Learning Some New Tricks From a Multidrug Transporter

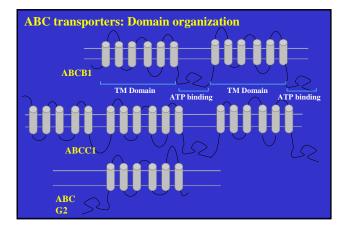
Michael M. Gottesman, M.D. Chief, Laboratory of Cell Biology Center for Cancer Research, NCI National Institutes of Health

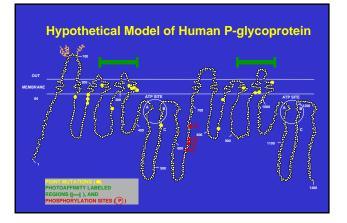
January 15, 2009

Estimated New Cancer Cases & Deaths, 2008					
Sites	New Cases	Deaths*	<u>%</u>		
All Sites	1,437,180	565,650	39%		
Prostate	186,320	28,660	15%		
Breast	184,450	40,930	22%		
Digestive System	202,720	79,090	39%		
Pancreas, Liver & Gall Bladder	68,570	56,040	82%		
Lung & Bronchus	215,020	161,840	75%		
Bladder	68,810	14,100	20%		
Kidney & Renal Pelvis	54,390	13,010	24%		
Ovary	21,650	15,520	72%		
Cervical Cancer	11,070	3,870	35%		
Lymphoma & Leukemia	118,610	42,220	36%		
Brain & Nervous System	21,810	13,070	60%		
*Virtually all deaths are due to chemotherapy resistance CA Cancer J Clin, 2008					

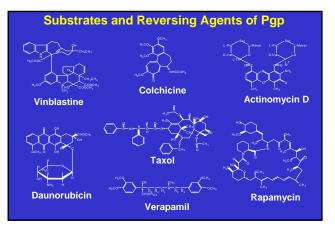
Drug Resistance in Cancer

- May affect multiple drugs used simultaneously: known as multidrug resistance (MDR)
- Affects all classes of drugs, including newly designed targeted drugs
- Just as oncogene targets have been catalogued, we need to enumerate all mechanisms of drug resistance in cancer to solve this problem and circumvent resistance

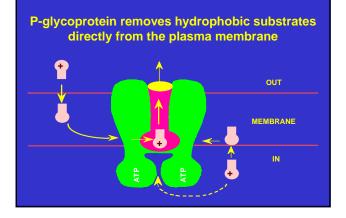

Mechanisms of resistance to anti-cancer drugs

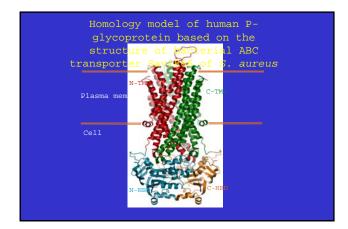

Decreased uptake Reduced apoptosis Altered cell cycle checkpoints Increased metabolism of drugs Increased or altered targets Increased repair of damage Compartmentalization

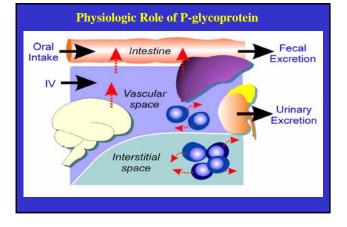
Increased


Ultimate Goals

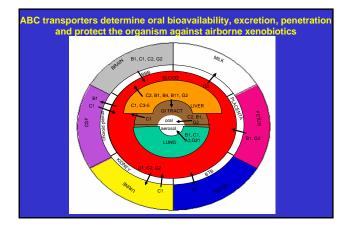
- 1. Molecular analysis of human cancers to predict response to therapy
- 2. Use this information to develop novel drugs to treat cancer and new imaging modalities for cancer
- 3. To learn more about cellular pharmacology and pharmacokinetics of drugs, including drug uptake, distribution, and excretion











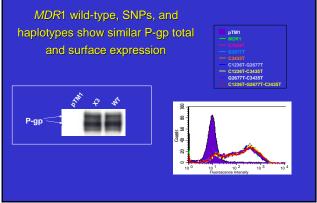
Role of P-glycoprotein in cancer

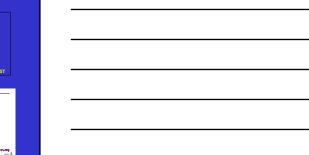
- Approximately 50% of human cancers express P-glycoprotein at levels sufficient to confer MDR
- Cancers which acquire expression of P-gp following treatment of the patient include leukemias, myeloma, lymphomas, breast, ovarian cancer; preliminary results with P-gp inhibitors suggest improved response to chemotherapy in some of these patients
- Cancers which express P-gp at time of diagnosis include colon, kidney, pancreas, liver; these do not respond to P-gp inhibitors alone and have other mechanisms of resistance
- Being able to image P-gp in cancer (and ultimately other transporters that contribute to resistance) could help guide therapy

Polymorphisms in the human *MDR*1 gene

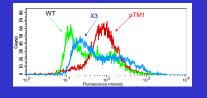
More than 50 SNPs have been reported in the MDR1 gene.
14 of them are silent polymorphisms.

