42
Χ.	Plot of Acute Lethal Dosage in Humans Against Values Calculated by a PLS Model Based on Rat Oral LD50 and Mouse Oral LD50 (Source: Ekwall et al. 1999. MEIC Evaluation of Acute Systemic Toxicity. Part VIII)	E-51
XI.	Plot of Peak Lethal Blood Concentrations in Man Against IC-50 Values Calculated by a PLS Model Based on Peak Lethal Blood Concentrations in Man, All 50 Chemicals, and "Blood-Brain Barrier Compensated Results" From Assays 1, 5, 9 and 16. (Source: Ekwall et al. 1999. MEIC Evaluation of Acute Systemic Toxicity. Part VIII)	E-52
XII.	Priority Areas for Development and Evaluation of New <i>In Vitro</i> Tests on Systemic Toxicity. (Source: Ekwall et al. 1999. EDIT: A new international multicentre programme to develop and evaluate batteries of <i>in vitro</i> tests for acute chronic systemic toxicity. ATLA 27:339-349)	E-53
XIII.	Proposed Testing Scheme for the Classification and Labelling of Chemicals According to Their Potential Acute Toxicities. (Source: Ekwall et al. 1999. EDIT: A new international multicentre programme to develop and evaluate batteries of <i>in vitro</i> tests for acute chronic	D ~ .
	systemic toxicity. ATLA 27:339-349)	E-54

1.0 Introduction

The Multicenter Evaluation of In Vitro Cytotoxicity (MEIC) program was organized by the Scandinavian Society for Cell Toxicology in 1989. MEIC was started with two goals. The first was to investigate the relevance of results from in vitro tests for predicting the acute toxic action of chemicals in humans. The second was to establish batteries of existing *in vitro* toxicity tests as replacements for acute toxicity tests on animals (LD50). Achievement of the second goal, the practical and ethical one, was considered to be entirely dependent on a successful outcome of the first, scientific goal. At the same time, it was recognized that a demonstrated high relevance of in vitro toxicity tests for human acute toxicity did not mean that all problems of replacement of animal tests would be solved. MEIC was a voluntary effort involving 96 international laboratories that evaluated the relevance and reliability of *in vitro* cytotoxicity tests originally developed as alternatives to or supplements for animal tests for acute systemic toxicity, chronic systemic toxicity, organ toxicity, skin irritancy, or other forms of general toxicity. In establishing the framework for this program, a minimum of methodological directives was provided in order to maximize protocol diversity among the participating laboratories. The collection of test method data was completed in 1996. multiple publications originating from these studies are provided in chronological order in Section 12. All in vitro toxicity test results collected during MEIC are available on the Cytotoxicology Laboratory, Uppsala (CTLU) website (www.ctlu.se) as a searchable database.

2.0 Test Chemicals

Fifty reference chemicals were selected for testing (Appendix 1). Selection was based on the availability of reasonably accurate human data on acute toxicity. Due to the anticipated five-year duration of MEIC, it was recognized that multiple samples (lots) of each chemical would be needed. However, it was decided that the chemicals would not be provided by a central supplier, but rather that each laboratory would purchase each chemical at the highest purity obtainable with the

proviso that storage duration would be kept to a minimum. The decision to not have a central supplier was based on the rationale that most reference chemicals are drugs, which presents fewer impurity problems. It is also based on the recognition that the results would be evaluated against human poisonings, which involve chemicals of different origin and purity.

3.0 In Vitro Test Assays

By the end of the project in 1996, 39 laboratories had tested the first 30 reference chemicals in 82 *in vitro* assays, while the last 20 chemicals were tested in 67 *in vitro* assays (**Appendix 2**). Slight variants of four of the assays were also used to test some chemicals. The primary 82 assays included:

- Twenty human cell line assays utilizing Chang liver, HeLa, Hep 2, Hep G2, HFL1, HL-60, McCoy, NB-1, SQ-5, and WI-1003 cells;
- Seven human primary culture assays utilizing hepatocytes, keratinocytes, and polymorphonuclear leukocytes;
- Nineteen animal cell line assays utilizing 3T3, 3T3-L1, Balb 3T3, BP8, ELD, Hepa-1c1c7, HTC, L2, LLC-PK1, LS-292, MDBK, PC12h, and V79 cells;
- Eighteen animal primary culture assays utilizing bovine spermatozoa, chicken neurons, mouse erythrocytes, rat hepatocytes, and rat muscle cells; and
- Eighteen ecotoxicological tests utilizing bacteria (Bacillus subtilis, Escherichia coli B, Photobacterium phosphoreum, Vibrio fisheri), rotifer (Brachionus calyciflorus), crustacea (Artemia salina, Daphnia magna, Streptocephalus proscideus), plant (Alium cepa root, tobacco plant pollen tubes), and fish (trout hepatocytes, trout R1 fibroblast-like cells).

4.0 Assay Endpoints

The analyses conducted by the MEIC management team were based on *in vitro* toxicity data presented as IC50 values (i.e., the dose

estimated to reduce the endpoint in question by 50%) (**Appendix 2**).

These values were generated by the participating laboratories and were not independently verified; original data were not presented in the MEIC publications. Thirty-eight of these assays were based on viability, 29 on growth, and the remaining assays involved more specific endpoints, such as locomotion, contractility, motility, velocity, bioluminescence, and immobilization. The endpoints assessed were based on exposure durations ranging from five minutes to six weeks, and included:

- Cell viability as measured by the metabolism of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide (MTT), neutral red uptake (NRU), lactate dehydrogenase (LDH) release, cell morphology, adenosine triphosphate (ATP) content or leakage, trypan blue exclusion, viable cell count, tritiated-proline uptake, 86Rb leakage, creatine kinase activity, and glucose consumption;
- Cell growth as measured by protein content, macromolecule content, cell number, pH change, and optical density;
- Colony formation as measured by plating efficiency;
- An organotypic cellular endpoint (i.e., contractility of rat skeletel muscle cells);
- Motility and velocity for bovine sperm;
- · Bioluminescence; and
- Mortality in lower eukaryotic organisms.

5.0 Comparative Data

The types of comparative data used to evaluate the predictive accuracy of the *in vitro* IC50 toxicity data for human acute toxicity included:

oral rat and mouse LD50 values obtained from Registry of Toxic Effects of Chemical Substances (RTECS) (Appendix 3, which contains rat and mouse LD50 data and average human lethal dose data for the 50 MEIC chemicals, ranked in three consecutive tables according to potency for rat, then

- mouse, and finally human. It also contains an U.S. Environmental Protection Agency (EPA) classification scheme for the acute toxicity of chemicals in humans.);
- Acute oral lethal doses in humans obtained from nine reference handbooks (Appendix 4);
- Clinically measured acute lethal serum concentrations in humans obtained from ten reference handbooks (**Appendix 5**);
- Acute lethal blood concentrations in humans measured post-mortem obtained from one forensic handbook and six forensic tabulations (**Appendix 6**);
- Human pharmacokinetics following single doses, including absorption, peak time, distribution/elimination curves, plasma half-life, distribution volume, distribution to organs (notably brain), and blood protein binding (Appendix 7);
- Peaks from curves of an ~50% lethal blood/serum concentration over time after ingestion (LC50 curves derived from human acute poisoning case reports) (Appendix 8);
- Qualitative human acute toxicity data, including lethal symptoms, main causes of death, average time to death, target organs, presence of histopathological injury in target organs, presence of toxic metabolites, and known or hypothetical mechanisms for the lethal injury (Appendix 9).

Early in the MEIC project, the in vitro cytotoxicity results were compared with average lethal blood concentrations (LCs) from acute human poisoning. However, these LCs were of limited value because they were averages of data with a wide variation due to different time between exposure and sampling (clinical) or death (forensic medicine). Therefore, a project was started to collect published and unpublished (from poison information centers and medico-legal institutes) case reports from human poisonings for the 50 MEIC reference chemicals that had lethal or sublethal blood concentrations with known time between ingestion and sampling/death. The aim was to compile enough case reports to be able to construct time-related lethal concentration

curves to be compared with the IC50 values for different incubation times in vitro. The results from the project were presented and analyzed in a series of 50 MEIC monographs. All monographs with sufficient case reports contain five tables presenting blood concentrations and two figures presenting LC curves. Three tables present (i) clinically measured, time-related sublethal blood concentrations, (ii) clinically measured, timerelated lethal blood concentrations, and (iii) postmortem, time-related blood concentrations. In these tables, blood concentration and the time interval between exposure and sampling for these concentrations are listed, as well as other important information on the cases. One table contains case reports with blood concentrations without a known time after ingestion and one table presents average blood concentrations calculated from the values presented in the other tables. The two figures presented in each of the monographs are scatter plots of sublethal and lethal blood concentrations. Based on these plots, concentration curves over time were drawn for the highest no lethal concentrations (NLC100); the lowest lethal concentrations (LC0); and the median curve between NLC100 and LC0, which is called the approximate LC50 even though it is not equivalent to a 50% mortality.

6.0 Statistical Analyses

The statistical analyses conducted by the MEIC management team involved:

- Principal components analysis (PCA);
- Analysis of Variance (ANOVA) and pairwise comparison of means using Tukey's method;
- Linear regression and ANOVA linear contrast analysis; and
- Multivariable partial least square (PLS) modeling with latent variables.

7.0 Results (based on IC50 response)

The MEIC management team, based on their analyses of the *in vitro* IC50 data, obtained the following results:

• The 1st PCA component described 80% of the variance of all the cytotoxicity data.

- Tukey's ANOVA indicated a similar sensitivity (~80%) for the assays.
- The toxicity of many chemicals increased with exposure time, making it necessary to perform a test at several exposure times to fully characterize the cytotoxicity.
- In general, human cytotoxicity was predicted well by animal cytotoxicity.
- Prediction of human cytotoxicity by ecotoxicological tests was only fairly good.
- One organotypic endpoint (muscle cell contractility) gave different results to those obtained with viability/growth assays.
- Sixteen comparisons of similar test systems involving different cell types and exposure times revealed similar toxicities, regardless of cell type.
- Nine of ten comparisons of test systems with identical cell types and exposure times revealed similar toxicities, regardless of the viability or growth endpoint measurement used.
- Nine comparisons of similar test systems employing different primary cultures and cell lines indicated that they shared similar toxicities.
- A high correlation between an intracellular protein denaturation test and average human cell line toxicity test suggested that denaturation may be a frequently occurring mechanism in basal cytotoxicity.

The following results were based on comparisons between *in vitro* data and *in vivo* data:

- Simple human cell tests were shown to be relevant for human acute lethal action for as many as 43 of the 50 MEIC reference chemicals (86%). The exceptions were atropine, digoxin, malathion, nicotine, cyanide, paracetamol, and paraquat -- all specific receptor-mediated toxicants.
- A battery of three of these human cell line tests (nos. 1, 9, 5/16) was found to be highly predictive ($R^2 = 0.77$) of the peak human lethal blood concentrations (LC50) of chemicals. The prediction increased markedly ($R^2 = 0.83$) when a simple

algorithm based on the knowledge of passage across the blood-brain barrier was used to adapt in vitro to in vivo concentrations (**Appendix 7**). The battery involved four endpoints and two exposure times (protein content/24 hours; ATP content/24 hours; inhibition of elongation of cells/24 hours; pH change/7 days). Prediction was better than the prediction of human lethal doses by rat and mouse LD50-values ($R^2 = 0.65$). The correlation between calculated oral LD50 doses in rats and mice and acute lethal dose in humans is presented graphically in **Appendix 10,** while the correlation between IC50 values and peak lethal blood concentrations in humans is presented graphically in **Appendix 11**.

- In the in vitro -- in vivo MEIC evaluation of chemicals that do easily not cross the blood-brain barrier, the 24 hour cytotoxic concentrations for rapidly chemicals correlated well with the human lethal peak blood concentrations, while the corresponding cytotoxicity for the slow-acting chemicals did not correlate as well with the peak concentrations. The prediction of human toxicity by the tests of slow-acting chemicals was much improved when 48-hour cytotoxic concentrations were compared with 48hour human lethal blood concentrations. Thus, an in vitro test providing a discrimination between a rapid and a slow cytotoxic action would increase the predictive power of a cell test battery on acute toxicity.
- The findings from both the *in vitro-in vitro* comparisons and the *in vitro-in vivo* comparisons strongly supported the basal cytotoxicity concept.

8.0 MEIC Conclusions and Recommendations

Based on the analyses conducted, the MEIC management team made the following conclusions:

• The MEIC 1, 9, 5/16 test battery can be used directly as a surrogate for a LD50

test. However, since the battery predicts lethal blood concentrations, not lethal dosages, it is not a direct counterpart of the animal LD50 test. Thus, the 1, 9, 5/16 battery must be supplemented with data on gut absorption as well as the distribution volumes (Vd) of chemicals. Vd essentially depends on whether chemicals penetrate cells or not, and the degree of accumulation in the cell for chemicals that enter cells. Binding to proteins, lipids, bone and intracellular matrix will also influence Vd. Probably, a simple test of accumulation in cells over time would provide adequate Vd data. There is sufficient *knowledge of kinetics and Vd to enable an evaluation of results from such an assay for most of the 50 MEIC chemicals.

- An ongoing evaluation is being conducted to address the issue of predicting human oral lethal doses rather than human lethal blood concentrations. One MEIC manuscript in preparation will focus on the importance of the kinetic determinants of target organs for basal cytotoxicity. A second MEIC manuscript will describe how human lethal doses may be predicted by cellular tests on basal cytotoxicity (the 1, 9, 5/16 battery) and kinetic data.
- If human lethal doses are shown to be well predicted by the 1, 9, 5/16 battery, when combined with absorption and distribution data, a new but simple *in vitro* test to predict distribution volumes must be developed. An effective *in vitro* test on absorption is stated to already exist. Development of new *in vitro* methods is not addressed by MEIC, which only evaluated existing methods.
- In MEIC, only two of the 50 reference chemicals (ethylene glycol and methanol) were biotransformed to more toxic metabolites, contributing to the acute lethal action. The occurrence of toxic metabolites for the two chemicals did not affect the prediction of human lethal peak concentrations by human cell line inhibitory concentrations, but seemed to interfere with the correlation between *in vitro* delayed effects and the prediction of

later lethal effects of the chemicals. These results confirm the proposed usefulness of an *in vitro* test that could measure the formation and release of a toxic metabolite by metabolically competent cells within the time frame of acute toxicity. One design of such a test would be to use human hepatocytes in co-cultures with a target cell line. Since so few metabolically active chemicals were tested in MEIC, future studies will need to include additional metabolically activated chemicals.

