Knowledge Integration in Public Health Genomics: Evaluation of the Epidemiologic Evidence

Muin J. Khoury, MD, Ph.D.

CDC National Office of Public Health Genomics

SAFER • HEALTHIER • PEOPLE[™]

Knowledge Integration

The activity that we call knowledge integration is the driving force or 'engine house' of the enterprise

It is the process of selecting, storing, collating, analysing, integrating and disseminating information both within and across disciplines for the benefit of population health and includes methodological development

> It is the means by which information is transformed into knowledge

Interdisciplinarity is a key feature

Outline

- Introduction-Why Integrate?
- HuGENet Road Map
- Literature Scanning, Reporting, Synthesis and Network Collaboration
- Developing the Knowledge Base and Causal Inference

ORIGINAL CONTRIBUTION

JAMA April 11, 2007

Nonvalidation of Reported Genetic Risk Factors for Acute Coronary Syndrome in a Large-Scale Replication Study

Thomas M. Morgan, MD
Harlan M. Krumholz, MD, MS
Richard P. Lifton, MD, PhD
John A. Spertus, MD, MPH

ompetition evidemiological studies suggests a genetic basis for atherosclerotic heart **Context** Given the numerous, yet inconsistent, reports of genetic variants being associated with acute coronary syndromes (ACS), there is a need for comprehensive validation of ACS susceptibility genotypes.

Objective To perform an extensive validation of putative genetic risk factors for ACS.

Design, Setting, and Participants Through a systematic literature search of articles published before March 10, 2005, we identified genetic variants previously reported as significant susceptibility factors for atherosclerosis or ACS. Restricting our analysis to white patients to reduce confounding from racial admixture, we identifed 811 patients who presented from March 2001 through June 2003 with ACS at 2 Kansas City, Mo, university-affiliated hospitals. During 2005-2006, we genotyped the 811 patients along with 650 area and severable for 85 waring to 70 genes and attempted to realizate

Open access, freely available online

Essay

Why Most Published Research Findings Are False

John P. A. Ioannidis

Summary

There is increasing concern that most current published research findings are false. The probability that a research claim is true may depend on study power and bias, the number of other studies on the same question, and, importantly, the ratio of true to no relationships among the relationships probed in each scientific field. In this framework, a research finding is less likely to be true when the studies conducted in a field are smaller; when factors that influence this problem and some corollaries thereof.

Modeling the Framework for False Positive Findings

Several methodologists have pointed out [9–11] that the high rate of nonreplication (lack of confirmation) of research discoveries is a consequence of the convenient, yet ill-founded strategy of claiming conclusive research findings solely on the basis of a single study assessed by formal statistical significance, typically is characteristic of the field and can vary a lot depending on whether the field targets highly likely relationships or searches for only one or a few true relationships among thousands and millions of hypotheses that may be postulated. Let us also consider, for computational simplicity, circumscribed fields where either there is only one true relationship (among many that can be hypothesized) or the power is similar to find any of the several existing true relationships. The pre-study probability of a relationship

Essay

Most Published Research Findings Are False— But a Little Replication Goes a Long Way

Ramal Moonesinghe*, Muin J. Khoury, A. Cecile J. W. Janssens

e know there is a lot of lack of replication in research findings, most notably in the field of genetic associations [1-3]. For example, a survey of 600 positive associations between gene variants and common diseases showed that out of 166 reported associations studied three or more times, only six were replicated consistently [4]. Lack of replication results from a number of factors such as publication bias, selection bias, Type I errors, population stratification (the mixture of individuals from heterogeneous genetic backgrounds), and lack of statistical power [5].

In a recent article in *PLoS Medicine*, John Ioannidis quantified the theoretical basis for lack of replication by deriving the positive predictive value (PPV) of the truth of a research finding on the basis of a combination of factors. He showed elegantly that

- Unmanageable amounts of emerging information
- Small sample size of individual studies
- Small effect size of individual studies
- Assess replication of associations
- Assess and explain heterogeneity-interactions
- Build the knowledge base: 'what we know and what we don't know'
- Produce information needed to calculate risks for use in clinical medicine and public health

Small Sample Sizes of Individual Studies

Ioannidis, Trends Mol Med 2003

Small Effect Sizes in Individual Studies

Evolving Genetic Associations: Effects that Diminish Over Time

Total genetic information (subjects or alleles)

Ioannidis et al, Nature Genetics 2001

Outline

- Introduction-Why Integrate?
- HuGENet Road Map
- Literature Scanning, Reporting, Synthesis and Network Collaboration
- Developing the Knowledge Base and Causal Inference

Options for Integration of Information

- Single, all-absorbing mega-studies (e.g. proposed US cohort on genes and environment)
- Meta-analyses of group data
- Meta-analyses of individual participant data (pooled analysis)
- All of these designs are unlikely to be successful unless they allow for evolving (often rapidly evolving) evidence

Human Genome Epidemiology Network (HuGENet)

- Global collaboration of individuals and organizations to assess population impact of genomics and how it can be used to improve health and prevent disease
 - 4 coordinating centers
 - Dozens of networks
 - Hundreds of collaborators
 - 10 collaborating journals

