Studies of Medically-Irradiated Populations External Radiation

NATIONAL CANCER INSTITUTE RADIATION EPIDEMIOLOGY BRANCH

Rockville, Maryland Radiation Epidemiology Course

> 15 May 2007 John D. Boice, Jr.

john.boice@vanderbilt.edu

There are well over 100 studies of patient populations linking radiation to cancer.

Evidence for causal associations comes primarily from epidemiologic studies of the atomic bomb survivors and patient populations. WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER

IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS

VOLUME 75 IONIZING RADIATION, PART 1: X- AND GAMMA (γ)-RADIATION, AND NEUTRONS

> 2000 I A R C L Y O N FRANCE

UNSCEAR 2000 2007 Soon

Radiation risks.

Tables on epidemiologic study strengths and limitations.

United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 1993 Report to the General Assembly, with Scientific Annexes

UNITED NATIONS

With increased survival, late effects take on more importance.

IMPROVING CARE AND QUALITY OF LIFE

www.nap.edu 2003 INSTITUTE OF MEDICINE NATIONAL RESEARCH COUNCE OF THE NATIONAL ACADEMIC

Charles Schultz, Peanuts

Radiation Epidemiology Studies in Medicine

Cancer Treatment	Non-Malignant Treatment	Diagnostic Exams
Cervix	Thymus	TB-Fluoroscopy
Hodgkin	Spondylitis	Scoliosis
Endometrial	Tonsils	Dental
Ovary	Tinea capitis	Head & Neck
Breast	Peptic ulcer	Mixed diagnostic
Testis	Hemangioma	X-rays
Childhood	Gynecolgic	In utero
	Breast	Nuclear 🛛 🚃
VANDERBILT	Hyperthyroidism	imaging

UNIVERSITY

Cancer Treatment

STUDIES OF ADULTS

- Hodgkin lymphoma
 - Breast
 - Lung
- Breast cancer
- Cervical cancer

STUDIES OF CHILDREN

- Childhood Cancer
- Retinoblastoma
- COMPARISONS WITH A-BOMB SURVIVORS

SECOND CANCERS: IMPORTANCE

- Clinical
 - Effect on patient
 - Morbidity and mortality
- Epidemiologic
 - Cancer etiology
 - Quantification of risk
 - Dose-response relationships
- Carcinogenesis
 - Insight into mechanisms
 - Applicable to all cancer
 - Ultimate goal: prevention of first cancer

Multiple Primary Cancers in Connecticut and Denmark

nci

Monograph 68

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

Public Health Service National Institutes of Health

Secondary Carcinogenesis in Patients Treated with Radiation: A Review of Data on Radiation-Induced Cancers in Human, Non-human Primate, Canine and Rodent Subjects

Herman Suit,^{e1} Saveli Goldberg,^e Andrzej Niemierko,^e Marek Ancukiewicz,^e Eric Hall,^e Michael Goitein,^e Winifred Wong^e and Harald Paganetti^e

^e Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and ^b Center for Radiological Research, Columbia University, New York, New York

Radiation Research 167, 12-42, 2007

Treatment planning to reduce dose to uninvolved normal tissue

National Cancer Institute

New Malignancies Among Cancer Survivors:

SEER Cancer Registries, 1973-2000

2006:

ON CONVERSION OF INCOMESSION INCOMESSION http://seer.cancer.gov/publications/mpmono/

1973-2000 (27 years) SEER

Second Cancer Studies - AdultsPrimarySecondaryReference							
Hodgkin Lymphoma	Breast Breast Lung Lung All	Travis, JAMA 2003;290:465 van Leeuwen, JNCI 2003;95:971 Travis, 2002;94:182 Gilbert, Rad Res 2003;159:161 Swerdlow, JCO 2000;18:498					
Female Breast	Leukemia Leukemia Leukemia Breast Lung	Smith, JCO 2003;21:1195 Crump, JCO 2003; 21:3066 Curtis, N Engl J Med 1992;326:1745 Boice, N Engl J Med 1992;326:781 Inskip, JNCI 1994;86:983					
Uterine Cervix	All	Boice, Radiat Res 1988;116:3					
Non-Hodgkin Lymphoma	Bladder	Travis, JNCI 1995;87:524					
Ovary	Bladder Leukemia	Travis, Cancer Res 1996;56:1564 Travis, N Engl J Med 1999;340:351					
Lung	Lung	Tucker, JNCI 1997;89:1782					
Testis	Leukemia	Travis, JNCI 2000; 92:1165					
		Substantial area of research					