9.0 Evaluation-Guided Development of *In Vitro* Tests (EDIT)

In recognition that additional *in vitro* tests were needed to enhance the accuracy of the proposed *in vitro* battery for predicting human acute toxicity, a second voluntary multicenter program was initiated by the CTLU. The CTLU has designed a blueprint for an extended battery and has invited all interested laboratories to develop the "missing" tests of this battery within the

framework of the EDIT program (Appendix 12 and 13). The EDIT research program is published on the Internet (www.ctlu.se). The aim of EDIT is to provide a full replacement of the animal acute toxicity tests. The most urgently needed developments are assays on the accumulation of chemicals in cells (test of Vd), passage across the intestinal and blood-brain barriers. biotransformation to more toxic metabolites. CTLU will provide interested laboratories with human reference data and will evaluate results as single components of complex models. Internet version of the general EDIT research program contains additional, regularly updated information on the project. Purported advantages of the project are as follows. First, the evaluationguided test development in EDIT is rational since tests are designed according to obvious needs and as elementary tests of single events integrated into whole models, which is the potential strength of the *in vitro* toxicity testing strategy. Second, the direct testing of MEIC chemicals in newly developed in vitro assays will lead to a rapid evaluation of the potential value of each assay.

10.0 Recommended Integration of MEIC/EDIT into the EPA High Production Volume (HPV) Program

Dr. Ekwall, the principle scientist for the MEIC program, has provided several suggestions for using MEIC results and the forthcoming EDIT results to reduce animal testing in the HPV program. These suggestions include the following:

- 1. Formal validation by ECVAM/ICCVAM of the existing 3 test MEIC battery. If considered validated, use of the battery to test every chemical in the HPV program would provide inexpensive and useful supplementary data.
- 2. Evaluate some of the HPV chemicals in a battery of *in vitro* toxicity and toxicokinetic tests on acute toxicity (EDIT and similar models) as follows:
 - Engage poison information experts to select a set of HPV chemicals with sound human acute toxicity data, including time-related lethal blood concentrations.
 - Give priority to standard testing of the same chemicals in the HPV program.
 - Testing of the same chemicals in the newly developed in vitro systems (EDIT, etc.), including modeling of acute toxicity by the new assays.
 - Comparison of HPV standard animal data and the *in vitro* data with the human data for the selected set of chemicals.

If the new *in vitro* models can be shown to predict human acute toxicity better than the HPV animal tests, *in vitro* batteries may totally replace the animal acute toxicity tests in further HPV testing.

11.0 MEIC Evaluation Guidelines Checklist

A complete and formal assessment of the validation status of MEIC in regard to the ICCVAM evaluation guidelines would require the following to be reviewed and evaluated:

ICCVAM Evaluation Guidelines

1.0 Introduction and Rationale of each Test Method
1.1 Scientific basis for each test method
1.1.1 Purpose of each proposed method, including the mechanistic basis
1.1.2 Similarities and differences of modes and mechanisms of action in each test system as compared to the species of interest (e.g., humans for human health-related toxicity testing).
1.2. Intended uses of each proposed test method.
1.2.1 Intended regulatory use(s) and rationale.
1.2.2 Substitute, replace, or complement existing test methods.
1.2.3 Fits into the overall strategy of hazard or safety assessment. If a component of a tiered assessment process, indicate the weight that will be applied relative to other measures.
1.2.4 Intended range of materials amenable to test and/or limits according to chemical class or physico-chemical factors.
2.0 Proposed Each Test Method Protocol(s)
2.1 Detailed protocol for each test method, duration of exposure, know limits of use, and nature of the response assessed, including:
2.1.1 Materials, equipment, and supplies needed
2.1.2 Suggested positive or negative controls.
2.1.3 Detailed procedures for conducting the test
2.1.4 Dose-selection procedures, including the need for any dose range-finding studies or acute toxicity data prior to conducting the test, if applicable;
2.1.5 Endpoint(s) measured
2.1.6 Duration of exposure
2.1.7 Known limits of use
2.1.8 Nature of the response assessed
2.1.9 Appropriate vehicle, positive and negative controls and the basis for their selection
2.1.10 Acceptable range of vehicle, positive and negative control responses
2.1.11 Nature of the data to be collected and the methods used for data collection
2.1.12 Type of media in which data are stored
2.1.13 Measures of variability
2.1.14 Statistical or non-statistical method(s) used to analyze the resulting data (including methods to analyze for a dose response relationship). The method(s) employed should

be justified and described
2.1.15 Decision criteria or the prediction model used to classify a test chemical (e.g., positive, negative, or equivocal), as appropriate
2.1.16 Information that will be included in the test report
2.2 Basis for each test system
2.3 Confidential information
2.4 Basis for the decision criteria established for each test
2.5 Basis for the number of replicate and repeat experiments; provide the rationale if studies are not replicated or repeated
2.6 Basis for any modifications to each proposed protocol that were made based on results from validation studies
3.0 Characterization of Materials Tested
3.1 Rationale for the chemicals/products selected for evaluation. Include information on suitability of chemicals selected for testing, indicating any chemicals that were found to be unsuitable
3.2 Rationale for the number of chemicals that were tested
3.3 The chemicals/products evaluated, including:
3.3.1. Chemical or product name; if a mixture, describe all components.
3.3.2 CAS number(s)
3.3.3 Chemical or product class
3.3.4 Physical/chemical characteristics
3.3.5 Stability of the test material in the test medium
3.3.6 Concentration tested.
3.3.7 Purity; presence and identity of contaminants.
3.3.8 Supplier/source of compound.
3.4 If mixtures were tested, constituents and relative concentrations should be provided whenever possible
3.5 Describe coding used (if any) during validation studies.
4.0 Reference Data Used for Performance Assessment
4.1 Clear description of the protocol for the reference test method. If a specific guideline has been followed, it should also be provided. Any deviation should be indicated, including the rationale for the deviation.
4.2. Provide reference data used to assess the performance of the proposed test method.
4.3 Availability of original datasheets for the reference data
4.4 Quality of the reference test data, including the extent of GLP compliance and any use of coded chemicals.
4.5 Availability and use of relevant toxicity information from the species of interest.
5.0 Test Method Data and Results
5.1 Complete, detailed protocol used to generate each set of data for each proposed test method.

- Any deviations should be indicated, including the rationale for the deviation. Any protocol modifications made during the development process and their impact should be clearly stated for each data set.
- 5.2 Provide all data obtained using each proposed test method. This should include copies of original data from individual animals and/or individual samples, as well as derived data. The laboratory's summary judgement as to the outcome of each test should be indicated. The submission should also include data (and explanations) from unsuccessful, as well as successful, experiments.
- 5.3 Statistical approach used to evaluate the data from each proposed test method
- 5.4 Provide a summary, in graphic or tabular form, of the results.
- 5.5 For each set of data, indicate whether coded chemicals were tested, experiments were conducted blind, and the extent to which experiments followed GLP procedures.
- 5.6 Indicate the lot-to-lot consistency of the test materials, the time frame of the various studies, and the laboratory in which the study or studies were done. A coded designation for each laboratory is acceptable.
- 5.7 Any data not submitted should be available for external audit, if requested

6.0 Test Method Performance Assessment

- 6.1 Describe performance characteristics (e.g., accuracy, sensitivity, specificity, positive and negative predictivity, and false positive and negative rates) of each proposed test method separately and in combination compared with the reference test method currently accepted by regulatory agencies for the endpoint of interest. Explain how discordant results from each proposed test were considered when calculating performance values.
- 6.2 Results that are discordant with results from the reference method.
- 6.3 Performance characteristics of each proposed test method compared to data or recognized toxicity from the species of interest (e.g., humans for human health-related toxicity testing), where such data or toxicity classification is available. In instances where the proposed test method was discordant from the reference test method, describe the frequency of correct predictions of each test method compared to recognized toxicity information from the species of interest.
- 6.4 Strengths and limitations of the method, including those applicable to specific chemical classes or physical/chemical properties
- 6.5 Salient issues of data interpretation, including why specific parameters were selected for inclusion

7.0 Test Method Reliability (Repeatability/Reproducibility)

- 7.1 Rationale for the chemicals selected to evaluate intra- and inter-laboratory reproducibility for each test method, and the extent to which they represent the range of possible test outcomes.
- 7.2 Analyses and conclusions reached regarding inter- and intra-laboratory repeatability and reproducibility for each test method
- 7.3 Summarize historical positive and negative control data for each test method, including number of trials, measures of central tendency and variability.

8.0 Test Method Data Quality

8.1 Extent of adherence to GLPs

- 8.2. Results of any data quality audits
- 8.3 Impact of deviations from GLPs or any non-compliance detected in data quality audits

9.0 Other Scientific Reports and Reviews

- 9.1 All data from other published or unpublished studies conducted using the proposed test method should be included.
- 9.2 Comment on and compare the conclusions published in independent peer-reviewed reports or other independent scientific reviews of the test method. The conclusions of such scientific reports and/or reviews should be compared to the conclusions reached in this submission. Any other ongoing evaluations of the method should be mentioned.

10.0 Animal Welfare Considerations (Refinement, Reduction, and Replacement)

10.1 Describe how the proposed test methods will refine (reduce pain or distress), reduce, and/or replace animal use compared to the current methods used.

11.0 Other Considerations

- 11.1 Aspects of test method transferability. Include an explanation of how this compares to the transferability of the reference test method.
 - 11.1.1 Facilities and major fixed equipment needed to conduct the test.
 - 11.1.2 Required level of training and expertise needed for personnel to conduct the test.
 - 11.1.3 General availability of other necessary equipment and supplies.
- 11.2 Cost involved in conducting each test. Discuss how this compares to the cost of the reference test method.
- 11.3 Indicate the amount of time needed to conduct each test and discuss how this compares with the reference test method.

12.0 Supporting Materials

- 12.1 Provide copies of all relevant publications, including those containing data from the proposed test method or the reference test method.
- 12.2 Include all available non-transformed original data for both each proposed test method and the reference test method.
- 12.3 Summarize and provide the results of any peer reviews conducted to date, and summarize any other ongoing or planned reviews.
- 12.4 Availability of laboratory notebooks or other records for an independent audit. Unpublished data should be supported by laboratory notebooks.

12.0 MEIC Related Publications (in chronological order)

Bernson, V., Bondesson, I., Ekwall, B., Stenberg, K., and Walum, E. (1987) A multicentre evaluation study of in vitro cytotoxicity. ATLA, 14, 144-145.

Bondesson, I., Ekwall, B., Stenberg, K., Romert, L. and Walum, E. (1988) Instruction for participants in the multicentre evaluation study of in vitro cytotoxicity (MEIC). ATLA, 15, 191-193.

Bondesson, I., Ekwall, B., Hellberg, S., Romert, L., Stenberg, K., and Walum, E. (1989) MEIC - A new international multicenter project to evaluate the relevance to human toxicity of in vitro cytotoxicity tests. Cell Biol. Toxicol., 5, 331-347.

Ekwall, B. (1989) Expected effects of the MEIC-study. In Report from The MEIC In Vitro Toxicology Meeting, Stockholm 9/3 1989, (Eds. T. Jansson and L.Romert), pp 6-8, Swedish National Board for Technical Development.

Ekwall, B., Gómez-Lechón, M.J., Hellberg, S., Bondsson, I., Castell, J.V., Jover, R., Högberg, J., Ponsoda, X., Stenberg, K., and Walum, E. (1990) Preliminary results from the Scandinavian multicentre evaluation of in vitro cytotoxicity (MEIC). Toxicol. In Vitro, 4, 688-691.

Hellberg, S., Bondesson, I., Ekwall, B., Gómez-Lechón, M.J., Jover, R., Högberg, J., Ponsoda; X., Romert, L., Stenberg, K., and Walum, E. (1990) Multivariate validation of cell toxicity data: The first ten MEIC chemicals. ATLA, 17, 237-238.

Hellberg, S., Eriksson, L., Jonsson, J., Lindgren, F., Sjöström, M., Wold, S., Ekwall, B., Gómez-Lechón, J.M., Clothier, R., Accomando, N.J., Gimes, G., Barile, F.A., Nordin, M., Tyson, C.A., Dierickx, P., Shrivastava, R.S., Tingsleff-Skaanild, M., Garza-Ocanas, L., and Fiskesjö, G. (1990) Analogy models for prediction of human toxicity. ATLA, 18, 103-116.

Shrivastava, R., Delomenie, C., Chevalier, A., John, G., Ekwall, B., Walum, E., and Massingham, R. (1992) Comparison of in vivo acute lethal potency and in vitro cytotoxicity of 48 chemicals. Cell Biol. Toxicol., 8(2), 157-170.

Ekwall, B., Abdulla, E., Barile, F., Bondesson, I., Clemedson, C., Clothier, R., Curren, R., Dierickx, P., Fiskesjö, G., Garza-Ocanas, L., Gómez-Lechón, M.J., Gülden, M., Imai, K., Janus, J., Kristen, U., Kunimoto, M., Kärenlampi, S., Lavrijsen, K., Lewan, L., Malmsten, A., Miura, T., Nakamura, M., Ohno, T., Ono, H., Persoone, G., Rouget, R., Romert, L., Sandberg, M., Sawyer, T., Seibert, H., Shrivastava, R., Stammati, A., Tanaka, N., Walum, E., Wang, X & Zucco, F. (1992) Acute lethal toxicity in man predicted by cytotoxicity in 55 cellular assays and by oral LD50 tests in rodents for the first 30 MEIC chemicals, In Proc. of JSAAE (Japanese Society for Alternatives to Animal Experiments) 6th annual meeting in Tokyo, Dec 17-18, 1992, (Ed. S. Sato), pp 114-115, Tokyo.