Human Genome Epidemiology Network (HuGENet)

www.cdc.gov/genomics/hugenet

• Published literature scan

- Systematic reviews
- Strengthened reporting
- Network collaboration

http://www.hugenet.ca HuGENet Canada

http://www.hugenet.org.uk UK HuGENet Coordinating Centre

http://www.dhe.med.uoi.gr/hugenet.htm

Department of Hygiene and Epidemiology, University of Ioannina School of Medicine

Commentary, *Nature Genetics* 38, 3 - 5 (2006) A road map for efficient and reliable human genome epidemiology

Examples of Network HuGE Study Platforms

•	Disease	Consortium 7	Feams	Subjects
•	Parkinson	GEO-PD	18	10,000
•	Osteoporosis	GENOMOS	10	30,000
•	Preterm birth	PREGENIA	10	20,000
•	Lymphoma	INTERLYMP	H 15	20,000
•	Lung cancer	ILLCO	30	51,000
•	Head & Neck	INHANCE	13	28,000
•	Melanoma	GENOMEL	12	3,000
•	Pancreatic Ca	PACGENE	10	5,000

From Ioannidis J et al. AJE 2005;162:304

Outline

- Introduction-Why Integrate?
- HuGENet Road Map
- Literature Scanning, Reporting, Synthesis and Network Collaboration
- Developing the Knowledge Base and Causal Inference

(ikeredifarytdiseases "UMeSHE defins] OR rgenetic disorder blext Word))) OR (genetic falleling "[MeSH Terms] OR counseling[Text Word]))) OR (("disease Füeldshi AND ([NESH][Substance Name](ORitest]Text/Word]))OR ([genes](ORitest]Text/Word])OR ([genes][Correction]) OR ([gen streeting"[MeSH Terms]ORMestid screeting[TextiMord])) OR (genetic and the second screeting] OR gene[Text Word]) AND ("mutation"[MeSH Terms] OR AND (("nisk="MeSHTerns"] QRurisk[Tex"(Word]))) OR (("polymorphismifext Word]) AND ("genes"[MeSH Terms] OR gene[Text Word]))) OR (("mutation"[MeSH (genetics) [MeSH dreating to Regenering the sentence of the se ("genotype"[MeSH:Tevins]!QRQ@r(otype[[]ext]Word]))/ORU("genoine"[[MeSH:afternis]]me] OR ("TEST"[Substance Name] OR test[Text Word])) OR ("research ORigenoine"[Text:World])); ORt(genoine"[Text:World])); ORt(genoine"[MeSH:afternis]] OR genoine"[MeSH:Terms] Of environmetht[Adl&jekts]]); ORs((geneine"[Adl:Afternis]]); ORs((geneine"[MeSH:afternis]]); ORs((geneine"[MeSH:Terms]); OR); (geneine"]); OR ("geneine"]; OR); (geneine"[MeSH:Terms]]; (geneine" gena[]extRWord])))ANDwariant[XdrFjelds])) (ANDenotype"[MeSH Terms] OR ("genotype"[MeSH Terms] OR genotype])) OR genotyping[All Fields]) (W(((((((pepidemi@Mgg/l/Subheading)/QR/oepidemiology/fMesrTems))tQRs"[MeSH Terms] OR haplotypes[Teg [K ((("genome"[MeSH Terms] OR epidemi6Togy [Vext Word]) @ ORn("public health" [Mest Terms]sOR/p6blic health [Textenomics [Text Word]))) OR mment) OR (gene AND AND ((varient[All Fields] OR variants[All OR ("theres" [MeSH Terms] OR allele[Text Word])) OR (("alleles" [MeSHnTerns [VORd]]] lele [Text Word] [IANDVord] OR gene [Text Word]) OR allelic [All Figs. filidenidemiology [[Subheading]]/OR [Epidemiology] [MeSHiTemis]) OR [fieddenicy[TextOR frequency[Text Word]] Word])))OQR"((hubblid bhild) "[MeSH (Ternik] OR [policy [Fekt) Word])) OR ozygote detection" [MeSH Terms] OR Het Detection[Text Word])) OR ((Yeducation [[Subheadine](ORf aducation ff Webbs Herms)); OReducation [[Text Word]))) AND (("diagnosis" [Mebbs] OR "mass screening"[MeSH] OR:(((()'epidemiology'[[Subhěadinh]))ORK'prevalen¢e'[[MēSHs]]eftRs}))@Ric[All Fields])OR ("hunar conside projec j'epidetfilology'[MeSH:Nem(s])(QR(('[Prevalen¢e'][MeSH:Denmis]))OR:prinvalence[Textemiology"[]/[est-therms])OR erms] OR human genome idemic ogy[Text Word]) OR ("public Word])) OR allelic All Fields]) AND ((("epidemiology" [MeSH ("httsk:"{MeSHDRermshORioiskg(Text(Word))))OR) (("Boipulation"/[MeSHWTerthsDORrequencies[Allored])) QR ("public policy"[MeSH Terms] OR policy[Text population[TexteWord]])nANDtstudy[All Gelds])))aNOT [(VanishiaIk:][MdSHHTerins] OR [Text Word])) OR prevalence[Text Word]) Carifighe (MeSth Terms)) rol" [Subheading] OR prevention [Text Word])) OR ("risk" [MeSth Terms]) OR risk [Text Word])) OR (((((((((((population [Text Word])) OR (a number of) OR genetic[All Fields]) OR comparative[All Fields]) OR prospective[All Fields]) OR cohort[All Fields]) OR cross-section[All Fields]) OR crosssectional[All Fields]) OR case-control[All Fields]) AND (studies OR study[All Fields]))) OR (clinical trial[All Fields] OR randomized controlled trial[All Fields])) OR (("drug interactions" [MeSH Terms] OR interactions [Text Word]) OR (("interpersonal relations" [MeSH Terms] OR "drug interactions" [MeSH Terms]) OR interaction[Text Word]))) OR ("questionnaires"[MeSH Terms] OR questionnaire[Text Word])) OR ((("sensitivity and specificity"[MeSH Terms] OR sensitivity[Text Word]) OR ("sensitivity and specificity"[MeSH Terms] OR specificity[Text Word]))) OR ((((case[All Fields]) OR cases[All Fields]) OR ("patients"[MeSH Terms] OR patients[Text Word])) OR (study[All Fields] AND group[All Fields])) OR (((((("prevention and control"[MeSH Subheading] OR control[Text Word]) OR controls[All Fields]) OR (healthy[All Fields] AND subjects[All Fields])) OR ("child"[MeSH Terms] OR children[Text Word])) OR ("adult"[MeSH Terms] OR adults[Text Word])) OR individuals[All Fields]))) OR (((("association"[MeSH Terms] OR association[Text Word]) OR ("association"[MeSH Terms] OR associations[Text Word])) OR ("disease"[MeSH Terms] OR disease[Text Word])) AND (("genes"[MeSH Terms] OR gene[Text Word]) OR ("genes"[MeSH Terms] OR disease[Text Word])) AND (("genes"[MeSH Terms] OR gene[Text Word])) AND ("genes"[MeSH Terms] OR gene[Text Word]) OR ("genes"[MeSH Terms] OR disease[Text Word])) AND (("genes"[MeSH Terms] OR gene[Text Word])) AND ("genes"[MeSH Terms] OR gene[Text Word]) OR ("genes"[Text Word]) OR ("gene[Text Word]) OR ("genes"[Text Word]) OR ("gene[Text Word]) OR ("gene[Text Word]) OR ("gene[Text Word]) OR ("gene[Te OR genes[Text Word])))) OR oversight[All Fields]) OR ((("genotype"[MeSH Terms] OR genotype[All Fields]) OR allelic[All Fields]) AND distribution[Text Word])) OR (((("genotype"[MeSH Terms] OR genotype[Text Word]) AND ("phenotype"[MeSH Terms] OR phenotype[Text Word])) OR genotype-phenotype[All Fields]) AND correlation[All Fields])) OR ((positive OR negative) AND predictive value)) OR (odds ratio)) OR (("ethics"[MeSH Terms] OR ethics[Text Word]) OR ethical[All Fields]))))) AND "2004/7/7 8.00"[MHDA]: "2004/7/14 8.00"[MHDA])