2. 5 common coding (non-synonymous) polymorphisms have no demonstrable effect on drug transport function.

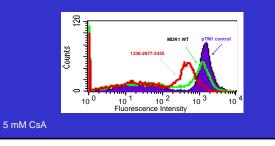

3. The synonymous SNP in exon 26 (C3435T) was the first associated with altered MDR1 function and is often part of a haplotype including another synonymous (C1236T) and a nonsynonymous SNP (G2677T).


The C1236T, G2677T, C3435T haplotype has been linked to several different phenotypes

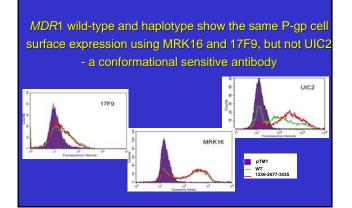
•Altered digoxin and fexofenadine pharmacokinetics

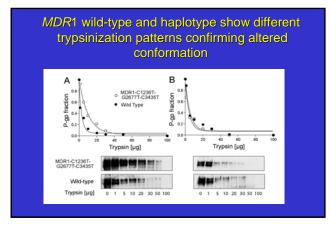

•Altered toxicity in transplant patients from cyclosporine A, tacrilimus

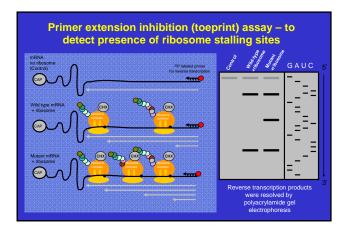
•Altered incidence of Crohn's disease, colon cancer, and Parkinson's disease

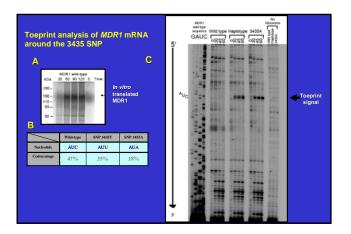



*MDR*1 wild-type and the haplotype (1236-2677-3435) do not exhibit similar Bodipy-verapamil accumulation

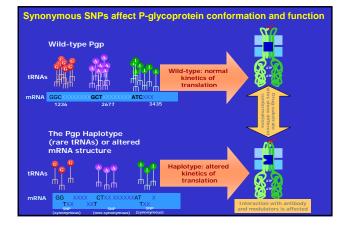


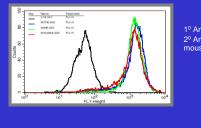

*MDR*1 wild-type and the haplotype exhibit different patterns using rhodamine 123 efflux with cyclosporin A reversing agent

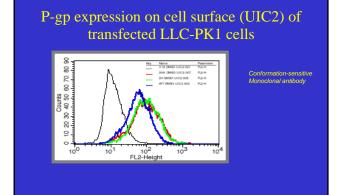


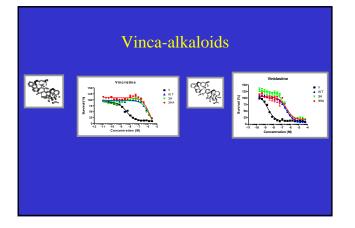


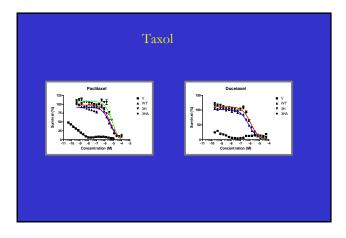
Polymorphic forms of P-gp with alleles that don't change amino acid sequence change the conformation of P-gp

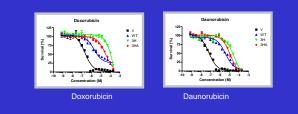

- In transient transfection experiments, the amount of P-gp mRNA, protein, and protein localization on the cell surface is unchanged.
- The conformation of polymorphic P-gp is altered as shown by tryptic peptide analysis and conformationspecific MoAbs.
- 3. Translational toeprint experiments show a major delay in translation at the site of the "silent" polymorphism.