Ekwall, B., Abdulla, E., Barile, F., Chesne, C., Clothier, Cottin, M., Curren, R., Daniel-Szolgay, E., Dierickx, P., Ferro, M., Fiskesjö, G., Garza-Ocanas, L., Gómez-Lechón, M.J., Gülden, M. Isomaa, B., Kahru, A., Kemp, R.B., Kerszman, G., Kristen, U., Kunimoto,, M., Kärenlampi, S., Lavrijsen, K., Lewan, L., Ohno, T., Persoone, G., Pettersson, R., Rouget, R., Romert, L., Sawyer, T., Seibert, H., Shrivastava, R., Sjöström, M., Tanaka, N., Zucco, F., Walum, E., & Clemedson, C. (1994) A comparative cytotoxicity analysis of the results from tests of the first 30 MEIC reference chemicals in 68 different in vitro toxicity systems, pp 117-118 in Alternatives Research - Proceedings of the 8th Annual Meeting of the Japanese Society for Alternatives to Animal Experiments, Nov. 28-29, 1994, Tokyo.

Ekwall, B. (1995) The basal cytotoxicity concept, pp 721-725. In Proceedings of the World Congress on Alternatives and Animal Use in the Life Sciences: Education, Research, Testing. Alternative Methods in Toxicology and the Life Sciences, Vol 11. Mary Ann Liebert, New York, 1995.

Balls, M, Blaauboer, BJ, Fentem, JH, Bruner, L, Combes, RD, Ekwall, B, Fielder, RJ, Guillouzo, A, Lewis, RW, Lovell, DP, Reinhardt, CA, Repetto, G, Sladowski, D, Spielmann, H & Zucco, F (1995) Practical aspects of the

validation of toxicity test procedures - The report and recommendations of ECVAM Workshop 5. ATLA 23, 129-147.

Walum, E, Nilsson, M, Clemedson, C & Ekwall, B. (1995) The MEIC program and its implications for the prediction of acute human systemic toxicity, pp 275-282 In Proceedings of the World Congress on Alternatives and Animal Use in the Life Sciences: Education, Research, Testing. Alternative Methods in Toxicology and the Life Sciences, Vol 11. Mary Ann Liebert, New York, 1995.

Clemedson, C, McFarlane-Abdulla, E., Andersson, M., Barile, F.A., Calleja, M.C., Chesné, C., Clothier, R., Cottin, M., Curren, R., Daniel-Szolgay, E., Dierickx, P., Ferro, M., Fiskesjö, G., Garza-Ocanas, L., Gómez-Lechón, M.J., Gülden, M., Isomaa, B., Janus, J., Judge, P., Kahru, A., Kemp, R.B., Kerszman, G., Kristen, U., Kunimoto, M., Kärenlampi, S., Lavrijsen, K., Lewan L., Lilius, H., Ohno, T., Persoone, G.,Roguet, R., Romert, L., Sawyer, T., Seibert, H., Shrivastava, R., Stammati, A., Tanaka, N., Torres Alanis, O., Voss, J-U., Wakuri, S., Walum, E., Wang, X., Zucco, F. and Ekwall, B. (1996) MEIC evaluation of acute systemic toxicity. Part I. Methodology of 68 in vitro toxicity assays used to test the first 30 reference chemicals. ATLA, 24, Suppl. 1, 1996, 249-272.

Clemedson, C, McFarlane-Abdulla, E., Andersson, M., Barile, F.A., Calleja, M.C., Chesné, C., Clothier, R., Cottin, M., Curren, R., Dierickx, P., Ferro, M., Fiskesjö, G., Garza-Ocanas, L., Gómez-Lechón, M.J., Gülden, M., Isomaa, B., Janus, J., Judge, P., Kahru, A., Kemp, R.B., Kerszman, G., Kristen, U., Kunimoto, M., Kärenlampi, S., Lavrijsen, K., Lewan L., Lilius, H., Malmsten, A., Ohno, T., Persoone, G., Pettersson, R., Roguet, R., Romert, L., Sandberg, M., Sawyer, T., Seibert, H., Shrivastava, R., Sjöström, M., Stammati, A., Tanaka, N., Torres Alanis, O., Voss, J-U., Wakuri, S., Walum, E., Wang, X., Zucco, F. and Ekwall, B. (1996) MEIC evaluation of acute systemic toxicity. Part II. In vitro results from 68 toxicity assays used to test the first 30 reference chemicals and a comparative cytotoxicity analysis. ATLA, 24, Suppl. 1, 1996, 273-311.

Ekwall, B, Clemedson, C, Crafoord, B, Ekwall, Ba, Hallander, S, Sjöström, M & Walum, E (1997) Correlation between in vivo and in vitro acute toxicity tests; Results of the MEIC project, pp. 82-83 in Development of Ecotoxicity and Toxicity Testing of Chemicals - Proceeding of the 2nd Network Meeting, TemaNord 1997:524, Nordic Council of Ministers, Copenhagen, 1997.

Clemedson, C., Barile, F.A., Ekwall, B., Gómez-Lechón, M.J., Hall, T., Imai, K., Kahru, A., Logemann, P., Monaco, F., Ohno, T., Segner, H., Sjöström, M., Valentino, M., Walum, E., Wang, X. and Ekwall, B. (1998). MEIC evaluation of acute systemic toxicity: Part III. In vitro results from 16 additional methods used to test the first 30 reference chemicals and a comparative cytotoxicity analysis. ATLA 26, Suppl. 1, 91-129.

Clemedson, C., Aoki, Y., Andersson, M., Barile, F.A., Bassi, A.M., Calleja, M.C., Castano, A., Clothier, R.H., Dierickx, P., Ekwall, Ba., Ferro, M., Fiskesjö, G., Garza-Ocanas, L.Gómez-Lechón, M.J., Gülden, M., Hall, T., Imai, K., Isomaa, B., Kahru, A., Kerszman, G., Kjellstrand, P., Kristen, U., Kunimoto, M., Kärenlampi, S., Lewan, L., Lilius, H., Loukianov, A., Monaco, F., Ohno, T., Persoone, G., Romert, L., Sawyer, T.W., Shrivastava, R., Segner, H., Seibert, H., Sjöström, M., Stammati, A., Tanaka, N., Thuvander, A., Torres-Alanis, O., Valentino, M., Wakuri, S., Walum, E., Wieslander, A., Wang, X., Zucco, F. and Ekwall, B. (1998). MEIC evaluation of acute systemic toxicity. Part IV. In vitro results from 67 toxicity assays used to test reference chemicals 31-50 and a comparative cytotoxicity analysis. ATLA 26, Suppl. 1, 131-183.

Ekwall, B., Clemedson, C., Crafoord, B., Ekwall, Ba., Hallander, S., Walum E.and Bondesson, I. (1998) MEIC Evaluation of Acute Systemic Toxicity. Part V. Rodent and Human Toxicity Data for the 50 Reference Chemicals. ATLA 26, Suppl. 2, 569-615.

Ekwall, B., Barile., F.A., Castano, A., Clemedson, C., Clothier, R.H., Dierickx, P., Ekwall, Ba., Ferro, M., Fiskesjö, G., Garza-Ocanas, L., Gómez-Lechón, M-J., Gülden, M., Hall, T., Isomaa, B., Kahru, A, Kerszman, G., Kristen, U., Kunimoto, M., Kärenlampi, S., Lewan, L, Loukianov, A., Ohno, T., Persoone, G., Romert, L., Sawyer, T.W., Segner, H., Shrivastava, R., Stammati, A., Tanaka, N., Valentino, M., Walum, E. and Zucco, F. (1998) MEIC Evaluation of Acute Systemic Toxicity. Part VI. Prediction of human toxicity by rodent LD50 values and results from 61 in vitro tests. ATLA 26, Suppl. 2, 617-658.

Walum, E. (1998) Acute oral toxicity. Environ. Health Persp. 106, Suppl. 2, 497-503.

Ekwall, B., Clemedson, C., Ekwall, Ba., Ring, P. and Romert, L. (1999) EDIT: A New International Multicentre Programme to Develop and Evaluate Batteries of *In Vitro* Tests for Acute and Chronic Systemic Toxicity. ATLA 27, 339-349.

Clemedson, C. and Ekwall, B. (1999) Overview of the Final MEIC Results: I. The *In Vitro-In Vitro* Evaluation. Toxicology In Vitro, 13, 1-7.

Ekwall, B. (1999) Overview of the Final MEIC Results: II. The *In Vitro/In Vivo* Evaluation, Including the Selection of a Practical Battery of Cell Tests for Prediction of Acute Lethal Blood Concentrations in Humans. Toxicology In Vitro, 13, 665-673.

Clemedson, C., Barile, F.A., Chesné, C., Cottin, M., Curren, R., Ekwall, B., Ferro, M., Gomez-Lechon, M.J., Imai, K., Janus, J., Kemp, R.B., Kerszman, G., Kjellstrand, P., Lavrijsen, K., Logemann, P., McFarlane-Abdulla, E., Roguet, R., Segner, H., Seibert, H., Thuvander, A., Walum, E. and Ekwall, Bj. (1999) MEIC Evaluation of Acute Systemic Toxicity: Part VII. Prediction of Human Toxicity by Results From Testing of the First 30 Reference Chemicals With 27 Further *In Vitro* Assays. ATLA, 28 (Suppl. 1), 161-200.

Appendix I First Fifty Reference Chemicals

Acetaminophen

Aspirin

Ferrous sulfate
Diazepam
Amitriptyline

Digoxin

Ethylene glycol Methyl alcohol

Ethyl alcohol

Isopropyl alcohol 1,1,1-Trichloroethane

Phenol

Sodium chloride Sodium fluoride

Malathion

2,4-Dichlorophenoxyacetic acid

Xylene Nicotine

Potassium cyanide Lithium sulfate Theophylline

Dextropropoxyphene HCl

Propranolol HCl Phenobarbital

Paraquat

Arsenic trioxide
Cupric sulfate

Mercuric chloride Thioridazine HCl Thallium sulfate

Warfarin Lindane Chloroform

Carbon tetrachloride

Isoniazid

Dichloromethane Barium nitrate Hexachlorophene Pentachlorophenol Varapamil HCl

Chloroquine phosphate

Orphenadrine HCl Quinidine sulfate Diphenylhydantoin Chloramphenicol Sodium oxalate

Amphetamine sulfate

Caffeine

Atropine sulfate Potassium chloride

Appendix II: Descriptions of the Essential Traits of 67 in vitro Methods

١								
Method	hod							
No.	Old No.*	Cell type/ test system	Tissue of origin	Species	Endpoint	Incub- ation time	Testing I laboratory ^b e	Refer- ence
Hun	Human cell lines	ll lines						
1.	II:1	Hep G2	Hepatoma	Human	Protein content/Lowry	24 hours	Dierickx	ယ
52	III:2	Hep G2	Hepatoma	Human	Protein content/	24 hours	Hall, Cambridge & James	51
ယ	11:2	Hep G2	Hepatoma	Human	MTT	24 hours	Gómez-Lechón, Jover,	3, 12
4.	II:4	WI-1003/Hep G2 ^d	Lung/Hepatoma	Human	Morphology	24 hours	Ponsoda & Castell ^e Garza-Ocañas & Torres-Alanis	ני
5.	II:3	Chang liver cells	Liver	Human	Morphology	24 hours	Garza-Ocañas & Torres-Alanis	ယ
6.	II:5	HeLa	Cervical carcinoma	Human	Morphology	24 hours	Ekwall & Malmsten	ယ
7.	1I:6	Hep 2	Epithelial carcinoma	Human	Protein content/	24 hours	Stammati, Zucco, Zanetti &	ယ
œ	II:7	Hep 2	Epithelial carcinoma	Human	LDH release	24 hours	Stammati, Zucco, Zanetti &	ယ
9	II :8	HL-60	of larynx Promyelocytic	Human	ATP content	94 hours	De Angelis Tanaka Wakuri Izumi	ىد
·			leukaemia				Sasaki & Ono	c
10.	111:10	III:10 HFL1	Fetal lung cells	Human	MTT	24 hours	Barile & Sookhoo*	5, 13
11.	III:11A SQ-5	SQ-5	Lung squamous	Human	LDH content	48 hours	Ohno, Wang, Sasaki & Hirano	3, 14
12.	III:12	SQ-5	Lung squamous	Human	Killing index ^g	48 hours	Ohno, Wang, Sasaki & Hirano	3, 14
13.	II:10	NB-1	Neuroblastoma	Human	Protein content/	48 hours	Kunimoto, Miura, Aoki &	ယ
14.	II:11	McCoy	Epithelial cells from	Human	Crystal violet staining Morphology/Trypan	72 hours	Kunimoto Shrivastava & Chevalier	ယ
15.	II:13	WI-1003/Hep G2 ^d	synovial fluid Lung/Hepatoma	Human	blue exclusion" Morphology/pH changes	168 hours	168 hours Garza-Ocañas & Torres-Alanis	ယ

Table I: Descriptions of the essential traits of 67 in vitro methods

Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part IV. ATLA 26:131-183. (reprinted with permission from the editor)

tocol	protocol 112m								
ZOX	ιρi & Malmivuori 3 INVITTOX	Kärenlampi	72 hours	Protein content/ Coomassie blue staining	Mouse	Hepatoma	Hepa-1c1c7 (Sub- clone of Hepa-1)	II:34	30.
J	va & Chevalier 3	Shrivastava	72 hours	Morphology/Trypan blue exclusion ^h	Bovine	Kidney	MDBK	II:33	29.
ω	Miura, Aoki &	Kunimoto	48 hours	Protein content	Rat	Pheochromocytoma	PC12h	II:32	28.
ယ	Romert, Jansson & Jenssen	Romert, J	48 hours	Coulter counter	Mouse	Ascites sarcoma	BP8	11:31	27.
S.	Hall, Cambridge & James	Hall, Car	24 hours	Protein content/	Pig	Kidney	LLC-PK1	III:40	26.
3, 12	hón, Jover, Ponsoda	Gómez-Lech	24 hours	MTT	Mouse	Fibroblasts	3T3	II:30	25.
3 3, 16	& Canepa ^k es, Arjun &	Ferro, Bassi Barile, Borg	24 hours 24 hours	Macromolecular content [3H]-proline uptake	Rat Rat	Hepatoma Lung epithelial cells	HTC L2	II:23 II:25	23. 24.
ယ	10 minutes Lewan & Andersson	: Lewan &	10 minutes	ATP leakage	Mouse	Subline of Ehrlich	ELD	11:20	22.
ω	10 minutes Lewan & Andersson	: Lewan &	10 minutes	ATP leakage	Mouse	Subline of Ehrlich	ELD	21. II:19	21.
							llines	Animal cell lines	Ani
. 01	Valentino, Monaco, Pieragostini, Amati & Governa	Valentino Pieragos	3 hours	Locomotion stimulated by chemotactic peptide	Human	Blood	Polymorphonuclear leukocytes'	III:22	20.
Ö	Valentino, Monaco, Pieragostini, Amati & Governa	Valentino Pieragos	3 hours	Viable cell count fluorescein diacetate/	Human	Blood	III:21 Polymorphonuclear leukocytes	III:21	19.
							Human primary cultures	nan pr	Hu
3 3, 15	as & Torres-Alanis almsten	Garza-Ocañ Ekwall & M Dierickx	168 hours 168 hours 6 weeks	Morphology/pH changes pH changes (phenol red) Protein content/Lowry	Human Human Human	Liver Cervical carcinoma Epithelial cells from embryonic lung	Chang liver HeLa MRC-5 (finite cell line)	II:12 II:14 II:15	16. 17. 18.