HuGE Published Literature 2001-2006

- Gene-disease association
- Gene-environment interaction
- ³² Meta-analysis/HuGE review

Support Vector Machine = SVM

HuGE published literature: SVM model vs human method Feb-Mar, 2007

Hand searching was reduced by 90%

		CDC Home	Search	Health Topics A-Z	
SAFER · HEALTHIER · PEOPLE *	National Office of Public Health	Genor	nics	5 M L W 1 2 3 4 8 910111 151617181 2232425 293031	
EVENTS	TRAINING	FUNDING		LINKS	SEARCH GENOMICS

HuGE Navigat@r

HuGE Navigator is a knowledge base that provides integrated information and knowledge in <u>human genome epidemiology</u> (HuGE).

Currently, HuGE Navigator consists of the following applications:

- HuGEPedia : an online Human Genome Epidemiology encyclopedia for human diseases.
- <u>GeneSelectAssist</u>: a search engine for finding possible candidate genes based on the NCBI Entrez Gene, PubMed and HuGE Pub Lit databases.
- <u>HuGE Literature Finder</u>: a search engine for finding PubMed articles related to human genome epidemiology.
- <u>HuGE Investigator Browser</u>: a search engine for finding investigators or potential collaborators in a particular HuGE field.
- <u>US Genome Variation Database</u>: a collection of genotype prevalence data from CDC NHANES genotying project.
- <u>HuGE Reality Checker</u>: a calculator for evaluating the predictive value of genetic markers.

- HuGE Investigator Browser - search HuGE investigators -						
	HuGE Navigator Home About	Search Instructions]	FAQs Contact Us			
Search Investigator Y for	Go Cler	ar 💿 First & Last Autho	rs 🔿 All Authors			

- Enter search terms into the text box.
- Search terms can include disease, exposure, gene, author, journal, etc.
- Author options determine the authorship status of investigators of interest.
- Simple Boolean operators are allowed (such as AND or OR).
- Use the Search dropdown list to switch to other HuGE Navigator applications.