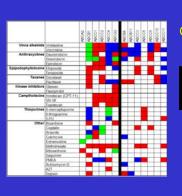





P-gp expression on cell surface (MRK16) of stably transfected LLC-PK1 cells


1º Antibody: MRK16 2º Antibody: Goat antimouse FITC

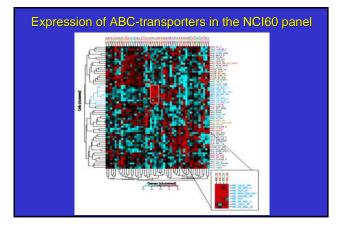


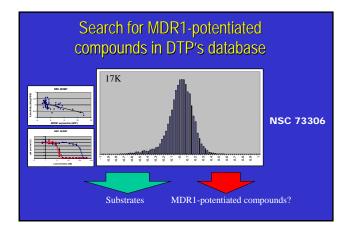


Anthracyclines

Implications

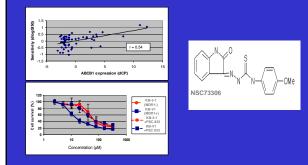
- Explains conservation of third position for many codons
- Might explain some non-Mendelian inheritance
- Might explain linkage of phenotypes to other synonymous polymorphisms
- For P-gp, the haplotype could have selective advantage and/or affect drug distribution
- For cancers, could affect pattern of MDR and ability to respond to specific inhibitors

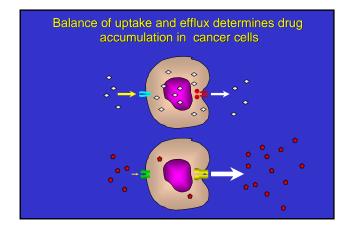


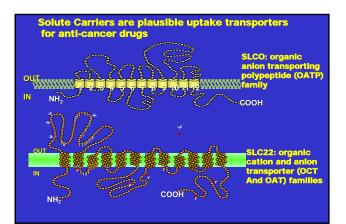

ABC Transporters Confer Resistance to Anti-Cancer Drugs

Confers resistance Selected Doesn't transport

Can we discover new drugs that interact with ABC transporter genes?


- Use Real Time (RT)-PCR to measure ABC mRNA levels for 48 ABC transporters and 23 solute carrier proteins
- Exploit NCI-60 cell line database, with known resistance to 100,000 different drugs, to correlate patterns of drug-resistance and expression of these transporters


The cytotoxicity of NSC 73306 is increased in KB-V1 cells

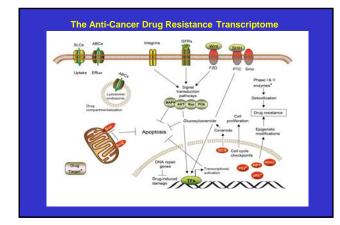

Potential Clinical Utility of Discovery of Compounds that Specifically Kill MDR1-Expressing Cells

Can be used in combination with standard chemotherapy to eliminate MDR1-expressing cell populations

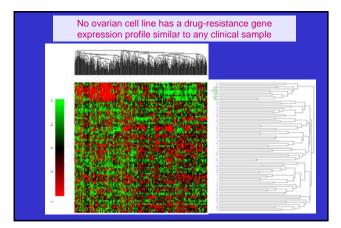
Preclinical development of thiosemicarbazones and search for additional compounds with similar properties is underway

Summary of SLCO and SLC22 Transporters

Most of the SLCO and SLC22 family members we tested are expressed at some level in cancer cell lines.

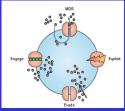

By correlating the expression profiles with the growth inhibitory profiles, expression of 3 of the SLCO and SLC22 family members were found to correlate with sensitivity to specific drugs.

Expression of SLC22A4 in KB cells confers sensitivity to mitoxantrone, doxorubicin, carboplatin and cisplatin.


Microfluidic technology using TaqMan Low Density Array (TLDA)-based detection to study the mechanisms of multidrug resistance in clinical samples Goal: To correlate expression of drug-resistance genes with response to chemotherapy in clinical samples

Method: a customized TLDA with probes for 380 drug-resistance genes enabling high-throughput quantitative real-time PCR based on TaqMan chemistry

Port	*******	1 to 8 samples
Channel		
Each well contains a pair -		12 to 380 targets
of primers and a probe	*****	1, 2 or 4 replicates


Strategies for dealing with MDR1mediated multidrug resistance

Development of specific inhibitors of P-gp

Poor performance in clinical trials for a number of reasons:

-Poor trial design, e.g., cancers don't express MDR1

-Side effects due to inhibition of endogenous functions

Drug structural variation Dose escalation Imaging of P-gp in vivo in cancers can enable all of these strategies

Acknowledgements

- Gergely Szakacs
- Jean-Philippe Annereau
- Joe Ludwig
- Jean-Pierre Gillet
- Mitsunori Okabe
- Matthew Hall
- Chava Kimchi-Sarfaty
- Jung-Mi OhAndy Fung

- Suresh Ambudkar - Zuben Sauna
- InWha Kim
- Anna Calcagno
- Ira Pastan
- John Weinstein
- Carol Cardarelli Takaaki Abe
- Joe Covey
- Henry Fales