Table I: continued

14.	40.	39.	38. 1	37.	36 36	33.	Anim	32.	31.	No.	Method
			II:52	11:51	II:45A II:46A II:50		al pri	II:36	II:35	No.	pod
Muscle cells	Muscle cells	Muscle cells	Erythrocytes	Hepatocytes	II:45A Neurons II:46A Neurons II:50 Hepatocytes ⁿ	Muscle cells	Animal primary cultures	Balb 3T3 A31-1-1	3T3-L1 (Sub- clone of 3T3)	Cell type/ test system	
Skeletal muscle	Skeletal muscle	Skeletal muscle	Peripheral blood	Liver	Embryonal forebrain Embryonal forebrain Liver	Skeletal muscle		Whole embryo	Embryonal	Tissue of origin	
Rat	Rat	Rat	Balb/c	Male rat	Chicken Chicken Male rat	Rat		Balb/c mouse	Swiss	Species	
Spontaneous contractility 24 hours	Glucose consumption	Intracellular creatine kinase activity	ATP content	Morphology/Trypan blue	Neutral red uptake MTT MTT	Spontaneous contractility	1.00	Colony formation	Protein content/Kenacid	Endpoint	
	24 hours	24 hours	24 hours	24 hours	20 hours 21 hours 24 hours	1 hour		168 hours	72 hours	Incub- ation time	
Gülden, Seibert & Voss	Gülden, Seibert & Voss	Sasakı & Ono Gülden, Seibert & Voss	1 01	Shrivastava & Chevalier	Sawyer & Weiss Sawyer & Weiss Gómez-Lechón, Jover, Ponsoda & Castell ^e	Gülden, Seibert & Voss		Tanaka, Wakuri, Izumi, Sasaki & Ono	Clothier	Testing laboratory ^b	
INVITTOX protocol 93 ^m 3, INVITTOX protocol 93 ^m	protocol 93 ^m 3,	3, INVITTOX ·	ယ	ω	protocol 93 ^m 3 3 3, 12	3, INVITTOX		ယ	ယ	Refer- ence	

Appendix III:Oral LD50 Doses for Rat and Mouse and Mean Oral Lethal Doses for Humans and Toxicity Categories

Chemical	Chemical	Da+	LD50	Mauss	LD50	Ava Lliii	man Dose
Number	Chemical	mg/kg	umol/kg	mg/kg	umol/kg	mg/kg	umol/kg
28	Mercuric chloride	11197 kg	4	6	22	25.7	94.7
31	Warfarin	2	5	3	10	107.1	347.4
18	Potassium cyanide	5	77	9	131	2.9	43.9
26	Arsenic trioxide	15	74	31	159	4.1	20.9
30	Thallium sulfate	16	32	24	47	14.0	27.7
39	Pentachlorophenol	27	101	28	105	28.6	107.3
6	Digoxin	28	36	18	23	0.1	0.17
17	Nicotine	50	308	3	21	0.7	4.4
13	Sodium fluoride	52	1238	57	1357	92.8	2210.9
47	Amphetamine sulfate	55	149	24	65	20.0	54.3
38	Hexachlorophene	56	138	67	165	214.3	526.6
32	Lindane	76	261	44	151	242.9	835.1
21	Propoxyphene HCL	84	223	255	678	24.6	65.4
25	Paraquat	100	537	120	644	40.0	214.7
40	Varapamil HCL	108	220	163	331	122.3	249.1
23	Penobarbital	162	697	137	590	111.4	479.7
48	Caffeine	192	989	127	654	135.7	698.8
2	Acetylsalicylic acid	200	1110	232	1287	385.7	2140.5
20	Theophylline	244	1354	235	1304	157.1	872.1
42	Orphenadrine HCL	255	834	100	327	50.0	163.4
43	Quinidine sulfate	258	610	286	676	79.2	187.4
14	Malathion	290	878	190	575	742.8	2248.4
11	Phenol	317	3369	270	2869	157.2	1670.0
3	Ferrous sulfate	319	2100	680	4477	392.1	2581.0
5	Amitriptyline	320	1154	140	505	37.1	133.8
4	Diazepam	352	1236	45	159	71.4	250.8
37	Barium nitrate	355	1358	266	1016	37.1	142.1
15	2,4-Dichlorophenoxy-acetic acid	375	1697	347	1570	385.8	1745.3
22	Propamolol HCL	466	1575	320	1082	71.5	241.7
27	Cupric sulfate	469	1880	502	2012	290.6	1163.6
19	Lithium sulfate	492	4478	1190	10,828	1065.5	9691.8
49	Altropine sulfate	585	864	456	674	1.7	2.5
41	Chloroquine phosphate	623	1208	500	969	84.3	163.4
33	Chloroform	908	7605	36	302	999.8	8375.2
29	Thioridazine HCL	995	2445	385	946	68.6	1684
35	Isoniazid	1250	9117	133	970	171.5	1250.4
36	Dichloromethane	1601	18,846	873	10,280	1386.2	16,321.7
44	Diphenylhydantoin	1635	6480	150	595	300.0	1189.1
34	Carbon tetrachloride	2350	15,280	8264	53,726	1314.4	8545.4
1	Paracetamol	2404	15,899	338	2235	271.4	1795.2
45	Chloramphenicol	2500	7735	1500	4641	285.7	884.0
50	Potassium chloride	2598	34,853	1499	20,107	285.5	3830.0
12	Sodium chloride	3002	51,370	4003	68,493	2287.3	39,138.9
14	SSGIGITI CHIOTIGE	3002	31,370	7000	00,77	2201.0	37,130.7

16	Xylene	4299	40,490	2119	19,953	899.8	8474.6
7	Ethylene glycol	4698	75,684	5498	88,567	1570.9	25,304.8
8	Methanol	5619	175,327	7289	227,414	1569.0	48,954.2
9	Ethanol	7057	153,145	3448	74,837	4712.2	102,262.2
46	Sodium oxalate	11160	83,284	5095	38,019	357.1	2665.3
10	1,1,1-Trichloroethane	11196	83,927	7989	59,884	5707.6	42,785.8
Source:	E. Walum. 1998. Acute	oral toxicity	. EHP 10	6:497-503. (re	eprinted with	permission fro	m the editor)

	Oral LD50 Doses	for Rat and	Mouse and	Mean Oral	Lethal Doses	s for Human	S
Chemical	Chemical	Rat I	LD50		LD50	Ave. Hur	nan Dose
Number		mg/kg	umol/kg	mg/kg	umol/kg	mg/kg	umol/kg
31	Warfarin	2	5	3	10	107.1	347.4
17	Nicotine	50	308	3	21	0.7	4.4
28	Mercuric chloride	1	4	6	22	25.7	94.7
18	Potassium cyanide	5	77	9	131	2.9	43.9
6	Digoxin	28	36	18	23	0.1	0.2
30	Thallium sulfate	16	32	24	47	14.0	27.7
47	Amphetamine sulfate	55	149	24	65	20.0	54.3
39	Pentachlorophenol	27	101	28	105	28.6	107.3
26	Arsenic trioxide	15	74	31	159	4.1	20.9
33	Chloroform	908	7605	36	302	999.8	8375.2
32	Lindane	76	261	44	151	242.9	835.1
4	Diazepam	352	1236	45	159	71.4	250.8
13	Sodium fluoride	52	1238	57	1357	92.8	2210.9
38	Hexachlorophene	56	138	67	165	214.3	526.6
42	Orphenadrine HCL	255	834	100	327	50.00	163.4
25	Paraquat	100	537	120	644	40.00	214.7
48	Caffeine	192	989	127	654	135.7	698.8
35	Isoniazid	1250	9117	133	970	171.5	1250.4
23	Penobarbital	162	697	137	590	111.4	479.7
5	Amitriptyline	320	1154	140	505	37.1	133.8
44	Diphenylhydantoin	1635	6480	150	595	300.0	1189.1
40	Varapamil HCL	108	220	163	331	122.3	249.1
14	Malathion	290	878	190	575	742.8	2248.4
2	Acetylsalicylic acid	200	1110	232	1287	385.7	2140.5
20	Theophylline	244	1354	235	1304	157.1	872.1
21	Propoxyphene HCL	84	223	255	678	24.6	65.4
37	Barium nitrate	355	1358	266	1016	37.1	142.1
11	Phenol	317	3369	270	2869	157.2	1670.0
43	Quinidine sulfate	258	610	286	676	79.2	187.4
22	Propamolol HCL	466	1575	320	1082	71.5	241.7
1	Paracetamol	2404	15,899	338	2235	271.4	1795.2
15	2,4-Dichlorophenoxy-acetic	375	1697	347	1570	385.8	1745.3
29	Thioridazine HCL	995	2445	385	946	68.6	168.5
49	Altropine sulfate	585	864	456	674	1.7	2.5
41	Chloroquine phosphate	623	1208	500	969	84.3	163.4
27	Cupric sulfate	469	1880	502	2012	290.6	1163.6
3	Ferrous sulfate	319	2100	680	4477	392.1	2581.0
36	Dichloromethane	1601	18,846	873	10,280	1386.2	16,321.7
19	Lithium sulfate	492	4478	1190	10,828	1065.5	9691.8
50	Potassium chloride	2598	34,853	1499	20,107	285.5	3830.0
45	Chloramphenicol	2500	7735	1500	4641	285.7	884.0
16	Xylene	4299	40,490	2119	19,953	899.8	8474.6
9	Ethanol	7057	153,145	3448	74,837	4712.2	102,262.2
12	Sodium chloride	3002	51,370	4003	68,493	2287.3	39,138.9
46	Sodium oxalate	11160	83,284	5095	38,019	357.1	2665.3
7	Ethylene glycol	4698	75,684	5498	88,567	1570.9	25,304.8
8	Methanol	5619	175,327	7289	227,414	1569.0	48,954.2
10	1,1,1-Trichloroethane	11196	83,927	7289	59,884	5707.6	48,954.2
34	Carbon tetrachloride	2350	15,280	8264	53,726	1314.4	8545.4
	<u> </u>	oral toxicity			(reprinted with		
Jource. E	. vvaluiti. 1770. Acute	oral toxicity	, LITE 100	J.771-3U3.	(reprinted with	Permission IIC	m the editor)

	Oral LD50 Doses				Lethal Dose		
Chemical	Chemical	Rat L			LD50	Ave. Hun	
Number		mg/kg	umol/kg	mg/kg	umol/kg	mg/kg	umol/kg
6	Digoxin	28	36	18	23	0.1	0.2
17	Nicotine	50	308	3	21	0.7	4.4
49	Altropine sulfate	585	864	456	674	1.7	2.5
18	Potassium cyanide	5	77	9	131	2.9	43.9
26	Arsenic trioxide	15	74	31	159	4.1	20.9
30	Thallium sulfate	16	32	24	47	14.0	27.7
47	Amphetamine sulfate	55	149	24	65	20.0	54.3
21	Propoxyphene HCL	84	223	255	678	24.6	65.4
28	Mercuric chloride	1	4	6	22	25.7	94.7
39	Pentachlorophenol	27	101	28	105	28.6	107.3
5	Amitriptyline	320	1154	140	505	37.1	133.8
37	Barium nitrate	355	1358	266	1016	37.1	142.1
25	Paraquat	100	537	120	644	40.0	214.7
42	Orphenadrine HCL	255	834	100	327	50.0	163.4
29	Thioridazine HCL	995	2445	385	946	68.6	168.5
4	Diazepam	352	1236	45	159	71.4	250.8
22	Propamolol HCL	466	1575	320	1082	71.5	241.7
43	Quinidine sulfate	258	610	286	676	79.2	187.4
41	Chloroquine phosphate	623	1208	500	969	84.3	163.4
13	Sodium fluoride	52	1238	57	1357	92.8	2210.9
31	Warfarin	2	5	3	10	107.1	347.4
23	Penobarbital	162	697	137	590	111.4	479.7
40	Varapamil HCL	108	220	163	331	122.3	249.1
48	Caffeine	192	989	127	654	135.7	698.8
20	Theophylline	244	1354	235	1304	157.1	872.1
11	Phenol	317	3369	270	2869	157.2	1670.0
35	Isoniazid	1250	9117	133	970	171.5	1250.4
38	Hexachlorophene	56	138	67	165	214.3	526.6
32	Lindane	76	261	44	151	242.9	835.1
1	Paracetamol	2404	15,899	338	2235	271.4	1795.2
50	Potassium chloride	2598	34,853	1499	20,107	285.5	3830.0
45	Chloramphenicol	2500	7735	1500	4641	285.7	884.0
27	Cupric sulfate	469	1880	502	2012	290.6	1163.6
44	Diphenylhydantoin	1635	6480	150	595	300.0	1189.1
46	Sodium oxalate	11160	83,284	5095	38,019	357.1	2665.3
2	Acetylsalicylic acid	200	1110	232	1287	385.7	2140.5
15	2,4-Dichlorophenoxy-acetic	375	1697	347	1570	385.8	1745.3
3	Ferrous sulfate	319	2100	680	4477	392.1	2581.0
14	Malathion	290	878	190	575	742.8	2248.4
16	Xylene	4299	40,490	2119	19,953	899.8	8474.6
33	Chloroform	908	7605	36	302	999.8	8375.2
19	Lithium sulfate	492	4478	1190	10,828	1065.5	9691.8
34	Carbon tetrachloride	2350	15,280	8264	53,726	1314.4	8545.4
36	Dichloromethane	1601	18,846	873	10,280	1386.2	16,321.7
8	Methanol	5619	175,327	7289	227,414	1569.0	48,954.2
7	Ethylene glycol	4698	75,684	5498	88,567	1570.9	25,304.8
12	Sodium chloride	3002	51,370	4003	68,493	2287.3	39,138.9
9	Ethanol	7057	153,145	3448	74,837	4712.2	102,262.2
	LETHATION						
10	1,1,1-Trichloroethane	11196	83,927	7989	59,884	5707.6	42,785.8