HuGE Investigator Browser is a search engine for finding investigators or collaborators in human genome epidemiology based on study interests such disease/condition, environmental risk factors, or gene. Investigator profile information is extracted using an accessory utility that automatically parses the affiliation data provided by PubMed. .

- HuGE Investigator Browser - search HuGE investigators -					
	HuGE Navigator Home About Search Instructions FAQs Contact Us				
Search Investigator 💉 for osteoporos	is Go Clear 💿 First & Last Authors 🔿 All Authors				

- Enter search terms into the text box.
- Search terms can include disease, exposure, gene, author, journal, etc.
- Author options determine the authorship status of investigators of interest.
- Simple Boolean operators are allowed (such as AND or OR).
- Use the Search dropdown list to switch to other HuGE Navigator applications.

HuGE Investigator Browser is a search engine for finding investigators or collaborators in human genome epidemiology based on study interests such disease/condition, environmental risk factors, or gene. Investigator profile information is extracted using an accessory utility that automatically parses the affiliation data provided by PubMed. .

HuGE Investigator Browser - search HuGE investigators - HuGE Navigator Home About Search Instructions FAQs Contact Us Search Investigator for Osteoporosis Go Clear First & Last Authors All Authors						
Search Criteria: osteoporosis[Query]	🕙 Investigator Info	rmation - Microsoft Internet Explorer				
Filtered By 2 Country 2 In	Investigator Na	Investigator Informati	ion			
Investigator N	Query/Domain:	osteoporosis				
<u>Deng HW</u> <u>Ralston SH</u>	Publications:					
<u>Uitterlinden AG</u>	All Huge		<u>32</u>			
Emi M	Query Specific HuGE (all	suthor)	16			
Yamada Y	All PubMed (query specifi	fic)	Link			
Shimokata H Chen HY						
Langdahl BL	Possible Affiliat	ion Information:				
T 1 OU	Institute	Creighton University				
	Country	United States				

Osteoporosis Research Center, Creighton University, Omaha, Nebraska 68131, USA

Address

HuGE Navigator Home About Search Instructions FAQS Contact Us						
Search Investigator Y for Osteoporosis	GO Clear 💿 First & Last Authors 🔿 All Author	ors				
Search Criteria: osteoporosis[Query]						
Filtered By 2 Country 2 Institute 464 investigators were found. [Click 🖣 to re-sort the table based on either investigator names (left icon) or the publication count (right icon)]						
Palston SH	12					
Litterlinden AG	11					
Emi M						
Yamada Y	2					
Shimokata H	8					
Chen HY	Z					
Langdahl BL	<u>6</u>					
E Con						

Se	arch Criteria: osteoporosis[Query]>>Deng HW [First/Last Author] [Query Detail]						
Filtered By ? Disease ? Exposure ? Gene ? Category ? StudyType ? Year ? Author Articles 1 - 16 of 16							
Put	Med It Display 25 🗸 on Page 1 of 1						
1.	Tests of linkage and association of PTH/PTHrP receptor type 1 gene with bone mineral density and height in Caucasians. [Detail] Journal of bone and mineral metabolism. 2006 24 (1): 36-41. Zhang YY, Liu PY, Lu Y, Xiao P, Liu YJ, Long JR, Shen H, Zhao LJ, Elze L, Recker RR, Deng HW						
2.	Is a gene important for bone resorption a candidate for obesity? An association and linkage study on the RANK (receptor activator of nuclear factor-kappaB) gene in a large Caucasian sample. [Detail] Human genetics 2006 Nov 120 (4): 561-70. Zhao L), Guo YF, Xiong DH, Xiao P, Recker RR, Deng HW						
3.	Robust and comprehensive analysis of 20 osteoporosis candidate genes by very high-density single-nucleotide polymorphism screen among 405 white nuclear families identified significant association and gene-gene interaction. [Detail] Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2006 Nov 21 (11): 1678-95. Xiong DH, Shen H, Zhao LJ, Xiao P, Yang TL, Guo Y, Wang W, Guo YF, Liu YJ, Recker RR, Deng HW						
4.	The human calcium-sensing receptor and interleukin-6 genes are associated with bone mineral density in Chinese. [Detail] Yi chuan xue bao = Acta genetica Sinica. 2006 Oct 33 (10): 870-80. Wang YB, Guo JJ, Liu YJ, Deng FY, Jiang DK, Deng HW						

STrengthening REporting of Genetic Associations (STREGA)

 STROBE: International collaborative initiative for
 STrengthening the
 Reporting of
 OBservational studies in
 Epidemiology

American Journal of Epidemiclogy Copyright @2002 by the Johns Hopkins Bloomberg School of Public Health All rights reserved Vol. 156, No. 4 Printed in U.S.A. DOI: 10.1093/aje/kw/054

Reporting, Appraising, and Integrating Data on Genotype Prevalence and Gene-Disease Associations

Julian Little¹, Linda Bradley², Molly S. Bray³, Mindy Clyne⁴, Janice Dorman⁵, Darrell L. Ellsworth⁶, James Hanson⁷, Muin Khoury⁴, Joseph Lau⁸, Thomas R. O'Brien⁷, Nat Rothman⁷, Donna Stroup⁹, Emanuela Taioli¹⁰, Duncan Thomas¹¹, Harri Vainio¹², Sholom Wacholder⁷, and Clarice Weinberg¹³

¹ Epidemiology Group, Department of Medicine and Therapeutics, University of Aberdeen, Aberdeen, Scotland.
² Sunrise Medical Laboratory, Hauppauge, NY.