Breast Cancer After Hodgkin's Disease

		Dose to Breast (Gy)						
	0-4	4-7	7-23	23-28	28-37	37-40	40+	
Cases	15	13	16	9	20	12	17	
Controls	76	30	30	30	31	31	29	
Relative Risk	1.0	1.8	4.1*	2.0	6.8*	4.0*	8.0*	
		Alky	lating	Agents	(No.	Cycles		
		0	•	1-4	5-8	9+		
Cases		68		10	17	4		
Controls		132		20	55	29		
Relative Risk		1.0		0.7	0.6	0.2*		
	2002	Dose c	ompute	d to tum	or site	Hiah dos	se risk	

Early onset. Chemotherapy can protect.

Absolute Risks (%)

Breast After Hodgkin Lymphoma -- Counseling

Age at HL diagnosis Age at counseling (yr) Age at end of risk projection (yr)			15 yr			25 yr	
		25	25	35	35	35	45
		35	45	45	45	55	55
Treatment for H	IL						
Mediastinal RT	ΑΑ		(%)			(%)	
None	Yes	0.1	0.8	0.8	0.8	2.5	2.0
<40 Gy	Yes	0.7	4.2	3.8	4.0	12.3	9.6
<u>≥</u> 40 Gy	Yes	0.8	5.1	4.7	4.8	14.9	11.6
None	No	0.3	1.8	1.6	1.7	5.4	4.1
<40 Gy	Νο	1.4	8.7	8.1	8.3	24.5	19.4
<u>></u> 40 Gy	Νο	1.7	10.5	9.8	10.1	29.0	23.2

Travis ... Gail, *JNCI* 97:1428, 2005

Lung Cancer After Hodgkin's Disease

	Radiation Dose to Lung (Gy)							
	0	>0-5	5-14	15-29	30-39	40+		
Cases	72	22	14	14	51	26		
Controls	158	75	18	22	87	33		
Relative Risk	1.0	1.25	7.5*	9.3	9.6*	10.0*		

~ !			
Cidare	sttes (nks/n	I)
Sigui		phore	•

	Never	Former	<1	1-2	2+
Cases	8	29	48	74	23
Controls	108	74	74	58	11
Relative Risk	1.0	7.2*	13.3*	33.7*	84.9*
Travis et al. JNCI 94:1	82, <mark>2002</mark>	Gilbert et al	. Radiat Res	s 159:161, <mark>20</mark>	03

Lung Cancer After Hodgkin's Disease Radiotherapy and Smoking

RISK OF CONTRALATERAL BREAST CANCER AGE ≤ 45 YRS

Secondary Breast Radiotherapy for Breast Cancer

	RR	95% CI	
All Subjects*	1.19	0.9-1.5	
Time After Exposure (Yr)			
5-9	0.99	0.7-1.4	
<u>></u> 10	1.33	1.0-1.8	
Age at Exposure (Yr)			
<35	2.26	0.9-5.7	
35 -	1.46	0.9-2.3	
<u>></u> 45	1.01	0.8-1.4	
*655 Cases, 1189 Controls			
Boice et al, <i>NEJM</i> 326:781, 1992	Risk after 10 years among young Example of age modification.		