Toxicity Categories

Category	Signal Word	Oral LD ₅₀ (mg/kg)	Dermal LD ₅₀ (mg/kg)	$\begin{array}{c} \text{Inhalation} \\ \text{LD}_{50} \\ (\text{mg/L})^2 \end{array}$	Oral Lethal Dose	Eye Irritation	Skin Irritation
I - Highly Toxic	DANGER, POISON (skull & crossbones), WARNING	0 to 50	0 to 200	0 to 0.05	A few drops to a teaspoonful	Corrosive (irreversible destruction of ocular tissue) or corneal involvement or irritation persisting for more than 21 days	Corrosive (tissue destruction into the dermis and/or scarring)
II - Moderately Toxic	CAUTION	>50 to 500	>200 to 2,000	> 0.05 to 0.5	Over a teaspoonful to one ounce	Corneal involvement or irritation clearing in 8-21 days	Severe irritation at 72 hours (severe erythema or edema)
III - Slightly Toxic	CAUTION	>500 to 5,000	>2,000 to 20,000	>0.5 to 2	Over one ounce to one pint	Corneal involvement or irritation clearing in 7 days or less	Moderate irritation at 72 hours (moderate erythema)
IV - Relatively Non-toxic	none	>5,000	>20,000	> 2	Over one pint to one pound	Moderate irritation at 72 hours (moderate erythema)	Mild or slight irritation at 72 hours (no irritation or slight erythema)

¹ EPA/OPP does not currently use the inhalation toxicity values in 40 CFR 150.10(h). Instead, OPP uses values that are from a 2/1/94 Health Effects Division paper entitled "Interim Policy for Particle Size and Limit Concentration Issues in Inhalation Toxicity Studies".

Sources:

- (1) U.S. EPA, Office of Pesticide Programs. Label Review Manual. Chapter 8: Precautionary Labeling. http://www.epa.gov/oppfead1/labeling/lrm/chap-0.8.htm.
- (2) National Ag Safety Database. Toxicity of Pesticides. http://www.cdc.gov/niosh/nasd/docs2/as18700.html.
- (3) 40 CFR 156.10(h) Labeling Requirements for Pesticides and Devices. Warnings and precautionary statements.

² Four hour exposure.

Appendix IV: Oral Acute Single Lethal Doses in Humans

		l I				Ref	Dose value Reference numbers	Pose values (g) e numbers	ues (g)				
o.	Chemical	LD/ MLD	10	=	12	13	14	15	16	17	15	19	Other references
1.	Paracetamol	ED	19							İ			
.2	Acetylsalicylic acid	MLD	10 33.6	10 17.5	>10 30	17.5	22.5	>10 25	17.5			10	
3A.	Fe ²⁺ in iron (II)	₽₽ E	16.8 16.8	17.5 17.5			20	ī (:	2			
	sulphate Iron (II) sulphate	MLD			2.1	1.5	1.5	15.7	11.5	7.7	23.2 4.28		
	Diazepam	. 55											
5.	Amitriptyline hydrochloride	MLD	O1		>2.1	20	12	- %	1.75			ю	
6.	Digoxin	T.D				0.005		0.015	0.0075				
7.	Ethylene glycol	E E E	:	111	0.001 100			11		111	111		
.e -	Methanol	; E E	3 =	70	123		67	150	111 123	119		111	
9. I	Ethanol	55	455	280	276			455	455		17.5	59	
10. 1	Isopropanol	MID E	132	188	196		196	188	157	188			98 (9, 59)
=	1,1,1-Trichloroethane	티											
12. P	Phenol	G G'I	20	4 × 42	>6.7						,		193 (60) , 802 (61)
	Sodium chloride	E D D	4.8 140	140	2	11.5					3 8	00	
		MLD											210

Table II: Oral acute single lethal doses in humans

Source: Ekwall et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616. (reprinted with permission from the editor)

26. 27. 28. 29.	21. 22. 23. 25.	16. 17. 18. 19. 20A.	14.
Arsenic trioxide Copper (II) sulphate Mercury (II) chloride Thioridazine hydrochloride Thallium sulphate	Theophylline Dextropropoxyphene hydrochloride Propranolol hydrochloride Phenobarbital Paraquat	2,4-Dichloro- phenoxyacetic acid Xylene Nicotine Potassium cyanide Lithium Lithium sulphate	Sodium fluoride Malathion
	######################################		MLD TD MLD LD
0.21 4.8	1.1 4.5	28 ^d 5.6 120 0.060 0.050 0.25	7.5
0.23 2.1 0.5 0.85 0.56	2.1	0.045 0.20	4.6
0.12	0.5 >1 1.5 0.28	6.5 245 0.14	1.2
	0.75 E9.6	0.040 0.045	55
	∞		2 5
0.25 15 2.5 0.5	1.28 E5.1 7.5	24.1 19.4 0.060 0.005 0.20 9.4 ^r	7.5 1 17.5
0.33 0.2 15 3.5 >3	0.78 ^h 4 7.5	53 0.045	7.5
0.2 15	0.65 0.15	28 12.9 0.05 0.20	7.5 60
10	0.64 1.2	0.05 0.25	4.5
0.1 15 0.5	7 5 1.5 0.075	21.5 0.045 0.2	
0.3 ^b	11 (63) 5.2 (9, 59)°	5.6 (9)°	70 (62) 25 (9, 59)°
0.29 0.18 14 9.3 1.5 0.5 4.2 0.98 0.68	11 5.4 0.71 0.86 5 1 7.8 4.8 4.8 2.5 0.18	27° 5.9 63° 61 0.05 0.036 0.21 0.20 9.4 nr 58	6.2 2.9 52 25

Table II: continued

						Ref	erence	Dose values (g) Reference numbers	ues (g)					
No.	Chemical	LD/ MLD	10	=	12	13	14	15	16	17	18	19	Other references	Mean doses
31.	Warfarin	I.D							7.5	7.5				7.5
32.	Lindane		15		F I			8.75		28				nr 17
ည	Chloroform	L.D.			3.5			44			96			3.5 70
2	Carbon totrachlorida	MLD	44	14.8	14.8			39 pe.f		14.8	,	22		22
	Carbon terracilloride	MLD	12		6.4			3.2	6.4			6.4		6.9
35.	Isoniazid	MLD	12.5 8	8		œ		14 8	00	12.5	14	10		12 8.4
36.	Dichloromethane	5 5			33.2				146°		2	110°		97
37.	Barium nitrate			2	2					3.9	4	•		2.4 2.6
38 .	Hexachlorophene				ST.					17.5	21	<u> </u>		15
39	Pentachlorophenol		•		•					2		2.25	2 (62)	2 2
40.	Verapamil hydrochloride	MLD	t	ယ	F				8.6 ^r	3.8%				3.4 3.4
41.	Chloroquine	55	2.5			7.2	œ		5.6		6.4			5.9
42 .	Orphenadrine Orphenadrine hydrochloride		2.8	2.8	5.5 ^d	2.8			2.8	-			2.2 (9)	3.3
43 .	Quinidine sulphate	UTI TTI	4			11.5			6 8	œ .	11.5 2			10 5

50. P	49. A	48. C		40. S		45. C	44. D
Potassium chloride	Atropine sulphate	affeine	Amphetamine sulphate	Soutum oxalate		Chloramphenicol	Diphenylhydantoin
MLD	M L M	55	MLD	MLD	5	MLD	MI.D U.D
	E0.10*	7.5				20	E7.5
	10	5	0.1	ç	30		9 1
	E0.1k	15	0.1	10	7		E21
	E0.2 ^k	7.5					
		7.5					
	0.10	10	0.15				
E45	0.2	12	0.5 0.12				တ
18 ^h	0.050			ţ	23	20	
16.2	0.1	5	1.4"	15			
	0.075	-	0.25	51			2
24 (65)				5 (64)		10 (62), 28 (9)°	
28 18	0.12 ^t 0.12	9.9 9.1	0.95	တ မ	23	20 19	21 6.8

high variability as well as tolerance makes it difficult to establish human LD.

POISINDEX, Information Systems (ed. B.H. Rumack & D.G. Spoerke), Micromedex (Denver, CO, USA).

Low LD.

"Extrapolated from animal dosage.

"Geometric mean value, when the quotient between original values (range) is larger than ten.

'Two lethal poisonings.

**ROne survivor and one dead.

**NOne death.

**12.5mg/kg lethal in 14 days (16),1g lethal in 13 days (17).

**Several survivors.

**Very variable.

**LD = mean lethal dose; MLD = minimal lethal dose; E = extrapolated; nr = not reported.

Appendix V: Clinically Measured Acute Lethal Serum Concentrations in Humans

300° 300° 300° 160° 300° 300° 1000 900b 800b 1000 10° 5 5 8.1° 20 5	300° 300° 300° 300° 1000 1000 900° 800° 1000 10° 5 5 8.1° 20 5	300° 300° 300° 300° 1000 10° 5 5 8.1° 20 5	* 300* 300* 300* 160* 300* 300* 1000 900b 800b 1000 10° 5 5 5 8.1° 20 5 5 0.003	300° 300° 300° 300° 1000 1000 900b 800b 10000 10° 5 5 8.1° 20 5 8.1° 1000 5 9000 4000 5000 5000	300° 300° 300° 300° 5 1000 900° 800° 1000 5 20 5 5 5 5 1000 5000 5000 5000 5000 2000 5000 1500 5000 5000
300° 300° 5	300° 300° 300° 160° 300° 1000 900° 800° 5 20 5	300° 300° 160° 300° 1000 900° 800° 5 20 5	300° 300° 300° 300° 1000 10° 5 20 5 1000	300° 300° 300° 300° 1000 1000 900° 800° 1000 10° 5 20 5 1000 5 1000 5 4000	300° 300° 300° 300° 300° 300° 300° 300°
900 ^b 800 ^b 1000 5	900 ^b 800 ^b 1000 5	900 ^b 800 ^b 1000 5	5 5 500 500 500 500 500 500 500 500 500	5 5 5 5 5 5 5 5 5 5 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	5 800° 1000 5 5 5 5 5 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
20 2.5			0.003	0.003 500 4000 5000 5000	500 4000 5000 1500
2.5 ^d			0.003	0.003 500 4000 5000 5000	500 4000 5000 1500
			0.003	0.003 500 4000 5000 5000	500 4000 5000 5000

Table III: Clinically measured acute lethal serum concentrations in humans

Source: Ekwall et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616. (reprinted with permission from the editor)

26. 27.	21. 22. 23.	16. 17. 18. 19.	13. 14.
Arsenic Copper	Theophylline Dextropropoxy- phene Propranolol Phenobarbital Paraquat	2,4-Dichlorophenoxy acetic acid Xylene Nicotine Cyanide Lithium	Sodium in sodium chloride Fluoride Malathion
MIC MIC LC	MIC MIC MIC MIC TC TC TC	MLC MLC LC MLC MLC MLC VY	MLC MLC LC LC LC
	100° 6 16 115	416 2.5	10800
	183 ¹ 3.3 ¹ 4.7 80	10	10800
3.9 ^d	ю		ယ
		24	
;	100		10800
		10 69	
	135 64 2 3.3 ¹	E50	14.2
,	130 ^m 1.8 ^d 3* 117	600 ^d 3.1 ^d 77°	14 ^{d,g}
1.5 4.5	150 110		
6 20	50 10 200	On On	ω
		43 (66) 11 ^{h,i} 5	4.4 (26)°
2.5 nr 5.5	150 · 79 8 8 1.9 6.4 3.9 136 100 2' 0.17	510 nr 47 11 5 5 10 ^f 2.9 72 ^k 24 ^k	nr 11000 ^f 8.6 nr E4.4 E0.35