³ University of Texas Health Science Center at Houston, Houston, TX.

⁴ Office of Genomics and Disease Prevention, Centers for Disease Control and Prevention, Atlanta, GA.

⁵ Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA.

STROBE + HuGE= STREGA

STrengthening REporting of Genetic Associations (STREGA)

 STROBE: International collaborative initiative for
 STrengthening the Reporting of
 OBservational studies in
 Epidemiology

STROBE statement: Checklist of essential items Version 2 (April 2005)

	<u>ltem #</u>	<u>Cohort</u>	Case-control	Cross-sectional		
TITLE & ABSTRACT	1	(a) Identify the article as a cohort study in the title or the abstract.	(a) Identify the article as a case-control study in the title or the abstract.	(a) Identify the article as a cross- sectional study in the title or the abstract.		
		b) The abstract should be a highly informative structured summary of the article, taking account of all ssues in the checklist below.				
INTRODUCTION						
Background / Rationale	2	Explain scientific background and rat	Explain scientific background and rationale for the study.			
Objectives	3	State specific objectives and hypotheses.				
METHODS	METHODS					
Study design	4	Present key elements of study design. State purpose of original study, if article is one of several from an ongoing study.				
Setting	5	Describe setting, locations and dates defining periods of data collection.				

STROBE + HuGE= STREGA

Reporting Characteristics of 315 HuGE Articles 2001-2003: General

Reporting characteristic	Count	%
Number of study participants		
<100	49	15.6
100-499	190	60.3
500-999	47	14.9
>= 1000	29	9.2
Reported the available power of the study		
No	27.5	87.3
Yes	40	12.7
Reported that multiple study participant or case or control groups were used		
No	235	74.6
Yes	80	25.4
Provided any information on the origin of the study participants		
No	38	12.1
Yes	277	87.9
Provided any information on the enrollment criteria for the study participants		
No	8	2.5
Yes	307	97.5

Yesupriya et al.

Reporting Characteristics of 315 HuGE Articles 2001-2003: Genotyping

Reporting characteristic	Count	9⁄0
Length in pages dedicated to describing genetic testing method		
0	4	1.3
0.01-0.24	184	58.4
0.25-0.49	88	27.9
>0.5	39	12.4
Reference to the genotyping method of another study		
No	62	19.7
Yes	253	80.3
Reported that the genotyping results were validated by using duplicate samples		
No	293	93.0
Yes	22	7.0
Reported that the genotyping results were validated by using a different method		
No	284	90.2
Yes	31	9.8
Reported that the evaluation of the genetic test was blind to the outcomes or phenotypes		
Blind	35	11.1
Unclear	280	88.9
Reported that the evaluation of the outcomes or phenotypes was blind to the genetic test		
Blind	12	3.8
Unclear	303	96.2

Reporting Characteristics of 315 HuGE Articles 2001-2003: Subject Selection

Reporting characteristic	Count	%
Explicitly stated that all study participants were drawn from the same ethnic population		
Unclear	130	41.3
Stated	185	58.7
Analysis conducted by using different ethnic groups		
No	285	90.5
Yes	30	9.5
If different ethnic groups were included, how was ethnicity treated in the analysis ($n=30$)		
Stratified by or adjusted for ethnic groups	23	76.7
Pooled ethnic groups together	2	6.7
Unclear	5	16.6
Reported that unlinked genetic markers were used to identify population stratification		
No	313	99.4
Yes	2	0.6
Reported that cases and controls were drawn from the same population in regards to geography (n=227)		
No	79	34.8
Yes	148	65.2
Reported that cases and controls were drawn from the same population in regards to the clinical population (n=227)		
No	180	79.3
Yes	47	20.7

Yesupriya et al.

Reporting Characteristics of 315 HuGE Articles 2001-2003: Analysis

Reported that all genetic variants were examined for Hardy-Weinberg equilibrium		
No	164	52.1
Yes	151	47.9
If Hardy-Weinberg equilibrium was reported, did any polymorphism reportedly fail Hardy-Weinberg equilibrium (n=151)		
No	141	93.4
Yes	10	6.6
Sufficient data reported on all genetic variants of interest for all outcomes		
No	41	13.0
Yes	274	87.0
Reported that analyses were conducted by using allele-based genetic contrasts		
No	143	45.4
Yes	172	54.6
Reported that analyses were conducted by using genotype-based genetic contrasts		
No	45	14.3
Yes	270	85.7
If the analyses were conducted by using genotypes, were selected contrasts or all possible contrasts assessed $(n=270)$		
All possible	214	79.3
Selected	56	20.7
Justifications given for the selection of specific genetic contrasts ($n=56$)		
No	33	58.9
Yes	23	41.1

Yesupriya et al.