Leukemia in Patients With Cancer of the Cervix Uteri Treated With Radiation. A Report Covering the First 5 Years of an International Study St

GEORGE B. HUTCHISON, M.D., Department of Epidemiology, Harvard School at Public Health, Boston, Massachuretts 02115

Reprinted from the Journal of the NATIONAL CANCER INSTITUTE

JNCI 40:951, 1968

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE PUBLIC HEALTH SERVICE NATIONAL INSTITUTES OF HEALTH

Large doses to small volumes result in cell killing

WORLD HEALTH ORGANIZATION

INTERNATIONAL AGENCY FOR RESEARCH ON CANCER

SECOND CANCER IN RELATION TO RADIATION TREATMENT FOR CERVICAL CANCER

From the International Radiation Study Group on Cervical Cancer

EDITORS N.E. DAY and J.D. BOICE, Jr

URC SCIENTIFIC PUBLICATIONS No. 52

LYON 1983

20 Clinics 19 Cancer Registries 15 Countries

LEUKEMIA

RADIOTHERAPY FOR CERVICAL CANCER

LEUKEMIA		NU	MBERS			
TYPE	RAD	CASES	CONTROLS	RR	(90% CI)	
AL + CML	YES	133	489	2.0	(1.0-4.2)	
	NO	8	56			
CLL	YES	48	183	1.0	(0.3-3.9)	
	NO	4	16			

Leukemia by Years after Radiotherapy Cervical Cancer

Second	Years after radiotherapy								
Cancer (ICD-7)	1-4	5-9	10-14	15-19	20-24	25-29	30+	Total	
Chronic lymphatic leukemia (204.0)									
Obs	3	4	4	4	5	2	3	25	
Exp	6.00	6.17	5.53	4.81	4.00	2.90	2.91	32.33	
O/E	0.50	0.65	0.72	0.83	1.25	0.69	1.03	0.77	
Acute and	nonlympho	cytic leuken	nia (204.2, 2	204.3)					
Obs	24	21	8	9	11	3	6	82	
Exp	12.68	12.43	10.54	8.48	6.58	4.50	2.04	59.28	
O/E	1.89 *	1.69 *	0.76	1.06	1.67	0.67	1.48	1.38 *	
¥ 7	ANLL ir	ncreased <1	lOy	CLI	_ is not incre	eased at an	y interval		
VANDERBILT	Kleinerm	an, Cancer, 1	1995:76:442	<u>ר</u>					

Cervical Cancer

Lightly Irradiation Sites - Cervical Cancer

Second Cancer	Number Cases	Organ Dose (ave. GY)	RR at 1 Gy (90% CI)
Stomach	338	2.0	1.69 (1.0 - 3.3)
Pancreas	211	1.9	1.00 (0.7 - 1.6)
Liver	19	1.5	1.00 (0.7 - 1.3)
Kidney	134	2.0	1.71 (1.0 - 3.2)
Breast	838	0.3	1.03 (0.1 - 2.3)
Boice, JNCI, 1985;74	1:955	Boice, Rad	liat Res, 1988;116:3
Kleinerman, Cancer,	1995;76:442		

Cancers Induced Only at High Radiation Doses

Second Ca	Mean Dose, Gy	Dose - Response	First Site
Rectum	30 - 60	p = 0.002	Cervix
	<u>></u> 30		Ovary, Endom.
Bone	22	p = 0.16	Cervix
	27	p = < 0.05	Childhood Ca
	20 - 33	p = < 0.05	Retinoblastoma
Conn. Tissue	11 - 20	p = 0.05	Retinoblastoma
Uterine corpus	165	P = 0.14	Cervix
Vagina	66	P = 0.02	Cervix
		Curtis, NCRP	Proc 18, 1998

Poteniating Factors (Effect Modifiers)

Rad <u>iotherapy</u>	and	Chemotherapy	
Breast Hodgkin's Disease Ovary Acute Leukemia Childhood Cancer		Leukemia Lung Leukemia Brain Bone	Curtis, NEJM 1992;86:1315 Travis, JNCI 2002:94:182 Travis, NEJM 1999;340:351 Reilling, Lancet 1999;354:34 Tucker, NEJM 1987;317:588
Radiotherapy	and	Cigarette Smok	ing
Hodgkin's Disease Breast Cancer Lung Cancer	$ \rightarrow$	Lung Lung Lung	van Leeuwen, JNCI 1995;87:1530 Neugut, Cancer 1994;73:1615 Tucker, JNCI 1997;89:1782
Radiotherapy	and	Genetic Predisp	osition
Retinoblastoma	— — →	Sarcoma	Wong, JAMA 1997;278:1262 Tucker, NEJM 1987;317:588
Radiotherapy	and	Age at Exposur	e
Breast Hodgkin's Disease All All		Breast Breast Thyroid Bone	Boice, NEJM 1991;326:781 Hancock, JNCI 1993;85:25 Tucker, Cancer Res 1991;51:2885 Inskip, Multiple Primaries, 1999