Table III: continued

No. Chemical I.C. 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19								Co	ncentr	Concentrations (mg/l)	mg/l)				
Chemical MLC 10 11 12 13 14 15 16 17 18			2					Re	ferenc	es num	bers			Other	Mean con-
Mercury LC Thioridazine 0.22 but LC LC LC MLC 0.22 but LC LC LC MLC 0.65* 7.14 but LC LS dh 7.14 but LS dh 7.14 but LS dh 7.14 but LS dh 1.54h 1.54h 1074 but LS dh 1.54h 1074 but LS dh 1184 but LS dh 1074 but LS dh 1184 but LS dh	Z	Chemical	MLC/	10	=	12	13	14	15	16	17	18	19	ences	(mg/ml)
Thioridazine MLC MLC MLC >0.1 7.1 ^d 1.5 ^{d,h} Thallium LC MLC 1.5 ^{d,h} 1.5 ^{d,h} Warfarin LC MLC 0.3 107 ^d Lindane MLC MLC 0.5 165 ^q Chloroform LC MLC 165 ^q 20 ^{d,q} Carbon MLC MLC 10 1.8 ^{d,q} Barium LC MLC 10 5.6 ^d Hexachlorophene LC MLC 35.6° 52 ^e Pentachlorophene LC MLC 40 74 ^e	28.	Mercury	57.	3		2					0.65°		2	14.3 (67) ^{d,g}	d.,
Thallium LC MLC 0.3 1.5 ^{dh} 1.5 ^{dh} MLC 0.3 1.5 ^{dh} MLC 1.5 ^{dh} 1.5	29.	Thioridazine	LC C	0.22		>0.1					7.1 ^d		20		
Warfarin LC MLC MLC 0.92° 107d Lindane LC MLC 0.5 0.92° 107d Chloroform LC MLC 165° 165° 165° Carbon LC Soniazid MLC 10 1.8da 1.8da Barium LC MLC 10 5.6d 52° Hexachlorophene LC MLC 35.6° 52° 52° Pentachlorophenol LC MLC 40 74° 74°	30.	Thallium	MLC LC	0.3							1.5 ^{d.h}				
Lindane LC 0.92° MLC 0.5 165° Chloroform LC 165° Carbon LC 10 Isoniazid MLC 10 Dichloromethane LC 10 Barium MLC 10 Hexachlorophene LC 35.6° Hexachlorophenol LC 35.6° Pentachlorophenol LC 40	31.	Warfarin	MIC LC									107 ^d		110 (26) ^{d,g}	*
Chloroform LC MLC 1659 20 ^{d.g} Carbon LC 20 ^{d.g} tetrachloride MLC 1.8 ^{d.g.} Isoniazid LC 10 Dichloromethane LC 10 Barium LC MLC Hexachlorophene LC 35.6° Pentachlorophenol LC 35.6° MLC 40 74°	32.	Lindane	MIC S							0.5	0.92°				
Carbon tetrachloride LC tetrachloride 20 ^{d,4} 1.8 ^{d,6} 1.8 ^{d,6} Isoniazid LC IO 1.8 ^{d,6} Dichloromethane LC MLC 10 Barium LC MLC 10 Hexachlorophene LC 35.6° 52° Pentachlorophenol LC MLC 74° Pentachlorophenol LC MLC 40	33 3	Chloroform	MLC								165°		4 00 200զ		
Isoniazid LC MLC 10 77°	34.	Carbon tetrachloride	MLC								20 ^{d.} *		_		
Dichloromethane LC MLC Barium LC MLC Hexachlorophene LC 35.6° Pentachlorophenol LC MLC Pentachlorophenol LC MLC MLC MLC MLC MLC MLC MLC	35.	Isoniazid	LC MLC		10						77°				
Barium LC MLC Hexachlorophene LC 35.6° MLC Pentachlorophenol LC MLC MLC AU MLC MLC MLC MLC MLC MLC MLC MLC	36.	Dichloromethane											300'		
Hexachlorophene LC 35.6° MLC Pentachlorophenol LC MLC 40	37.	Barium									n n			97 (26) ^d	
Pentachlorophenol LC MLC 40	38 .	Hexachlorophene		35.6°							52				
	39.	Pentachlorophenol	MLC	40							74°				1

40.	41.	42.	4 3		44.	4 5.		46.	47.	48 .	49.	50.
Verapamil	Chloroquine	Orphenadrine	Quinidine		Diphenylhydantoin	Chloramphenicol		Oxalate	Amphetamine	Caffeine	Atropine	Potassium
MLC	55	LC MLC	LC MLC	MLC	S C	ر ا	MLC	MIC	M C	MLC	Σ M E	
30	10 ^d		6	14	95	S				150		397
		6	16.8 ^d		7	S						
3				10								
	œ						75 ^t			150		
				9								
4.1	9						68'					
44 d. 80	22 ^d	3.ნ	14 6d		98	190°	68'	20°		135d	0.13 ^{d.}	3644
									4	160 ^{d.g}		352
	4		40	;	80			20	22	150		
								20 (26)*				
		nr 4.8	_			য় ,	_ •			150	. 평.	2 (2

^aAfter 4 hours. ^bAfter 6 hours. ^cAfter 3 hours. ^dAs judged from high survived concentrations. ^cSD analysis. ^fThis value will substitute for the presented LC value in calculations based on LC values. ^eBased on one case only. ^bGeometrical mean value from a range of values with a quotient larger than ten. ^cTOMES information Services (ed. B.H. Rumack & D.G. Spoerke), Micromedex (Denver, CO, USA). ^fAlso 69mg/l as judged from high survived concentrations in reference 16. ^hMay include acute chronic dosage. ^cPeak concentration. ^mS/D: 90/170 = 130 mg/l (17). ^aAcute dosage. ^cIn blood. ^pRepresents acute on chronic dosage: no reports on single-dose lethal poisonings. ^aPlane 4 anaesthesia. ^cValue probably originating from forensic medicine data. ^aReported value of 90mg/l, which seems too high. ^aGrey baby syndrome.

E = estimated | extrapolated; LC = mean lethal serum concentration; MLC = minimal lethal serum concentration; S/D = high survived andlethal concentrations from case reports, with a resulting mean value; nr = not reported

Appendix VI: Post-Mortem Acute Lethal Concentrations in Humans

		•				Re	Reference numbers	Reference numbers		Other	Mean con-
, N	Chemical	MLC	17	20	21	22	23	24	25	refer- ences	centration (mg/ml)
-	Paracetamol	LC	248		250	280^			160		230
.2	Salicylic acid	LC C	661	160 500	160 500	732	150	250	700		18 62
ယ	Iron	LC C	9.0 ^b	35			450	450			450 22
	Diazepam	LC	18							10 (68)	nr 14
5	Amitriptyline	LCC	3.7	20 6.32 ⁿ	သ သ သ	50 5.58°			8	50 (69)	4.2 4.2
		MLC			,0.55°		1.5	1.75			1.3
6.	Digoxin	N I C	0.025	0.015	0.0103°				0.015		0.01
7.	Ethylene glycol		2400	3000	2400		0.005	0.005			0.00 260
.	Methanol	C (1900	2	1900				1 1 1		300 190
9	Ethanol		5500	3500	4000°	8			900 5000		480 480
10.	Isopropanol	MLC	1500	3000	1000	4000					1500 1000
11.	1,1,1-Trichloroethane	, C	126		80°				316*		170
12.	Phenol	C C E	49	90	10				90		15 76
3.	Sodium in									13000 (26)*	nr 13000

Table IV: Post-mortem acute lethal concentrations in humans

Source: Ekwall et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616. (reprinted with permission from the editor)

0. 9. 8. 7. 6.	5 4 3 2 2	16.	15.
Arsenic Copper Mercury Thioridazine Thallium	Theophylline Dextropropoxyphene Propranolol Phenobarbital Paraquat	2,4-Dichlorophenoxy- acetic acid Xylene Nicotine Cyanide Lithium sulphate	Fluoride Malathion
MLC	MLC MLC MLC MLC MLC MLC MLC	MTC C MTC MTC MTC MTC MTC MTC MTC MTC MT	MLC MLC TC
3.3 36 4.2 5.1 4.0	150 4.7 14 97 1.2 ^{a.h}	464 43 29 24.7 31.9°	15 281
12.5° 12.5° 4.24° 0.5	150 4.1° 10 80 35	10.9 16° 3.7	2
25 15	50 15 2 2 9 4 4.3 4.3 1.2	13.4 ^{a,b} 25 5 5 13.9	သ
2.36* 0.58	7.7° 16 210	669 17.7° 7.6°	
10	50 7 80		
11.5	50 1.5 7	13.6	
0.6	150 7 125 2	10.9 3.7 35	10
3.3 (27) ^c 2.4 (27) ^d			
8.2 nr 24 nr 2.4 0.6 4.9 6.5 5.3	150 50 7.9 1.8 11 6 120 120 3.2°	570 nr 20 nr 22 9.3 9.9 ^f 5 ^f 34 ^g	5.5 nr 280

Fable IV: continued

						Conc	Concentrations (mg/l)	ıs (mg/l)		
		2				Kei	Keference numbers	mbers		oiner refer-
Ç	Chemical	MLC/	17	20	21	22	23	24	25	ences
=	Warfarin	LC					,	;	:	100 (28
Š	•	MLC			>10		> 10	> 10	> 11	
32	Lindane	MIC C	0.02°.k							
:: :::	Chloroform	50	64	390	30°	29			390	
34.	Carbon tetrachloride	COL	274h		260				150	
5	Isoniazid	I.C.C	117 ^b		150°		3	.		
36	Dichloromethane	MIC LC	364	280	395 ^h	496			280	
37.	Barium	Z []	1 Q e,l							< 20 ^{e,l,m}
38 8	Hexachlorophene	55	35	35					35	
39 .	Pentachlorophenol	<u> </u>	107	46	99				4.57	
40.	Verapamil	MLC	11	6.4	;			2.5	6	
41.	Chloroquine	LC LC	30.5	17.2°	3 10	11.2°	<u>4</u> Л	ယ	ယ	
42.	Orphenadrine	LC MLC	20.6	6	. ග ເ	16.7	ı ;	, .	6	
έŝ	Quinidine	LCC	45°	40	55.4	40	; ~	9.0	40	
44.	Diphenylhydantoin	LO C	54°.n		948		7 5	T 0	100	
		MLC		190	6		20	90		
1										

Table V: Human kinetic dataⁿ

Appendix VII: Human Kinetic Data

1. 2A 2B S. 19 17 18 16 Ξ Sodium chloride Sodium fluoride Malathion Paracetamol Acetylsalicylic Salicylic acid Xylene Nicotine Phenol 1,1,1-Trichloroethane Chemical Lithium sulphate Potassium cyanide 2,4-Dichlorophenoxy-Isopropanol Ethanol Methanol Digoxin Ethylene glycol Amitriptyline Diazepani hydrochloride ron (II) sulphate acetic acid Complete Complete Complete Good Good Complete Good* Complete Good Complete¹ Good Good Absorption in the gut^b Complete Complete Complete Complete Moderate Complete 2-5 hours*
1-4 hours
0.5-1.5 hours Time to peak (ingestion) 2-4 hours*
1-3 hours
20 hours* 1.5 hours > 0.5 hours? 5 hours*
> 1 hours*
1-5 hours* 0.5-> 4 hours* 0.5-> 3 hours < 1 hour* E0.5 hours 1 hour? 12-24 hours* 7-24 hours hour Zero-order Zero-order Biphasic Biphasic Biphasic Biphasic First-order? Zero-order Biphasic Biphasic Biphasic Biphasic First-order Multiphasic Zero-order Zero-order First-order Biphasic? Triphasic First-order Kinetics Biphasic > 12 hours* 0.27 hours 27 hours* 0.7, 6 and 53 hours 48 hours*
8.4 hours* 96 hours* 8 and 27 27 hours*
4 hours* 1 and 25 hours 10 minutes hours* 58 hours*p 2.8 hours 5.4 hours* hours*
3-12 and 5.5 hours and 2.2 hours and 6-66 ⊢65 hours' **T**1/2° <u>₹</u> 4 0.65 0.65 0.6 0.9 0.2 0.17 n.7 1.1 nr 0.64 0.6 > **1*** 0.2^{\bullet} Passage of blood-brain barrier Free Restricted Restricted Restricted Free Free Free Free Free?
Restricted
Restricted
Restricted
Free
Free Free Free Restricted Free Restricted Free Heart, kidney Liver, kidney Kidney, liver None None CNS, liver, kidneyk Liver, kidney, lung, heart, CNSk CNSk Accumulation in vital organs CNS None Lipid-rich organs^k CNS, liver, kidney^{f,k} None Erythrocytes^t None (bone only) Kidney, liver, CNSm Liver, kidney Liver,' kidney Liver, kidney' Blood protein binding 30-70% 20-50% High 30-70%? 34, 35 Refer-ences^d 36 37-39 <u>5</u>6, 32, 33 ω 5 15 6 30

Source: Ekwall et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616. (reprinted with permission from the editor)

_
7 :3
First-order? 40 minutes 0.6? Free Triphasic 3.6, 34 and nr Restricted Binhosic?* 1032 daug**
3
Biphasic* 11 and 43 hours* nri Free
First-order? 1.5 hours 2.6 Free
First-order 22-96 hours* 0.11* Restricted Biphasic* 21 hours and nr Free 10 days?*
Biphasic* 48 and 96 4.6 Restricted hours?*
Multiphasic 26 hours 18 Free
Biphasic 2 and 24-50 > 1 Restricted
Biphasic 2-3 hours and 2 Restricted
Biphasic*r 1-2 and 30 0.2? Restricted
5 and 84 hours* 1.4*
hours*? First-order 100 hours* 0 6 Free
Biphasic? 3.9 and 16 4.3 Free
Biphasic* 5 and 15 hours* 16 Free
Biphasic* 17 minutes and 0.5 Free