The HuGENet[™] HuGE Review Handbook, version 1.0

Editors:

Julian Little⁶ Julian Higgins^{2,3}

Writing group:

Molly Bray¹ Julian Higgins^{2,3} John Ioannidis⁴ Muin Khoury⁵ Julian Little⁶ Teri Manolio⁷ Liam Smeeth⁸ Jonathan Sterne⁹

on behalf of the HuGE Net Systematic Review and Meta-Analysis Working Group

American Journal of Epidemiology Genetics in Medicine Epidemiologic Reviews Pediatric Perinatal Epidemiology International Journal Epidemiology American J Obs Gyn Gastroenterology CEBP Teratology/Birth Def Epidemiology

Advantages of MIPD

Ioannidis et al, Am J Epidemiol 2002

MIPD* versus MPL*

Advantages

Data

More information

Inclusion of extended databases from published studies Inclusion of data from unpublished studies Better standardization of information

Categorization of eligible participants

Outcomes

Definition of follow-up period and censoring criteria

Analysis

Better time-to-event analyses

Standardized statistical models

Evaluation of time-dependency

Better adjusted/multivariate analyses

Consistent treatment of loci in linkage disequilibrium

Evaluation of dose-response effects for multiple genes or double doses of a single gene

Evaluation of subgroup effects, including racial heterogeneity

Interpretation

Assessment of heterogeneity

Assessment of sampling bias in specific studies

Other

Establishment of international networks of collaborating investigators

Disadvantages of MIPD

Data

Data may not be made available from all published studies

Interpretation

Potential post hoc conflicts with collaborators regarding findings

Resources

Substantial effort and infrastructure required to:

Develop and administer a standardized protocol

Collect, manage, and analyze data

Communicate with collaborators

Stages in Integrating Evidence

- Formulating the problem
- Identification of studies and publication bias
- Critical appraisal of studies
- Abstraction of data
- Synthesis

Critical Appraisal

- Independent reviewers
- Inclusion/exclusion criteria
- Sequential or multiple publications of analyses of same or overlapping data sets
- Assessment of study quality

Synthesis of the Evidence

- Volume of evidence
- Evidence tables
 - Publication details
 - Study type
 - Factors relating to study quality

- Measure of association, with indication of its precision

Summary of Studies of Colorectal Cancer & GSTT1

Area of study; Recruitment period	Cases Type	N	Controls Type	N	% <i>GSTT1</i> null	RR (95% Cl) for null vs other genotypes	Adjustment	Subgroup analysis reported	Exposure assessment	Reference
Australia, Queensland; period not stated	Patients with colorectal adenocarcinoma	125	Unselected subjects (n=94; source not stated) and geriatric (n=54) patients without cancer	94 54	19% 9%	0.7 (0.3-1.4)	None None	Position of tumour; age	None	Chenevix-Trench et al., 1995 (78)
UK, North Staffordshire Cases & controls 1990-94	Unrelated English "Caucasian" patients with <i>colorectal cancer</i> recruited from 1 hospital	211	or a family history of cancer Hospitalised English "Caucasian" subjects without malignancy or inflammatory pathologies; recruited in same	509	18%	1.9 (1.3-2.7)	None	Position of tumour	None	Deakin et al., 1996 (49)
Japan, Kitakyusko City Cases 1991-95, controls 1993-95	Consecutive patients with colorectal adenocarcinoma diagnosed in 2 hospitals and 1 medical centre; 65% male; mean age 64.4 years	103	hospital as cases Subjects who had visited local medical centres for regular health check-ups; no gastrointestinal symptoms and no current or previous diagnosis of cancer; 57% male; mean age 61 9 years	126	44%	1.2 (0.7-2.0)	None	Position of tumour	Medical, residential, occupational and smoking history assessed by interview	Katoh et al., 1996 (14)
Australia, Adelaide; period not stated	White adults with sporadic colorectal cancer; source not stated	219	White blood donors	200	19%	3.4 (2.1-5.4)	None	None	None	Butler et al., 1997 (77) (reported in abstract only)
USA (nested case- control study in Physicians Health Study (PHS)); cases 1982-96	Cases with <i>colorectal cancer</i> from those randomised in PHS; physicians excluded from randomisation if they had history of myocardial infarction, stroke, transient ischemic attack, cancer, renal or liver disease, peptic ulcer, gout	212	Sample of subjects not diagnosed with colorectal cancer in PHS (same exclusion criteria as listed for cases); matched on year of birth and smoking history	221	23%	0.8 (0.5-1.2)	BMI, physical activity, alcohol use	Position of tumour, age smoking	Smoking history, alcohol intake, diet, frequency of meat intake, physical activity, disease diagnoses	Gertiget al., 1998 (58)
Singapore, period not stated	Chinese <i>colorectal carcinoma</i> patients recruited from a surgical department	300	Chinese patients obtained from clinical chemistry department with no history of neoplasms	183	Not stated ^[]	-	-	Position of tumour, tumour histology	None	Lee et al., 1998 (23)

This paper was published with modifications in Am J Epidemiol 2000 May 1;151(9):862-877

PMID: 10791559; UI: 20250198

5, 10-Methylenetetrahydrofolate reductase (MTHFR) Gene Variants and Congenital Anomalies

