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To identify previously unknown genetic loci associated with
fasting glucose concentrations, we examined the leading
association signals in ten genome-wide association scans
involving a total of 36,610 individuals of European descent.
Variants in the gene encoding melatonin receptor 1B (MTNR1B)
were consistently associated with fasting glucose across all ten
studies. The strongest signal was observed at rs10830963, where
each G allele (frequency 0.30 in HapMap CEU) was associated
with an increase of 0.07 (95% CI ¼ 0.06–0.08) mmol/l in
fasting glucose levels (P ¼ 3.2 � 10�50) and reduced beta-cell
function as measured by homeostasis model assessment
(HOMA-B, P ¼ 1.1 � 10�15). The same allele was associated
with an increased risk of type 2 diabetes (odds ratio ¼ 1.09
(1.05–1.12), per G allele P ¼ 3.3 � 10�7) in a meta-analysis of
13 case-control studies totaling 18,236 cases and 64,453
controls. Our analyses also confirm previous associations of
fasting glucose with variants at the G6PC2 (rs560887, P ¼
1.1 � 10�57) and GCK (rs4607517, P ¼ 1.0 � 10�25) loci.

Blood and plasma fasting glucose levels are tightly regulated within a
narrow physiologic range by a feedback mechanism that targets a
particular fasting glucose set point for each individual1,2. Disruption
of normal glucose homeostasis and substantial elevations of fasting
glucose are hallmarks of type 2 diabetes (T2D) and typically result
from sustained reduction in pancreatic beta-cell function and
insulin secretion.

However, even within healthy, nondiabetic populations there is
substantial variation in fasting glucose levels. Approximately one-third
of this variation is genetic3, but little of this heritability has been
explained. There is growing evidence to suggest that common variants
contributing to variation in fasting glucose are largely distinct from
those associated with major disruptions of beta-cell function that
predispose to T2D. Common sequence variants in the GCK (gluco-
kinase) promoter4–6, and around genes encoding the islet-specific
glucose-6-phosphatase (G6PC2)5,6 and the glucokinase regulatory
protein (GCKR)7–9, have each been associated with individual varia-
tion in fasting glucose levels, but have, at best, weak effects on T2D
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risk8,10. Furthermore, although there are now over 15 genetic loci
strongly associated with the risk of T2D7,10–14, none shows compelling
evidence for association with fasting glucose in the two genome-wide
association scans (GWAS) so far reported5,6.

MAGIC (the Meta-Analyses of Glucose and Insulin-related traits
Consortium) represents a collaborative effort to combine data from
multiple GWAS to identify additional loci that affect glycemic and
metabolic traits. Our genetic studies of fasting glucose levels were
originally organized as four distinct consortia: (i) European Network
for Genetic and Genomic Epidemiology (ENGAGE), combining data
from deCODE, Northern Finland Birth Cohort 1966 (NFBC1966),
Netherlands Twins Register/Netherlands Study of Depression and
Anxiety (NTR/NESDA) and the Rotterdam Study; (ii) Genetics of
Energy Metabolism (GEM), a meta-analysis of the Lausanne (CoLaus)
and TwinsUK scans; (iii) DFS, involving the Diabetes Genetics
Initiative (DGI), Finland-United States Investigation of NIDDM
Genetics (FUSION) and SardiNIA scans; and (iv) the Framingham
Heart Study (FHS). Details of the ten component studies (n ¼
1,233–6,479) are provided in Supplementary Table 1 online.

As a prelude to more extensive data-sharing, the four consortia
initially exchanged the identities of between 10 and 20 SNPs promi-
nently associated with fasting glucose in their individual, interim,
meta-analyses (n ¼ 6,479–12,389; Supplementary Table 2 online).
Comparison of these signals revealed three loci with consistent effects
on fasting glucose detected in multiple studies. Two of these repre-
sented the previously reported signals in G6PC2 and GCK. In addi-
tion, all four groups independently generated evidence for an
association between fasting glucose and SNPs around the MTNR1B
(melatonin receptor 1B) locus (ENGAGE: rs1387153, P ¼ 2.2 �
10�17; GEM: rs10830963, P ¼ 7.4 � 10�11; DFS: rs10830963,
P ¼ 2.5 � 10�7; FHS: rs11020107, P ¼ 5.8 � 10�4, for the most
strongly associated SNP exchanged from each analysis). The associa-
tion signals at all three loci were confirmed on formal meta-analysis
including results from all ten studies, after exclusion of individuals
with known diabetes (rs560887 (G6PC2), P ¼ 1.1 � 10�57; rs4607517
(GCK), P ¼ 1.0 � 10�25; rs10830963 (MTNR1B), P ¼ 3.2 � 10�50;
Table 1, Fig. 1, Supplementary Fig. 1, Supplementary Table 3 and
Supplementary Methods online). Subsequent efforts to harmonize
additional aspects of data analysis strategies (including the additional