No. Cases ERR / Sv					
Medical Study	Study	LSS	Study	LSS	
Kaldor (1992)	40	135	0.27	1.23	
Inskip (1994)	59	178	0.20	1.96 **	
van Leeuwen (1995)	30	135	0.37	1.23	
Mattsson (1997)	19	364	0.38	1.85 **	
Davis (1989) *	69	936	- 0.16	0.59 **	
Griem (1994)	162	750	0.60	0.69	
Weiss (1994)	1126	855	0.05	0.65 **	
Howe (1995) *	1178	936	0.00	0.59 **	

Medical Studies – Lower Risk

"Relative risks tend to be lower in the medical series than in the Japanese A-bomb survivors.

The most marked discrepancies ... are for leukemia, where 12 of the 17 medical studies have significantly lower relative risks..."

Cell killing, fractionation, protraction

Little, IJRB 77:431, 2001

Second Cancer Studies - Children				
Primary	Secondary	Reference		
All Cancers	All All Leukemia Bone Bone Brain Thyroid Thyroid	Garwicz, IJ Cancer 2000;88:672 Neglia, JNCI 2001;93:618 Mertens, JCO 2001;19:3163 Tucker, JNCI 1987;78:459 Tucker, NEJM 1987;317:548 Hawkins, JNCI 1996;88:270 Neglia, JNCI 2006; 98:1528 Tucker, Cancer Res 1991;51:2885 Sigurdson, Lancet 2005; 365:2014		
Hodgkin Lymphoma	All Breast	Bhatia, NEJM 1996;334:745 Travis, JAMA 2003; 290:465		
Wilms Tumor	All	Breslow, J Clin Oncol 1995;13:1851		
Retinoblastoma	All STS	Wong, JAMA 1997;278:1262 Kleinerman, JNCI 2007; 99:24		
Leukemia	All Brain	Pui, NEJM 2003;349:640 Relling, Lancet 1999;354:34		
Bone Marrow Transplant	All	Curtis, NEJM 1997;336:897		

2nd Cancers After Childhood Cancer (LESG)

Tucker, In: Boice & Fraumeni, 1984

Early figure. Influenced by type of childhood cancers studied.

2nd Cancers After Childhood Cancer (CCSS)

Second Cancer After Childhood Cancer (N = 13,581; 5 yr Survivors, CCSS)

	Obs	Obs/Exp	95% CI
All Second Cancers	314	6.4	5.7-7.1
Brain and CNS	36	9.9	6.9-13.6
Bone	28	19.1	12.8-27.7
Soft Tissue Sarcoma	32	6.3	4.3-8.9
Breast (female)	60	16.2	12.4-20.8
Thyroid	43	11.3	8.2-15.27
Leukemia	24	6.9	4.4-10.2
Neglia et al, <i>JNCI</i> 93:618, 2001		Very high risks background l	, in part because ow but also Rx

Second Cancer After Childhood Cancer (N=25,120) Radiotherapy Risk (Nordic Countries)

Site	Cases	Controls	s RR	95% CI
All sites	234	678	4.3	3.0-6.2
Bone & Conn Tissue	31	89	19.8	4.5-87
Breast	24	71	11.5	3.2-41
Brain & CNS	48	143	2.8	1.4-5.5
Leukemia	20	57	2.6	0.8-8.5

Garwicz, Int J Cancer 88:672, 2000

Role of Radiotherapy

Thyroid After Childhood Cancer (LESG)

Table 2. Estimated matched relative risk of thyroid cancer by radiation dose to the thyroid

	Radiation dose (cGy)				
	<200	200-	1000-	>3000	
No. of cases	3	7	7	5	
No. of controls	40	17	14	11	
Relative risk	1.0	14.2	13.5	17.4	
95% confidence inte	erval	3.7-122	1.4-127	1.4-217	

Tucker, Cancer Res 51:2885, 1991

High dose effect. Flat response. Induction vs killing.