Table V: continued

o.	Chemical	Absorption in the gut ^b	Time to peak (ingestion)	Kinetics	Т½°	Vd Vkg	Passage of blood-brain barrier	Accumulation in vital organs	Blood protein binding	Refer- ences ^d
4	Chloroquine	Good	1-3 hours*	Triphasic	2, 7 and 45	94	Free	Heart, liver, kidney,	55-61%	16, 49
	phosphate				days**			lung, erythrocytes"		
42	Orphenadrine	Good	3 hours	First-order	15 hours	6	Free	CNS, liver, lung*	20-95%	16, 50, 51
	hydrochloride			Biphasic?*	6 and 15 hours*					
43	Quinidine sulphate	Good	> 2 hours*	First-order?	> 7.8 hours*	27*	Restricted	Liver, kidney, heartk	60-90%	15, 16
44.	Diphenyl-	Poor/good	30-120 hours*	Zero-order	24-230 hours**	0.6*	Free	Liver, kidney, CNS	60%*	52
	hydantoin			and first- order*						
45.	Chloramphenicol	Good	2-3 hours	First-order	2.5 hours	1.2	1.2 Free	Liver, kidney	55%	
46	Sodium oxalate	Poor	6 hours?	First-order?	4 hours?*	E0.4	E0.4* Restricted	Kidney, liver	n	26, 64
47.	Amphetamine sulphate	Complete	1-4 hours*	First-order?	7-34 hours ^p	ა 6.1	3-6.1 Free	Liver, kidney	16%	15, 16
48	Caffeine	Complete	1 hour	First-order?	9-16 hours*	0.6	Free	None (liver 2x)	35-60%	
49	Atropine sulphate	Good	> 2 hours*	-	3.5 hours	ယ	Free	Kidney, liver	50%	53, 54
50.	Potassium chloride	Complete	0.5 hours		nr	Ħ	Free?	None	None	65%
				-						

poor = 0-20%. One value indicates T1/2 of the elimination phase. Successive values represent separate phases (alpha, beta, etc.). Other than references 10, 11, 13, 14 and 17. 'Non-linear in overdose? Inso a biotransforming organ. *POISINDEX*, Information Systems (ed. B.H. Rumack & D.G. Spoerke), Micromedex (Denver, CO, USA). Absorbed as acetylsalicylic acid. Due to corrosivity. Probably large, i.e. around 51/kg; *Early accumulation. 'Documented first therapeutic doses, i.e. bioavailability is decreased by rapid binding in the liver of a large fraction of the absorbed dose (25–85%). For most such chemicals, passage of the intestinal mucosa is probably complete. However, the term "good" is "Data for the overdose situation are indicated by an asterisk* bAbsorption: complete = 100% and rapid, good = 80%, moderate = 20-80%, and ability). "Slow accumulation. "Alpha phase: 2.9 hours. Probably large Vd and protein binding. PpH-dependent. "Dependent on formulation." Biphasic up to 160 hours. "TOMES", Information Systems (ed. B.H. Rumack & D.G. Spoerke), Micromedex (Denver, CO, USA). 'Varies often used in this table, based on literature reports on the total absorption (the sum of intestinal passage and first pass reduction of bioavail between rapid and slow acetylators. "Alpha-phase: 3 hours in overdose. "Dose-dependent

nr = non reported; CNS = central nervous system (brain); GIT = gastrointestinal tract (gut); T1/2 = plasma half-life; Vd = distribution vol

Appendix VIII: Peaks from Approximate 50% Lethal Concentration (LC50) Curves

MEIC evaluation part V: rodent and human toxicity data

597

Table VI: Peaks from approximate 50% lethal concentration (LC50) curves^a

						Case rep	orts	
No.	. Chemical	Time to peak (hours)	Peak conc. mg/l	Type of curve	Sub- lethal	Lethal (clinical)	Lethal (post- mortem)	Total
1.	Paracetamol	4	358	LC50	81	62	0	143
2	Salicylic acid	20	1070	LC50	31	46	1	78
3.	Iron	4	43.5	LC50	15	12	0	27
4.	Diazepam	2	19.9	LC100	4	0	0	4
5.	Amitriptyline	6	1.69	LC50	8	6	10	24
6.	Digoxin	3	0.071	LC50	15	9	1	25
7.	Ethylene glycol	2.5	1550	LC50	28	12	9	49
8.	Methanol	2	3790	LC50	76	37	7	120
9.	Ethanol	1	8440	LC50	20	1	143	164
	Isopropanol	1	4960	LC50	13	2	2	17
11.	1,1,1-Trichloro- ethane	1	231	LC50	3	0	2	5
12	Phenol	0.5	80	LC50	3	0	4	7
	Sodium in sodium chloride	5	11700	LC50	3	9	1	13
14	Fluoride	3	19.4	LC0	3	3	7	13
	Malathion	5	1.88	LC0	2	1	11	14
16.	2,4-Dichloro- phenoxyacetic acid	14 d	1125	LC50	7	1	4	12
17.	Xylene	1	110	LC0	3	0	1	4
	Nicotine	0.5	13.5	LC0	1	1	3	5
	Cyanide	0.5	16.4	LC50	12	9	10	31
20.	Lithium	3	97.2	LC100	4 ^b	0	0	4 ^b
21.	Theophylline	12	180	LC50	57	18	1	76
22.	Dextropropoxy- phene	2	8	LC0	2	1	6	9
	Propranolol	4	3.11	LC50	6	2	1	9
24.	Phenobarbital	15	230	LC50	20	1	0	21
25. —	Paraquat	2.5	12.6	LC50	23	66	16	105
26.	Arsenic	4	1.65	LC50	10	8	3	21
27.	Copper	11	15.9	LC50	10	5	1	16
	Mercury	12	40.1	LC50	12	2	4	18
29.	Thioridazine	4	4.08	LC50	1	1	4	6
30.	Thallium	24	7.35	LC50	25	5	2	32

^aFrom reference 26.

Source: Ekwall et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616. (reprinted with permission from the editor)

^bDocumented single-dose cases (not overdose on previous medication).

598 B. Ekwall et al.

Table VI: continued

					Case rep	orts	
No. Chemical	Time to peak (hours)	Peak conc. mg/l	Type of curve	Sub- lethal	Lethal (clinical)	Lethal (post- mortem)	Total
31. Warfarin	6	200	LC0	3	0	0	3
32. Lindane	6	1.3	LC0	5	2	1	8
33. Chloroform	2	490	LC50	2	0	5	7
34. Carbon tetrachlori	de 6	5.8	LC50	5	1	1	7
35. Isoniazid	3	167	LC50	24	3	4	31
36. Dichloromethane	3	344	LC0	0	0	9	9
37. Barium	2	305	LC100	9	0	0	9
38. Hexachlorophene	5	116	LC50	2	1	1	4
39. Pentachlorophenol	10	79.1	LC50	1	0	3	4
40. Verapamil	2	13.2	LC50	10	9	4	23
41. Chloroquine	2	9.41	LC50	4	1	9	14
42. Orphenadrine	$\overline{2}$	11.3	LC50	6	1	8	15
43. Quinidine	<u>-</u>	26	LC50	4	$\dot{2}$	Ō	6
44. Diphenylhydantoir	_	202	LC50	13	1	Ò	14
45. Chloramphenicol	6	180	LC0	5	4	0	9
46. Oxalate	6	110	LC0	1	1	0	2
47. Amphetamine	2	15.5	LC50	î	î	5	7
48. Caffeine	3	179	LC50	6	Ô	4	10
49. Atropine	3	4.05	LC100	2	ŏ	Ô	2
50. Potassium	1	375	LC0	4	š	í	8

^bDocumented single-dose cases (not overdose on previous medication).

a few organs are routinely screened for chemicals, such as blood, heart, liver, kidney, brain and lung. Thus, the information on body distribution is often limited to these organs.

The qualitative human toxicity data

The human toxicity data presented in Table IX are the result of a study of references 10–17, in a few instances supplemented by data from other sources. In the same way as the kinetic data in Table V, the toxicity data represent the sum of the information from all the handbooks consulted. The classification of lethal symptoms into main causes and other causes of death, as well as the classifi-

cation of lethal action into known, unknown and hypothetical mechanisms, represent judgements by the handbook authors. However, the lists of lethal symptoms in various handbooks have been extensively edited to provide uniform terminology. The handbook authors have used a plethora of terms for essentially the same type of event. To mention only one example, circulatory failure in Table IX stands for vascular collapse, vasomotor collapse, shock, circulatory shock, hypovolaemic shock, hypotensive shock, and so on.

Potentially the most controversial data in Table IX are those that are based on mecha-

Appendix IX: Human Acute, Single-Dose Toxicity Data

No.	No. Chemical	Lethal symptoms*	Mean time to death	Danger over	Target	Toxic metab- olites ^b	Lethal mechanisms
-	Paracetamol	Hypoglycaemic coma Liver failure M Kidney failure	3–5 days	nr	Liver P Kidney P (CNS)	More toxic intracellular metabolites	Known: Covalent NAPQI binding and lipid peroxidation
5	Acetylsalicylic acid	Metabolic acidosis M Cerebral bleedings Pulmonary oedema Cardiovascular failure	48 hours	nr	Kidney P Liver P CNS P Lung P GIT P	Salicylic acid is the reactive metabolite of the parent compound	Known: General cell poison. Uncoupling of oxidative phosphorylation, inhibition of Kreb's cycle dehydrogenases
,ω	Iron (II) sulphate	Haematemesis GIT perforation Pulmonary oedema CNS excitation/depression Circulatory failure Liver and kidney failure	6 or 48 hours	72 hours	GIT P Liver P Kidney CNS CVS Lung P	tp	Known: General cell poison. Inhibition of oxidative phosporylation and ATP; lipid peroxidation
4	Diazepam	CNS depression M	2 hours	3 hours	CNS	(Nordiazepam) Unknown	Unknown
57	Amitriptyline hydrochloride	CNS excitation/ depression Heart arrythmias/arrest M	< 12 hours	6 days	CNS Heart	(Nortriptyline)	(Nortriptyline) Hypothetical: Blocks noradrenaline, 5-HT and dopamine presynaptic uptake; prevents reuptake of heart noradrenaline
6	Digoxin	Heart arrythmias/ arrest M Hyperkalaemia	7 hours	20 hours	Heart GIT CNS	(Metabolites)	Known: Impairing ion transport and increasing sarcoplasmic Ca by binding to Na/K ATPase, increasing automaticity of cells

Table IX: Human acute, single-dose toxicity data

Source: Ekwall et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616. (reprinted with permission from the editor)

13.	12.	=	10.	9	œ	7.
Sodium chloride	Phenol	1,1,1-Tri- chloroethane	Isopropanol	Ethanol	Methanol	Ethylene glycol
CNS excitation/depression M 20 hours Cerebral bleedings Cardiovascular failure Pulmonary oedema Vasculitis	CNS excitation/depression M Heart arrest/pulmonary oedema Liver and kidney failure	CNS depression M Heart arrythmias Cardiovascular failure Pneumonia	CNS depression M Cardiovascular failure Pneumonia	CNS depression M Cardiovascular failure	CNS depression M Metabolic acidosis Cardiovascular failure	1-12 hours: CNS excitation/depression M 12:24 hours: heart failure 24-72 hours: kidney failure
20 hours	1 hour	3 hours	3 hours	6 hours ^d	32 hours ^d 173 hours ^r	17 hours
25 hours	24 hours	4 hours	48 hours	12 hours	nr	72 hours
CNS P Lungs Kidney VS P	CNS Heart Liver Kidney GIT P	CNS P CVS Lung P	CNS CVS Lung P	CNS CVS	CNS P° Pancreas P Liver P Kidney P Heart P	CNS Heart P Kidney P
tр	tp	t p	tp	(Acetaldehyde) Hypothetical: Interference fluidity, pertu such as ion cl of postsynapt	Formaldehyde Formic acid	Glyoxalate Glycolate Oxalate
Known: Acute dehydration of brain cells caused by osmotic shift of water to the outside of the blood-brain barrier	Known: General protoplasmic poison that denaturates proteins	Unknown	Unknown	Hypothetical: Interference with cell membrane fluidity, pertubing proteins, such as ion channels. Depression of postsynaptic potentials in CNS	Hypothetical: Accumulation of formic acid leads to metabolic acidosis. Lactate inhibits mitochondrial respiration	Hypothetical: Metabolites inhibit mitochondria, leading to metabolic acidosis. Oxalate decreases S-Ca
	18, 34		60x			

Table IX: continued

No. Chemical I	14. Sodium fluoride (15. Malathion I		16. 2,4-Dichloro- phenoxyacetic acid	2,4-Dichloro- phenoxyacetic acid	2,4-Dichloro- phenoxyacetic acid Xylene Nicotine
Lethal symptoms*	Cardiovascular failure CNS excitation/depression	Early: Cholinergic crisis/ respiratory failure M Later: Heart failure	Heart arrythmias/arrest	Heart arrythmias/arrest Hyperthermia/myotonia CNS excitation/depression Metabolic acidosis Heart failure Liver failure	Heart arrythmias/arrest Hyperthermia/myotonia CNS excitation/depression Metabolic acidosis Heart failure Liver failure CNS depression M Heart arrythmias/arrest Heart failure Pulmonary oedema	Hyperthermia/myotonia CNS excitation/depression Metabolic acidosis Heart failure Liver failure CNS depression M Heart arrythmias/arrest Heart failure Pulmonary oedema CNS excitation/depression M CNS excitation/depression M
Mean time to death	2–4 hours	0.5-6 hours		8-96 hours	8-96 hours 1-2 hours?	8-96 hours 1-2 hours? minutes -1 hour
Danger over	20 hours	24 hours	5	48 nours	48 nours	72 hours
Target organs	Hearth CNSh Liver Kidney	CNS Muscles Heart P		CNS P Liver P Kidney P Heart	קר ע" קר ה	PP
Toxic metab- olites ^b	ę	Maloxon		tp	t t	tp tp
Lethal mechanisms	Hypothetical: Protoplasmic poison interfering with many enzymes. May lower S-Ca and induce potassium efflux from cells	Known: Inhibition of acetylcholine esterase resulting in acetlycholine accumulation in CNS and effector organs		Hypothetical: Hypermetabolism due to Hypermetabolism due to uncoupling of oxidative phosphorylation. Direct toxin to striated muscle	Hypothetical: Hypothetical: Hypermetabolism due to uncoupling of oxidative phosphorylation. Direct toxin to striated muscle Unknown: Heart failure caused by sensi- tisation of myocardium to endogenous catecholamines?	Hypermetabolism due to uncoupling of oxidative phosphorylation. Direct toxin to striated muscle Unknown: Heart failure caused by sensitisation of myocardium to endogenous catecholamines? Known: Cholinergic block causing polarisation of CNS and PNS synapses
Refer- ences						

25.	24.	23.	22.	21.	20.
Paraquat	Phenobarbital	Propranolol hydrochloride	Dextropropoxy- phene hydrochloride	Theophylline	Lithium sulphate
Early (24 hours): CNS excitation Pulmonary oedema Heart failure Kidney failure M Liver failure (48 hours-6 days): Pulmonary fibrosis M	CNS depression M Circulatory failure	CNS excitation/depression Cardiovascular failure Bronchospasm	CNS excitation/depression Heart arrythmias/arrest Cardiovascular failure	CNS excitation M Metabolic acidosis Heart arrythmias Electrolyte disturbances GIT bleedings	CNS depression Circulatory failure Kidney failure
3 hours- 4 weeks	5 hours- 7 days	0.5-2 hours	0.5-2 hours	1-5 days	1-7 days
nr	10 days	4-20 hours CNS Hear VS	24 hours	nr	7 days
Lung P Kidney P Heart P Liver P CNS P	CNS Heart	s CNS Heart VS	CNS Heart	CNS Heart (GIT)	CNS Heart Kidney
tp	ф	tp?	(Norprop- oxyphene)	tp	ф
Hypothetical: Multisystem failure due to depletion of superoxide disputase, formation of free-radicals, and lipid peroxidation. Lung fibrosis due to accumulation of paraquat in this oxygen-rich organ	Hypothetical: CNS depression through inhibition of GABA synapses? Inhibits hepatic NADH cytochrome oxidoreductase	Unknown: Beta-adrenergic blockade?	Hypothetical: Binds to morphine receptors. Stabilises cell membranes. Norpropoxyphene is a primary cardiotoxin	Unknown: Inhibits prostaglandins and cGMP metabolism. Adenosine receptor antagonist	Unknown: Partial substitution for normal cations of cells may disturb energy processes?