Lorenzo D. Botto and Quanhe Yang

Download print version

S MEDICINE

a peer-reviewed open-access journal published by the Public Library of Science

For Authors and Reviewers Browse Articles About For Readers Home

> OPEN ACCESS

Epidemiology and Reporting Characteristics of Systematic Reviews

David Moher^{1,2,3*}, Jennifer Tetzlaff¹, Andrea C. Tricco^{1,4}, Margaret Sampson¹, Douglas G. Altman⁵

1 Chalmers Research (Department of Paediat Epidemiology and Com Institute of Population Oxford, United Kingdor

RESEARCH ARTICLE

a peer-reviewed open-access journal published by the Public Library of Science

Home	Browse Articles	About	For Readers	For Authors	and Reviewers
------	-----------------	-------	-------------	-------------	---------------

A MY PROFILE 🕀 ADVANCED SEARCH 🔊 RSS

🔎 Search PLoS Me	GO		
	PLoS Journals	PLoS.org	

EDITORIAL

The PLoS Medicine Editors

OPEN ACCESS

DOWNLOAD 🔚 XML (16 KB)

- 🖟 PDF Large (82 KB) 🖧 PDF - Small (54 KB)
- 🗭 Citation

CONTRIBUTE

Clipsed other pressures

Citation: The PLoS Medicine Editors (2007) Many Reviews Are Systematic but Some Are More Transparent

Many Reviews Are Systematic but Some Are More

Transparent and Completely Reported than Others

Methodologic Issues in Meta-Analysis of Gene-Disease Associations

- 37 Meta analyses
- 22% (8) described search terms
- 51% (19) had no inclusion/exclusion criteria
- 76% (28) assessed heterogeneity
- 19% (7) checked for publication bias
- 24% (9) assessed Hardy-Weinberg equilibrium
- 22% (8) had biologic rationale for genetic model

Attia et al, 2003

What about Genome-Wide Association Studies?

The Wellcome Trust Control Consortium

Home

Links

Overview

Participants

Press Release [28 09 2005]

lease and

policy

Guidelines for data us

Analysis data format

Simple data format

The Wellcome Trust Case Control Consortium (WTCCC) is a collaboration of 24 leading human geneticists, who will analyse thousands of DNA samples from patients suffering with different diseases to identify common genetic variations for each condition. It is hoped that by identifying these genetic signposts, researchers will be able to understand which people are most at risk, and also produce more effective treatments.

The WTCCC will search for the genetic signposts for tuberculosis, coronary heart disease, type 1 diabetes, type 2 diabetes, rheumatoid arthritis, Crohn's disease and ulcerative colitis, bipolar Station information Network (GAIN) is a public-private partnership of the National Institutes of Health, Inc. (FNIH), which will include corporations, advocacy groups, concerned individuals, and the National Institutes of <u>Tew</u>). This initiative will take the next step in the search to understand the Jencing risk for complex diseases. Through a series of whole genome s, using samples from existing case-control studies of common diseases, the ite to the identification of genetic pathways that make us more susceptible to d thereby facilitate discovery of new molecular targets for prevention, itemet.

Outline

- Introduction-Why integrate?
- The HuGE Net movement
- Collaboration across epidemiologic platforms
- Strengthening the reporting of genetic associations (STREGA)
- Integration across studies-HuGE Reviews
- Developing the knowledge base and causal inference

"Guidelines" for Causal Inference

Consistency

Strength

Dose-response

Biological plausibility

Specificity

Temporality

Experimentation

Coherence

Analogy

(Hill, 1965; US Surgeon General's Committee, 1964)

The Legend of Biologic Plausibility

- In 2002, studies were published addressing the relationship of the APOE polymorphism with Alzheimer's disease; colorectal cancer; fatty liver; atherosclerosis; hyperlipidemia; acute ischemic stroke; spina bifida; coronary artery disease; normal tension glaucoma; hypertension; Parkinson's disease, diabetic nephropathy; pre-eclampsia; hepatitic C-related liver disease; cerebrovascular disease; coronary artery disease post-renal transplantation; non-specified cognitive impairment; childhood nephrotic syndrome; spontaneous abortion; multiple sclerosis; alcohol withdrawal; cognitive dysfunction after coronary artery surgery; alcoholic chronic pancreatitis; alcoholic cirrhosis; macular toxicity from chloroquine; macular edema; aortic valve stenosis; vascular dementia; type II diabetes mellitus; and migraine.
 - Source. J Ioannidis

Assessment of Cumulative Evidence on Genetic Associations: Interim Guidelines

John P. A. Ioannidis¹⁻³, Paolo Boffetta⁴, Julian Little⁵, Thomas R. O'Brien⁶, Andre G. Uitterlinden⁷, Paolo Vineis⁸, David J. Balding⁸, <u>Anand</u> Chokkalingam⁹, Siobhan Dolan¹⁰, W. Dana Flanders¹¹, Julian P.T. Higgins¹², Mark I. McCarthy^{13,14}, David H. McDermott¹⁵, Grier P. Page¹⁶, Timothy R. Rebbeck¹⁷, Daniela Seminara¹⁸, Muin J. Khoury¹⁹