Leukemia After Childhood Cancer (LESG)						
RR by Radiation Dose						
RR by radiation dose, rad						
Specification	0 <250 250- 1000- 1500- ≥2000					
No. of cases	5	5	3	4	5	3
No. of controls	12	11	31	11	13	12
RR	1.0	1.3	0.1	0.8	0.7	0.4
RR by Chemotherapy RR for alkylator score						
Specification	0	1-		3-	5-	<u>></u> 7
No. of cases	9	1		3	7	5
No. of controls	61	12		7	7	3
RR	1.0	0.7	,	8.4	16.0	24.2
Tucker, JNCI 78	3:459, <mark>1987</mark>	Lit	tle radiati	on effect.	AA effect	strong.

Retinoblastoma

Sarcoma Dose Response - Retinoblastoma					
		Radiat	ion Dose	, Gy	
Sarcoma Type	0 - 4.9	5.0-	10-	30-	60+
Soft-Tissue Observed RR	9 1.0	4 1.6	10 4.6 *	5 6.4 *	3 11.7
All Sarcomas Observed RR	12 1.0	8 1.9 *	20 3.7 *	13 4.5 *	14 10.7*
Wong et al, <i>JAMA</i> , 278:1262, See recent Kleinerman et al.	, 1997 JNCI 99:24-31, 200	7	High do	* se effect, > :	P<0.05 5 Gy.

Second Cancers

- Numbers Substantial -- Especially Important After Childhood
- Chemotherapy Leukemia, bone, bladder, other
- New Treatments continued need to evaluate
- Tremendous amount of research ongoing
- Future studies will also focus on genetic predisposition and interaction
- Lifetime surveillance and programs of patient awareness.

Radiation Epidemiology Studies in Medicine

Cancer Treatment	Non-Malignant Treatment	Diagnostic Exams	
Cervix	Thymus	TB-Fluoroscopy	
Hodgkin	Spondylitis	Scoliosis	
Endometrial	Tonsils	Dental	
Ovary	Tinea capitis	Head & Neck	
Breast	Peptic ulcer	Mixed diagnostic	
Testis	Hemangioma	X-rays	
Childhood	Gynecolgic	In utero	
	Breast	Nuclear imaging	
	Hyperthyroidism		

Newborns were treated at 6 mo.

1918: Timme thought that the large thymus in children was abnormal and suggested radiation treatment to shrink it.

Thymus

Breast Cancer Thymus Irradiation

Breast Dose (cGy)	0	1 -	50 -	200+
No. of breast cancers	12	8	6	8
Relative Risk	1.0	2.7	6.7	4.7
95% CI		1.1-6.7	2.4-18.7	1.9-12.1

Hildreth et al, *NEJM* 321:1281, 1989

Immature breast tissue at risk but risk manifests many years later

Breast Cancer After Infant Exposure Dose Rate Reduction (DDREF = 7)						
Study Exposure	Breast Dose (Gy)*	Nun Treated	nber Breast Ca	Excess Risk (10 ⁴ WY- Gy)		
Thymus High-dose-rat x-ray	e 0.7	3,312	34	34.0		
Hemangioma Low-dose-rate gamma	a e 0.4	17,082	226	5.1		
*Ranges (0.02-7.5 Gy) & (0.02-35 Gy)						
Preston et al, <i>Radiat Res</i> , 158:220, 2002						

Radiotherapy for Ringworm 5 treatments, 3-12 minutes each

Thyroid Tinea Capitis - Israel

Ron et al, <i>Radiat Res</i> 120:516, 1989		
RR (95% CI):	4.0 (2.3 - 7.9)	
Expected:	10.7	
Observed Thyroid Cancers	s: 43	
Thyroid Dose (mean):	9 cGy	
Number Nonexposed:	16,226	
Number Exposed:	10,834	

Discussion ...