Table IX: continued

No. Chemical	26. Arsenic trioxide	27. Copper (II) sulphate	28. Mercury (II) chloride	29. Thioric	
cal		(e	ē (II)	Thioridazine hydrochloride	Thallium sulphate
Lethal symptoms ^a	Gastroenteritis Circulatory failure Heart failure Heart failure Pulmonary oedema Intravascular haemolysis Kidney failure Liver failure CNS excitation/depression	Liver failure Kidney failure Intravascular haemolysis Circulatory failure C'NS excitation depression	Gastroenteritis Circulatory failure Kidney failure	CNS depression Heart arrythmias/arrest M	Gastroenteritis Cardiovascular failure M Respiratory failure Kidney failure
Mean time to death	l hour-4 days	3 hours-7 days	3 hours-14 days	2-10 hours	24 hours-3 weeks
Danger over	4 days	4 days	14 days	nr	4-5 weeks
Target	Ridney P Heart Liver P VS P CNS P GIT P	Liver P Kidney VS	Kidney P VS GIT P	CNS Heart	Heart P VS Kidney P Liver P CNS P
Toxic metab- olites ^b	th	t p	tp	(Mesoridazine?) Unknown	tp
Lethal mechanisms	Known: Cellular poison. Multisystem failure due to uncoupling of oxidative phosphorylation and inhibition of pyruvate and succinate oxidative pathways	Hypothetical: Cupric copper is reduced to cuprous form by thiol groups in cell membranes. Superoxide is formed by reoxidation of cuprous copper, which induces lipid peroxidation	Hypothetical: Changes membrane potentials and blocks enzyme reactions in cells by targeting the sulphydryl part of active sites of some enzymes	Unknown	Hypothetical: Enzyme inhibition by binding to sulphydryl groups of mitochondrial membranes.
Refer- ences ^c	-	18			18

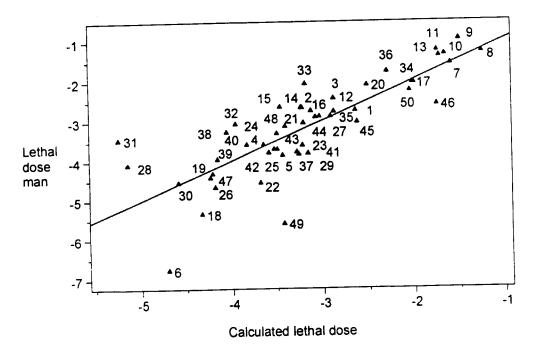
36.	35	34	33	3 2 .	32
Dichloromethane	Isoniazid	Carbon tetrachloride	Chloroform	Lindane	Warfarin
Dichloromethane CNS depression M Heart arrythmias Pulmonary oedema Metabolic acidosis	CNS excitation M Metabolic acidosis Circulatory failure CNS depression Liver failure	CNS depression ^k Kidney failure ^l Liver failure ^l Heart arrythmias/arrest	CNS depression M Heart arrythmias/arrest Liver failure Kidney failure	CNS excitation/depression M Pulmonary oedema Metabolic acidosis	Bleeding M'
2 hours	14 hours-3 days	24 hours-7 days	10 minutes-5 days	1 hour-8 days 8 days	36-48 hours
3 hours	n,	7 days	5 days	8 days	nr
CNS Heart	CNS Liver P	CNS P Heart Kidney P Liver P Pancreas	CNS Heart P Liver P Kidney P	CNS Heart VS P Kidney P Muscle P	Liver VS
(Carbon monoxide)	(Intracellular metabolites)	More toxic intracellular metabolites?	More toxic intracellular metabolites?	tp?	(Metabolites?)
Unknown: Carbon monoxide-haemoglobin complex formation?	Hypothetical: Interference with metabolism of vitamin B6 reduces GABA and seizure threshold. Conversion of acetylhydrazine (ICM) to alkylating agent	Hypothetical: Covalent binding of toxic intracellular metabolites (see ahove). Free-radicals inducing lipid peroxidation?	Hypothetical: Liver and/or kidney injury through covalent binding of toxic metabolites, for example, phosgene, to cell proteins and lipids	Unknown: CNS depression through inhibition of TBPS binding to the GABA receptor linked chloride channel, leading to blockade of chloride influx into neurons?	Known: Inhibition of liver synthesis of vitamin K-requiring clotting factors, notably prothrombin. Direct action on capillaries?

Table IX: continued

41.	40.	39.	38.	37	Z
Chloroquine phosphate	Verapamil hydrochloride	Pentachloro- phenol	Hexachlorophene Early: Gastr Hyper Circul 12-18 excita 48-60 arryth	Barium nitrate	No. Chemical
Cardiovascular failure Cardiac arrythmias/arrest M CNS excitation/depression Hypokalaemia	Circulatory failure Heart arrythmias/arrest Metabolic acidosis CNS depression Hypoglycaemia	Hyperthermia CNS excitation/depression Circulatory failure Myotonia Metabolic acidosis	Early: Gastroenteritis Hyperthermia Circulatory failure 12–18 hours: CNS excitation/depression 48–60 hours: Heart arrythmias/arrest	Muscle paralysis/ respiratory failure Heart arrythmias/arrest High blood pressure Convulsions	Lethal symptons*
1-24 hours	24 hours	4-24 hours	4–60 hours	2-3 hours or 2-3 days	Mean time to death
24 hours	36 hours	24 hours	3 days	24 hours	Danger over
Heart VS CNS	VS Heart	Heart P VS CNS Liver P Kidney P	GIT VS Heart CNS"	Muscle ^m Heart (Kidney)	Target organs
tp	(Metabolites)	tp	tp	tр	Toxic metab- olites ^b
Hypothetical: Stabilisation of cell membranes leading to reduction of excitation and conduction in heart. Interference with mitochondria	Known: Inhibition of transmembrane Ca flux in excitatory tissues. Also alpha-adrenergic blocking	Hypothetical: Uncoupling of oxidative phosphorylation. Protein binding, including selective enzyme inhibition (liver/kidney P450)	Hypothetical: Uncoupling of oxidative phosphorylation in cells. Binding to proteins in cytoplasma membrane and cell organelles	Hypothetical: Neuromuscular depolarisation. Potassium is forced into cells by an action on Na/K ATPase?	Lethal mechanisms
			47	19	Refer- ences

Initially (minutes): 3 hours nr Gastroenteritis Circulatory failure Later (hours): CNS excitation/depression Heart Arrythmias/arrest	GIT CNS Hea Kid	GIT tp CNS ^b Heart ^b Kidney
Cardiovascular failure 5 hours-2 nr CNS excitation/depression days Metabolic acidosis (Liver and kidney failure)	Hea VS CNS Live Kid	Heart tp VS CNS Liver Kidney
(Nystagmus/ataxia) 30 hours-14 14 days CNS excitation/depression M days Heart arrythmias/arrest°		s CNS tp (Cerebellum) Heart
Early: 6 hours? nr Heart failure Heart arrythmias/arrest M Later: CNS excitation/depression Kidney failure	Hea VS CNS Kida	Heart tp? VS CNS Kidney
CNS excitation/depression 1-48 hours 24 hours (max. 2-5 hours) M Heart arrythmias (max. 12-18 hours) Heart failure Liver failure		ırs CNS tp? Heart Liver P

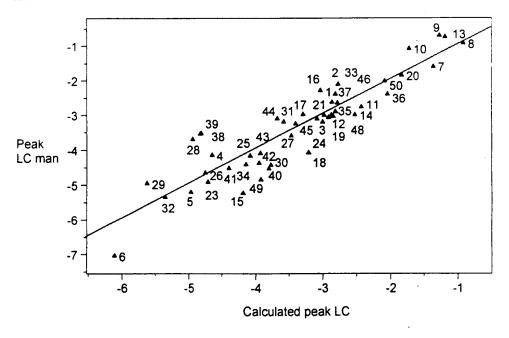
Table IX: continued


No. Chemical	48. Caffeine	49. Atropine sulphate
Lethal symptoms*	Initially (3 hours): Heart arrythmias/arrest Pulmonary oedema Later (3 hours-3 days): CNS excitation/depression	(Psychosis/hyperthermia) (NS excitation/depression Heart arrythmias/arrest M
Mean time to death	3 hours-3 days	15 hours
Danger over	nr	24-48 hours
Target organs	Heart CNS	CNS Heart PNS
Toxic metab- olites ^b	tр	tp
Lethal mechanisms	Hypothetical: Inhibition of phosphodiesterase leading to AMP accumulation. Translocation of intracellular calcium? Adenosine receptor antagonism?	Known: Antimuscarinic, anticholinergic action. Competitive antagonism of acetylcholine at cardiac and CNS receptor sites
Refer- ences		19

*Arranged in order of appearance, when possible. Characteristic but non-lethal symptoms have generally been omitted. CNS excitation stands for seizures, and CNS depression stands for all phases of coma including final respiratory arrest. For chemicals with multisystem stands for seizures, and CNS depression stands for all phases of coma including final respiratory arrest. For chemicals with multisystem stands for a very rapid action, it is difficult to indicate the main cause of death. Metabolites with higher toxicity than the parent compound. Metabolites with the same toxicity as the parent compound are bracketed. TP indicates toxicity from the parent compound, only. Other than references 10–17. Post-mortem cases. Including the eye (blindness). IClinical cases. *POISINDEX**, Information Systems (ed. B.H. Rumack & D.G. Spoerke), Micromedex (Denver, CO, USA). Targets of a decreased blood calcium level? 'TOMES*, Information Systems (ed. B.H. Rumack & D.G. Spoerke), Micromedex (Denver, CO, USA). Cerebral bleeding is most life-threatening. Inhalation. Ingestion. "Motor endplates of muscles." Repeated dermal exposure. Intravenous administration. PVasculitis, haemorrhages.

parent compound only; nr = not reported $M = main\ causes\ of\ death,\ P = histopathological\ organ\ lesions;\ CNS = central\ nervous\ system\ (brain\);\ CVS = cardiovascular\ system,$ VS = vascular system (blood vessels/capillaries); GIT = gastrointestinal tract (gut); PNS = peripheral nervous system; tp = toxicity of

Appendix X: Plot of Acute Lethal Dosage in Humans Against Values Calculated by a PLS Model Based on Rat Oral LD50 and Mouse Oral LD50


Figure 1: Plot of acute lethal dosage in humans against values calculated by a PLS model based on rat oral LD50 and mouse oral LD50.

Source: Ekwall et al. 1999. MEIC Evaluation of Acute Systemic Toxicity. Part VIII. (reprinted with permission from the editor)

Appendix XI: Plot of Peak Lethal Blood Concentrations in Man Against IC50 Values

Figure 10: Plot of peak lethal blood concentrations in man against IC-50 values calculated by a PLS model based on peak lethal blood concentrations in man, all 50 chemicals, and "blood-brain barrier compensated results" from assays 1, 5, 9 and 16.

Source: Ekwall et al. 1999. MEIC Evaluation of Acute Systemic Toxicity. Part VIII. (reprinted with permission from the editor)

Appendix XII: Priority Areas for Development and Evaluation of New In Vitro Tests

Table I: Priority areas for development and evaluation of new in vitro tests on systemic toxicity

No. Subproject

- 1. Repeat dose toxicity
- Mechanism studies:
 - a) protein denaturation
 - b) morphology of injury to cell lines
 - c) differential cytotoxicity 30 minutes/24 hours
 - d) toxicity to aerobic cells
 - e) time-frames for cytotoxic effects
- 3. Extracellular receptor toxicity
- 4. Excitatory toxicity
- 5. Reversibility of cytotoxicity
- 6. Passage across blood-brain barrier
- Absorption in the gut
- 8. Blood protein binding
- 9. Distribution volumes (Vd)
- 10. More-toxic metabolites

Source: Ekwall et al. 1999. EDIT: A new international multicentre programme to develop and evaluate batteries of *in vitro* tests for acute chronic systemic toxicity. ATLA 27:339-349. (reprinted with permission from the editor)

Appendix XIII: Proposed Testing Scheme for the Classification and Labelling of Chemicals

Figure 1: Proposed testing scheme for the classification and labelling of chemicals according to their potential acute toxicities

Source: Ekwall et al. 1999. EDIT: A new international multicentre programme to develop and evaluate batteries of *in vitro* tests for acute chronic systemic toxicity. ATLA 27:339-349. (reprinted with permission from the editor)