exclusion, where necessary, of individuals with fasting glucose
measures Z7mmol/l) had only a marginal impact on estimates of
significance and effect size (Supplementary Table 4 online).

We attempted to refine the location of the MTNR1B association
signal by extending the meta-analysis to all SNPs (genotyped and
imputed from the HapMap) within the 1-Mb region flanking the gene
(n ¼ 35,812; 981 SNPs). In all, 30 genotyped and imputed SNPs
showed compelling evidence for association with fasting glucose
(P o 10�8). The strongest signal was detected at rs10830963: the
minor (G) allele (frequency 0.30 in HapMap CEU15) at this SNP was
associated with a per-allele increase of 0.07 (95% CI ¼ 0.06–0.08)
mmol/l in fasting glucose (P ¼ 3.2 � 10�50). Consistent evidence for
association at rs10830963 was observed in all ten component GWAS,
irrespective of whether this SNP was genotyped or imputed, and of the
genotyping platform (Table 1 and Supplementary Table 1). Repeat
meta-analysis within the region after conditioning on rs10830963
revealed no additional independent signals of association (Supple-
mentary Note online).

The strength of the association between rs10830963 and fasting
glucose was unchanged after adjustment for body mass index (Sup-
plementary Table 4). Analyses of fasting insulin levels as well as
indices of beta-cell function (HOMA-B) and insulin sensitivity
(HOMA-IR) estimated by the homeostasis model assessment16 were
possible in B24,000 participants from the ten studies. These estab-
lished that the glucose-raising allele at rs10830963 was associated with
reduced beta-cell function (P ¼ 1.1 � 10�15), with no appreciable
effect on fasting insulin or insulin sensitivity (Supplementary Table 5
and Supplementary Note online).

To determine the impact of variants within MTNR1B on T2D risk,
we carried out a large-scale meta-analysis of 13 T2D case-control
samples (18,236 T2D cases, 64,453 controls; corresponding to an
effective sample size of 21,179 unrelated cases and 21,179 unrelated
controls). We combined data from the deCODE13, Rotterdam17,
KORA18, FUSION stage 2 (ref. 11) and METSIM10 studies and from
several case-control samples from the UK10 with publicly available
data from the DIAGRAM consortium (which itself aggregates GWA
data from the WTCCC, DGI and FUSION scans)10 (Supplementary
Note). We found strong evidence that the minor G allele of
rs10830963 was associated with increased risk of T2D (odds ratio ¼
1.09 (1.05–1.12), P ¼ 3.3 � 10�7; Fig. 2 and Supplementary Table 6
online). The possibility that the fasting glucose association might
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Figure 2 Association of rs10830963 with type 2 diabetes (T2D) in 13 case-

control studies.
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Figure 1 Regional plot of fasting glucose association results for the

MTNR1B locus across ten MAGIC GWAS. Meta-analysis –log10 P values are

plotted as a function of genomic position (NCBI build 35). The SNP with
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reflect the inclusion within the cross-sectional study samples of
subjects with undiagnosed T2D can be discounted given that exclusion
of those with either known diabetes, or a fasting glucose Z7mmol/l
had little impact on the strength of the association signal (Table 1 and
Supplementary Table 4). Although the association with T2D does
not, despite large-scale replication efforts, reach the 5 � 10�8 thresh-
old consistent with ‘genome-wide significance’15, it seems highly
probable, given the strong impact of this variant on beta-cell function
(Supplementary Table 5), that this is a genuine effect.