- Effect primarily among immigrants, mainly from Morocco, not Israeli born (Ron, Rad Res 1989)
- "Irradiation for tinea capitis was given to many Jews in Morocco prior to immigration..."(Modan, JNCI 1980)
- Genetic susceptibility & family clustering (4 sisters thyroid disease)
- Wiggle could increase dose x 3
- Immigrants from Morocco came from Atlas Mt region, and diets deficient in stable iodine

Thyroid Cancer Dose Response Israeli Tinea Capitis 2007

Conclusions: Our findings agree with patterns of risk modification seen in most studies of radiation-induced thyroid cancer, although risk per unit dose seems higher. Our data show that 40 yr after irradiation, ERR decreases dramatically, although remaining significantly elevated. The hypothesis of different genetic susceptibility of the Jewish population deserves further exploration.

Sadetzki et al. *J Clin Endocrinol Metab* 91: 4798–4804, 2006

Genetic Predisposition to Radiation-induced Meningioma -- Israeli Tinea Capitis 2007

Interpretation Our results support the idea that genetic susceptibility increases the risk of developing meningioma after exposure to radiation.

Further studies are needed to identify the specific genes involved in this familial sensitivity to ionising radiation. DNA repair and cellcycle control genes, such as the ataxia-telangiectasia gene, could be plausible candidates for investigation.

Flint-Richter P, Sadetzki S. Lancet Oncol 8: 403–10, 2007

Figure 2: Family tree of two families with four RAM in first-degree relatives Family 1 includes seven siblings of whom four sisters and one brother were irradiated for tinea capitis and all four sisters developed meningiomas. Family 2 includes an irradiated mother and eight siblings of whom five were irradiated. The mother and three of the irradiated siblings (two brothers, one sister) developed meningiomas. Also, two irradiated siblings were diagnosed with leukaemia (*) or breast cancer (†).

Radiation Epidemiology Studies in Medicine

Cancer Treatment	Non-Malignant Treatment	Diagnostic Exams
Cervix	Thymus	TB-Fluoroscopy
Hodgkin	Spondylitis	Scoliosis
Endometrial	Tonsils	Dental
Ovary	Tinea capitis	Head & Neck
Breast	Peptic ulcer	Mixed diagnostic
Testis	Hemangioma	X-rays
Childhood	Gynecolgic	In utero
	Breast	Nuclear imaging
	Hyperthyroidism	

Risk of Cancer from Diagnostic X-rays: Estimates for the UK and 14 Other Countries

"Findings: Our results indicate that in the UK about 0.6% of the cumulative risk of cancer to age 75 years could be attributable to diagnostic X-rays. This percentage is equivalent to about 700 cases of cancer per year."

Berrington de Gonzalez, Lancet 363:345, 2004

Lung collapse therapy for tuberculosis and associated multiple chest fluoroscopic x-rays

Studies of lowdose fractions accumulating to high dose.

Breast TB - Fluoroscopy, Massachusetts				
Number Exposed:	2,573			
Number Unexposed:	2,367			
No. Chest Fluoroscopies (m	ean): 88			
Breast Dose (mean):	79 cGy			
Observed Breast Cancer:	147			
Expected:	114			
RR (95% CI):	1.29 (1.1 - 1.5)			
Boice et al, <i>Radiat Res</i> 126:214, 1991 Boice & Monson, <i>J Natl Cancer Inst</i> 59:823	1977			

Severe Scoliosis

Ð

Breast Cancer Scoliosis		
No. Female Patients	5,573	
Years Treated	1912 - 1965	
Age, Mean (yr)	10.6	
No. X-rays		
Range	0 - 618	
Mean	24.7	
Breast Dose (cGy)		
Range	0 - 170	
Mean	11	
Breast Cancer Deaths		
Observed	77	
Expected	45.6	
O/E (95% CI)	1.69 (1.3-2.1)	
Doody et al. Spine 25:2052, 2000	Sensitivity of immature breast	

Lung TB - Fluoroscopy, Massachusetts

Number Exposed:	6,285
Number Unexposed:	7,100
No. Chest Fluoroscopies (ave)): 77
Lung Dose (mean):	84 cGy
Observed Lung Cancer:	69
Expected:	86
RR (95% CI):	0.8 (0.6 - 1.0)

