Positron Emission Tomographic (PET) Imaging of Efflux Transporters

Robert B. Innis, MD, PhD Molecular Imaging Branch NIMH

Outline of Talk

- 1. PET: high sensitivity and specificity
- Many PET ligands already exist to measure density of transporters – e.g., dopamine transporter in Parkinson disease
- 3. P-gp: efflux transporter "protects" organs like brain and testis from some toxins and drugs
- 4. [¹¹C]loperamide: avid P-gp substrate but has radiometabolite; measures function
- 5. [¹¹C]desmethyl-loperamide (dLop): metabolite is better than parent
- 6. After P-gp blockade, [¹¹C]dLop has high brain uptake that is dependent on flow
- [¹¹C]dLop in humans: no brain uptake at baseline and slightly increased by P-blockade

Ро	ositron Emission Tomography
	Positron Emission Tomography Binon P. Charg, In.D. Contex for Medical and Concors langing University of California-David Concors Langing Discontection

PET vs. MRI			
	РЕТ	MRI	
Spatial Resolution	2 – 6 mm	<< 1 mm	
Sensitivity	10 ⁻¹² M	10 ⁻⁴ M	
Temporal Resolution	minutes	<1 sec	

Radionuclide (¹¹C): high sensitivity Ligand (raclopride): high selectivity Radioligand [¹¹C]raclopride: high sensitivity & selectivity

Radioligand = Drug + Radioactivity

- 1. Drug administered at tracer doses
 - a) No pharm effects
 - b) Labels <1% receptors
 - c) Labeled subset reflects entire population
- 2. Radioligand disposed like all drugs
 - a) Metabolism & distribution
- 3. Radiation exposure

P-glycoprotein (P-gp) Efflux Transporter

- 1. Transports drugs out of cells in many locations e.g., brain and testes
- 2. Specific component of blood-brain barrier
- Loperamide (Imodium®) is a potent opiate that acts on gut to slow motility – but no actions in brain.
- 4. Over expressed in 40% of tumors resistant to chemotherapy

75

Time after injection (min)

100 125

25 50

Conclusions

- 1. [¹¹C]dLop: avoids metabolite problem of [¹¹C]loperamide
- 2. After P-gp blockade, single pass uptake of [¹¹C]dLop into brain is high and, therefore, shows dependence on blood flow

Implies function of P-gp at baseline is rapid and has high capacity

DCPQ or Tariquidar Increases Brain Uptake of Radioactivity in Monkey Given [¹¹C]Loperamide

Future Directions

- 1. BRAIN: Potential dysfunction of P-gp at blood-brain barrier: Alzheimer's disease, Parkinson's disease, epilepsy
- 2. ONCOLOGY: P-gp function in tumor cells transplanted into mice
- 3. Develop radiolabeled inhibitor to measure density, rather than function, of P-gp

Outline of Talk

- 1. PET: high sensitivity and specificity
- 2. Many PET ligands already exist to measure density of transporters e.g., dopamine transporter in Parkinson disease
- 3. P-gp: efflux transporter "protects" organs like brain and testis from some toxins and drugs
- 4. [¹¹C]loperamide: avid P-gp substrate but has radiometabolite; measures function
- [¹¹C]desmethyl-loperamide (dLop): metabolite is better than parent
- After P-gp blockade, [¹¹C]dLop has high brain uptake that is dependent on flow
- [¹¹C]dLop in humans: no brain uptake at baseline and slightly increased by P-blockade

ACKNOWLEDGMENTS

P-gp Efflux Transporter: Sami Zoghbi, PhD Jeih-San Liow, PhD Nick Seneca, PhD

OVERALL:

Director PET Radiochemistry: Victor Pike Radiochemist: Neva Lazarova Metabolism: Sami Zoghbi Rodent Imaging & Image Analysis: Jeih-San Liow Monkey Imaging: Robert Gladding Human Imaging: Ferraris Araneta, NP; Chuck Kreisl, MD Chemistry: Cheryl Morse, Jinsoo Hong, and Kelly Sprague

Self-Assessment Quiz: True or False?

- Loperamide, an antidiarrheal drug, lacks central nervous system opiate effects because P-gp (Permeability-glycoprotein) blocks its entry into brain.
- Positron emission tomography (PET) can measure the function of P-gp *in vivo* by using a radiolabeled P-gp substrate such as [¹¹C]loperamide.
- PET can monitor the *in vivo* <u>metabolism</u> of radioligands. By measuring P-gp function, PET can also monitor drug <u>distribution</u>.