The analyses we performed interrogate only a fraction of common
sequence variants in a given region—it is likely that the causal variant
for this locus is yet to be identified. The SNP with the strongest
statistical evidence so far, rs10830963, maps within the single 11.5-kb
intron of MTNR1B but does not seem to disrupt consensus transcrip-
tion factor binding or cryptic alternative splice sites. The association
signal is bounded by recombination hot spots defining a B60-kb
interval within which all our strongly associated SNPs lie and the
causal variant is likely to reside. This interval contains the entire
coding region of MTNR1B. The only other nearby genes (the coding
regions of which lie well outside this 60-kb region) are SLC36A4 and
FAT3, neither of which are compelling candidates. SLC36A4 encodes a
proton/amino acid transmembrane transporter moderately similar to
Rattus norvegicus lysosomal amino acid transporter 1, and FAT3
encodes a cadherin family member which is the human homolog of
the Drosophila melanogaster FAT tumor suppressor gene. Ultimately,
detailed fine mapping and functional analyses will be required to
define the causal allele(s) and to confirm that this effect is mediated
through altered function or expression of MTNR1B.

The size of the MAGIC dataset also allowed us to examine the
G6PC2 and GCK regions in greater detail than had previously been
possible. In the G6PC2 region, rs560887, within intron 3 of the gene,
remained the strongest signal whether or not imputed data were
included (P ¼ 1.1 � 10�57 across all ten studies; Supplementary
Fig. 1 online). This is the same SNP reported in one recent paper5 and
is in substantial linkage disequilibrium (LD; r2 ¼ 0.72 in HapMap
CEU) with the lead SNP (rs563694) identified in another6. In the GCK

region, rs4607517, which lies 6.6-kb upstream of the gene, was the
most strongly associated SNP (P ¼ 1.0 � 10�25; Supplementary Fig.
1 and Table 1). This SNP is also in strong LD (r2 ¼ 1 in HapMap
CEU) with the GCK promoter SNP (rs1799884) that was featured in
previous reports4. Repeat meta-analysis after conditioning on the
respective lead SNPs revealed no additional independent association
signals at either locus (Supplementary Note).

As with the variant in MTNR1B, the magnitude of the fasting
glucose associations for both these signals was unchanged after
adjustment for BMI (Supplementary Table 4). Glucose-raising
alleles at GCK and G6PC2 were associated with reduced beta-cell
function (rs4607517[A], P ¼ 9.8 � 10�6; rs560887[C], P ¼ 1.2 �
10–26; Supplementary Table 5 and Supplementary Note). However,
in line with previous reports4,9, neither signal was strongly asso-
ciated with T2D in the large-scale meta-analysis: in fact, the
glucose-raising allele at G6PC2 was weakly associated with reduced
T2D risk (rs4607517[A], per-allele OR ¼ 1.05 (1.00–1.10), P ¼ 0.031;
rs560887[C], 0.93 (0.89–0.97), P ¼ 0.0017; Supplementary Table 6).

We found no influence of the noncoding lead SNPs rs10830963,
rs560887 or rs4607517 on gene expression of MTNR1B, SLC36A4,
FAT3, G6PC2 or GCK in genome-wide expression QTL datasets from
lymphocyte-derived cell lines19,20, cerebral cortex21 or liver22, and no
evidence for epistatic effects among the three lead SNPs was observed
(P for two-way interactions 40.19 in each of the seven studies
including only unrelated individuals; interactions were not examined
in the other three studies).
MTNR1B encodes one of two known human melatonin receptors23.

Although this is the first study to implicate genetic variation in
MTNR1B in the regulation of fasting glucose levels and predisposition
to T2D, this relationship is biologically credible. As well as being highly
expressed in the brain, retina and elsewhere24, MTNR1B is transcribed
in human islets and rodent insulinoma cell lines25, and the translated
receptor is thought to mediate the inhibitory effect of melatonin on
insulin secretion26. Melatonin release is characterized by marked
circadian variability and these inhibitory effects on insulin secretion
may contribute to the entrainment of circadian patterns of insulin
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Table 1 Association of rs10830963 (MTNR1B) with fasting glucose levels in ten studies within MAGIC and meta-analysis of best SNPs across

all ten studies for three loci associated with fasting glucose (MTNR1B, G6PC2 and GCK)

Mean mmol/l fasting glucosea per genotype (s.d.)