Davis et al, Cancer Res 49:6130, 1989

Lung TB - Fluoroscopy, Canada Compared to Japanese LSS

	Multiple	Fluoroscopy	Atom	nic Bomb
Lung Dose (cGy)	# Lung Ca	RR (95% CI:)	# Lung Ca	RR (95% CI:)
< 1	723	1.0	248	1.0
1 -	180	0.87 (0.7-1.0)	290	1.26 (1.1-1.5)
50 -	92	0.82 (0.7-1.0)	38	1.45 (1.0-2.1)
100 -	114	0.94 (0.8-1.2)	30	1.93 (1.3-2.9)
200 -	41	1.09 (0.8-1.5)	10	2.65 (1.5-4.7)
300+	28	1.04 (0.7-1.5)	3	

Howe G, Radiat. Res. 1995; 142:295

Leukemia TB - Fluoroscopy, Massachusetts

Number Exposed:	6,285
Number Unexposed:	7,100
No. Chest Fluoroscopies (a	ve): 77
Bone Marrow Dose (mean)	: 9 cGy
Observed Leukemia:	17
Expected:	18.9
RR (95% CI):	0.9 (0.5 - 1.8)

Davis et al, *Cancer Res* 49:6130, 1989

Pregnancy and Medical Radiation

Oxford Prenatal X-ray Survey

MT	Cas	ses	
Childhood Cancer	No.	% X-ray	RR
Leukemia			
Lymphatic	2,007	14	1.5
Myeloid	866	14	1.5
Lymphoma	719	13	1.4
All Leuk/Lymphoma	4,771	14	1.47
Wilms	590	15	1.6
CNS	1,332	13	1.4
Neuroblastoma	720	14	1.5
Bone	244	11	1.1
Other Solid	856	15	1.6
All Solid	3,742	14	1.47
Sithell, Stewart, Br J Cancer	31:271, <mark>1975</mark>	Biologica to have	Ily plausible same RR ?

The results were the same for leukemia, lymphosarcoma, cerebral tumors, neuroblastoma, Wilms' tumor and for all other cancer. Given the differences in the epidemiology of these neoplasms, which reflects etiology, it seems unlikely that each would have the same relative risk as the others after maternal diagnostic radiation exposure.

Miller. NCRP Proc 6 (Apr), 1984

On the balance of evidence, we conclude that irradiation of the fetus in utero increases the risk of childhood cancer, that an increase in risk is produced by doses of the order of 10 mGy, and that in these circumstances the excess risk is approximately 6% per Gy.

Doll & Wakeford. Br J Radiol (Feb) 1997

GROUNDS FOR UNCERTAINTY

- 1. A-bomb in utero study of childhood cancer is negative,
- 2. All cohort studies are negative only case-control studies are positive and more susceptible to bias
- 3. Biological Implausibility; equality of relative risks for leukemia and solid tumors
- 4. Twins have lower risk than singletons despite more frequent x-rays
- 5. Supporting animal evidence is weak

Doll and Wakeford. Br J Radiol 70:130, 1997 Little and Wakeford, JRP 2002; Int J Radiat Biol 2003

Boice and Miller, Teratology 59, 227, 1999 UNSCEAR, 1994; MacMahon NEJM 1985.

Results of Obstetric - Radiation Cohort Studies

Study	# Irrad. Cancers	Total Cancer: RR (95% CI)	Leukemia: RR (95% CI)
Edinburgh/London (1)	9		0.86 (0.4-1.6)
UK National Cohort (2)	12	1.20 (0.6-2.5)	
Chicago ⁽³⁾	4	1.19 (0.4-4.0)	0.66 (0.1-5.0)
Baltimore (4)	13	1.05 (0.5-2.1)	1.62 (0.6-4.6)
US Perinatal Project (5)	7	1.09 (0.5-2.4)	
Rochester, NY ⁽⁶⁾	3		0.92 (0.3-3.1)
Combined Studies	48	1.12 (0.7-1.7)	0.98 (0.6-1.6)

(1) Court-Brown BMJ 1960; (2) Golding BJC 1990; (3) Griem 1967, Oppenheim 1974; (4) Diamond AJE 1973; (5) Shiono JNCI 1980; (6) Murray NEJM 1959

WM Court Brown, R Doll, A Bradford Hill

"Altogether information was obtained about **39,166 liveborn children whose mothers were known to have been subjected to abdominal or pelvic irradiation during their pregnancy.** Among their children, nine were discovered to have died of leukaemia before the end of 1958. The expected number was estimated to be 10.5...