 Clinical and Molecular Epidemiology Unit, University of Ioannina School of Medicine, Ioannina 45110, Greece
 Biomedical Research Institute, Foundation for Research and Technology – Hellas, Ioannina 45110, Greece
 Department of Medicine, Tufts University School of Medicine, Boston MA 02111, USA
 International Agency for Research on Cancer, Lyon 69008, France
 Canada Research Chair in Human Genome Epidemiology, Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
 Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville MD 02982, USA

7 Departments of Internal Medicine and Epidemiology & Biostatistics, Erasmus MC, Rotterdam 3000 CA, The

Assessing Cumulative Evidence on Genetic Associations (Venice Guidelines)

- Epidemiologic Credibility
- Biology
- Clinical/Public Health Relevance

Amount of evidence	A Large-scale evidence	
	B Moderate amount of evidence	
	C Little evidence	
Replication	A Extensive replication including at least one well-conducted meta-analysis with little between-study inconsistency	
	B Well-conducted meta-analysis with some methodological limitations or moderate between-study inconsistency	
	C No association; no independent replication; failed replication; scattered studies; flawed meta-analysis; or large inconsistency	
Protection from bias	A Bias, if at all present, could affect the magnitude but probably not the presence of the association	
	B No obvious bias that may affect the presence of the association, but there is considerable missing information on the generation and accumulation of evidence	
	C Clear presence of bias that can affect even the presence or not of the association	

AAA	ABA	ACA
AAB		ACB
AAC	ABC	ACC

Assessing Epidemiologic Credibility of Cumulative Evidence on Genetic Associations-Venice Guidelines

First letter = amount Second letter = replication

Third letter = protection from bias

BAA	BBA	BCA
BAB	BBB	BCB
BAC	BBC	BCC

- Strong evidence Moderate evidence
- Weak evidence

CAA	CBA	CCA
CAB	CBB	CCB
CAC	CBC	CCC

Table 2: Considerations for assessment of clinical and public health relevance and importance of

genetic associations

Magnitude of effect

Effect size

Frequency of genetic variant in population

Clinical and public health importance

Type of phenotype: biological, endophenoype, hard clinical outcome

Disease burden; incidence, severity, and mortality

Interaction with identified modifiable environmental exposures

Potential to prevent disease through intervention (e.g. through Mendelian randomization insights)

An Online Encyclopedia for Genome Variation and Health?

EDITORIAL

Nature Genetics 38, 1 (2006) doi:10.1038/ng0106-1

Embracing risk

In response to requests from researchers for a way to publish and credit well-executed genetic association studies regardless of the outcome, we offer an experimental solution: the journal will now consider for publication—in Analysis format—annual synopses of all adequate association studies on a particular disease or phenotype. The synopsis may be written by a consortium of the authors of unpublished but publicly deposited studies, and it is hoped that the referees of the synopses will publish their comments as a counterpoint.

Much remains to be done. First, researchers need to decide on minimally acceptable criteria

Models for Online Encyclopedia 1

Address 🙆 http://www.ncbi.nlr

S NCBI

MIM #219700 Description

Clinical Features

Molecular Genetics Heterogeneity Pathogenesis Diagnosis Clinical

Population Genetics

Genetic Variability Animal Model

Inheritance Cytogenetics Mapping

Management

Evolution

History

See Also References.

Contributors Creation Date

Edit History

m.nih.gov/entrez/dispomim.cgi?id=219700	ể∽Go	Links »
OMIM Online Mendelian Inheritance in Man		
All Databases PubMed Nucleotide Protein Genome Structure PMC Taxonomy	OMIM	1
Search OMIM 🔽 for CFTR Go Clear		
Limits Preview/Index History Clipboard Details		
Display Detailed 💽 Show 20 💌 Send to 💌		
#219700 Gene	Tests, Li	nks

CYSTIC FIBROSIS; CF

Alternative titles; symbols

MUCOVISCIDOSIS

Gene map locus 7q31.2

TEXT -

Models for Online Encyclopedia 2

Models for Online Encyclopedia 3 Address 🕘 http://en.wikipedia.org/wiki/Main_Page -> Go Links Sign in / create account discussion history main page view source. Your continued donations keep Wikipedia running! Welcome to Wikipedia, Arts Society History . the free encyclopedia that anyone can edit. Biography = Mathematics = Technology IKIPEDI All portals 1,461,789 articles in English Geography Science н. The Free Encyclopedia Overview · Searching · Editing · Questions · Help Categories · Featured content · A-Z index navigation Main Page Community Portal Today's featured article In the news Featured articles Current events Kochi is a city in the Indian The World Confederation Recent changes state of Kerala, and one of the of Labour and the Random article principal seaports of the country. International Help Kochi is located in the district of Confederation of Free Contact Wikipedia Ernakulam, about 220 km north of Trade Unions merge to Donations the state capital form the International search Thiruvananthapuram. The city has an estimated Trade Union Confederation. population of 650,000, with an extended metropolitan representing 166 million members. population of over 1.6 million, making it the largest Hassan Nasrallah, the Secretary Go Search urban agglomeration and the second largest city in General of Hezbollah, says negotiations 4400 0 0 012 11

Outline

- Introduction-Why Integrate?
- HuGENet Road Map
- Literature Scanning, Reporting, Synthesis and Network Collaboration
- Developing the Knowledge Base and Causal Inference