Study sample N G allele frequency CC CG GG Per-allele effect, mmol/l (s.e.m.) P value

CoLaus 5,000 0.32 5.36 (0.71) 5.46 (0.80) 5.54 (0.81) 0.094 (0.016) 1.9 � 10�9

deCODE 6,240 0.27 5.29 (0.71) 5.39 (0.71) 5.44 (0.71) 0.086 (0.016) 9.2 � 10�8

DGI 1,455 0.31 5.29 (0.54) 5.32 (0.53) 5.39 (0.60) 0.042 (0.022) 0.054

Framinghamb 6,479 0.28 5.16 (0.48) 5.21 (0.48) 5.26 (0.46) 0.050 (0.012) 2.2 � 10�13

FUSION 1,233 0.33 5.28 (0.49) 5.33 (0.47) 5.40 (0.44) 0.057 (0.016) 5.8 � 10�4

NFBC1966 4,245 0.34 5.63 (0.46) 5.70 (0.49) 5.80 (0.46) 0.079 (0.012) 1.7 � 10�11

NTR/NESDA 3,166 0.27 5.22 (0.64) 5.26 (0.62) 5.38 (0.63) 0.062 (0.019) 1.2 � 10�3

Rotterdam 2,058 0.28 5.58 (0.81) 5.75 (0.91) 5.83 (1.03) 0.145 (0.029) 7.9 � 10�7

Sardinia 4,108 0.20 5.62 (0.89) 5.68 (0.89) 5.76 (0.89) 0.070 (0.019) 3.2 � 10�4

TwinsUKc 1,828 0.30 4.58 (0.65) 4.67 (0.50) 4.74 (0.57) 0.084 (0.032) 7.9 � 10�3

rs10830963 (MTNR1B) Meta-analysis 0.072 (0.005) 3.2 � 10�50

rs560887 (G6PC2) Meta-analysis 0.064 (0.004) 1.1 � 10�57

rs4607517 (GCK) Meta-analysis 0.062 (0.007) 1.0 � 10�25

Fasting glucose levels (mmol/l) are reported untransformed and unadjusted for covariates. Effect of the risk allele and s.e.m. were calculated using untransformed fasting glucose
values. P values are reported for the additive genetic model with study-specific transformation of fasting glucose values, adjusted for sex and age.
aFasting glucose levels in NFBC1966 and SardiNIA were measured in whole blood; in other samples measures were conducted on plasma samples. For these two studies, values in the table

are corrected to plasma fasting glucose using a correction factor of 1.13. bIn Framingham study, mean fasting glucose values for the imputed SNPs are reported for proxies: rs560887 (proxy
rs573225, r2 ¼ 0.96); rs4607517 (proxy rs1799884, r2 ¼ 1); rs10830963 (proxy rs7936247, r2 ¼ 0.59). cIn the TwinsUK study, mean fasting glucose values per genotype are estimated for a
subset of unrelated individuals only.
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release27. There is substantial evidence in human and rodent studies
linking disturbances of circadian rhythmicity to metabolic conditions
including diabetes28,29, and overexpression of melatonin receptors has
been observed in islets from individuals with T2D as compared to
nondiabetic controls30. Taken together, these findings suggest that
the association with raised fasting glucose and T2D may be driven
by variants that augment expression and/or activity of islet
melatonin receptors.

Our findings bring the number of common variant loci influencing
fasting glucose levels to four, three of which were detected in the
present study. Variants in GCKR have a smaller effect size than the
others7,9, and the present study design (based on exchange of a limited
number of prominent signals between component groups) was not
well-powered to detect these. However, subsequent meta-analysis of
GCKR variants across all ten study samples confirms the associa-
tion with fasting glucose (rs780094, P ¼ 8.5 � 10�9; Supplementary
Table 4). The total variance in fasting glucose now attributable to these
four signals is 1.5%, indicating that additional loci remain to be
found3. In comparison with GCK and G6PC2, variants in MTNR1B
seem to have a more marked effect on risk of T2D, the effect size being
comparable in magnitude (OR ¼ 1.09 (1.05–1.12)) to several
other T2D-susceptibility genes recently identified in GWAS10. Thus,
although the physiological regulation of fasting glucose set point and
the pathological decline in beta-cell function that characterizes
common forms of T2D generally seem to involve different processes,
the MTNR1B finding suggests that this is not always the case. Not
only can the study of diabetes-related quantitative traits provide
an important path to the identification of additional T2D suscep-
tibility loci, but there may also be opportunities for useful thera-
peutic overlap.

Note: Supplementary information is available on the Nature Genetics website.
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