It is concluded that an increase of leukaemia among children due to radiographic examination of their mother's abdomen during the relevant pregnancy is not established."

BMJ November 26, 1960

It seems likely that the question of the association between fetal irradiation and childhood cancer will fade into medical history unresolved and remain a source of more confusion than enlightenment.

MacMahon. N Engl J Med 312:576, 1985

ICRP Publication 90 (2003) Biological Effects after Prenatal Irradiation (Embryo and Fetus)

" Although the arguments fall short of being definitive because of the combination of biological and statistical uncertainties involved, they raise a serious question of whether the great consistency in elevated RRs, including embryonal tumours and lymphomas, may be due to biases in the OSCC study rather than a causal association. "

Studies of Medical Exposure - Summary

- Numbers substantial -- especially important after childhood
- Exceptional dose assessment opportunities
- Unique opportunities to study:

Interactions

High doses

Low doses

Understudied cancers

• These opportunities will <u>not</u> soon go away

Relevant References - 1

Amundson S, et al. Low-dose radiation risk assessment. Report of an International Workshop on Low Dose Radiation Effects held at Columbia University Medical Center, New York, April 3-4, 2006. *Radiat Res* 166:561-565, 2006.

Boice JD Jr. Ionizing radiation. In: <u>Cancer Epidemiology and Prevention, 3rd</u> <u>Edition</u>. (Schottenfeld D, Fraumeni JF Jr, eds). New York, Oxford University Press (2006).

Boice JD Jr. Radiation-induced leukemia. In: <u>Leukemia, Seventh Edition</u> (Henderson ES, Lister TA, Greaves MF, eds). Philadelphia, W.B. Saunders, 2002, pp 152-169.

Fry RJM, Boice JD Jr. Radiation carcinogenesis. In: <u>Oxford Textbook of</u> <u>Oncology, Second Edition</u> (Souhami RL, Tannock I, Hohenberger P, Horiot J-C, eds). New York: Oxford Press, 2002, pp 167-184.

Relevant References - 2

International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. Vol 75. Ionizing Radiation, Part 1: X- and Gamma (γ) – Radiation, and Neutrons. Lyon, France: IARC, 2000.

Little MP. Cancer after exposure to radiation in the course of treatment for benign and malignant disease. <u>Lancet Oncol</u> 2001;2:212-20.

Little MP. Comparison of the risks of cancer incidence and mortality following radiation therapy for benign and malignant disease with the cancer risks observed in the Japanese A-bomb survivors. Int J Radiat Biol 2001;77:431-64.

National Council on Radiation Protection and Measurements. Evaluation of the Linear-Nonthreshold Dose-Response Model for Ionizing Radiation. NCRP Report No. 136. Bethesda, MD: NCRP, 2001.

Relevant References - 3

National Research Council. Committee on the Biological Effects of Ionizing Radiation. (BEIR VII). Washington, DC: National Academy Press, 2006.

Neugut AI, Meadows AT, Robinson E. <u>Multiple Primary Cancer</u>. Lippincott, Philadelphia, 1999.

Tubiana M, et al. Dose-effect relationships and the estimation of carcinogenic effects of low doses of ionizing radiation. Joint Report No. 2, Academie Nationale de Medecine, Institut de France-Academie des Sciences, Paris, 2005.

United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Sources and Effects of Ionizing Radiation. Vol I: Sources, Vol II: Effects. E.00.IX.4. New York, United Nations, 2000.

van Leeuwen FE, Travis LB. Adverse effects of treatment: second cancers. In: <u>Cancer--Principles & Practices of Oncology, 6th Edition</u> (DeVita, Hellman, Rosenberg, eds). Lippincott, Williams & Wilkins, 2001.