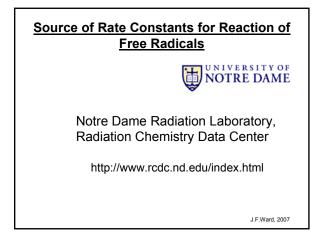
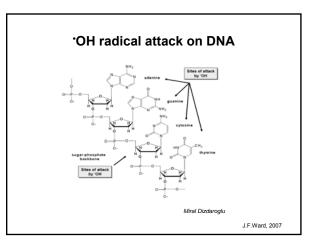
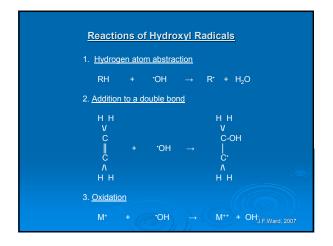
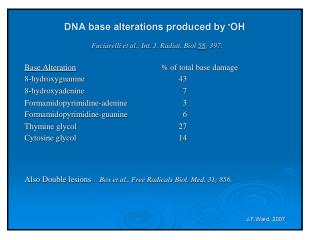

Sidney Brenner, *Science*, July 17, 1992 Those who prefer the airy realm of theory to the area of decisive experiment aren't necessarily doing so by choice: I always say it's important to distinguish between chastity and impotence.








		Constants – 'C dicals	ОН
	Liters p	per mole per second	
DNA	bases	5 x 10 ⁹	
	deoxyribose	1.2 x 10 ⁹	
Amino	o acids – glycine tryptophan	1.7 x 10 ⁷ 1.3 x 10 ¹⁰	
Ethan	ol	1.3 x 10 ⁹	
Dimet	hyl sulfoxide	6.5 x 10 ⁹	
	G		J.F.Ward, 2007

Liters	s per mole per second
Oxygen	1.3 x 10 ¹⁰
DNA bases	5 x 10 ⁹
deoxyribose	1 x 10 ⁷
Amino acids - glycine	1 x 10 ⁷
tryptophan	3.2 x 10 ⁸
cystine	1.1 x 10 ¹⁰

Typical Rate	e Constants – (O ₂ -)
Liter	s per mole per second
DNA	<10 ⁶
Glycine	<0.42
Tryptophan	<24
Cystine	<0.4
Superoxide Dismutase	3.2 x 10 ⁹
	J.F.Ward, 2007

Characteristics of Single Strand Breaks (SSB) Are induced by both direct ionization (35%) and OH radicals (65%). Roots and Okada Int. J. Radiat. Biol. 21 329. 15 % of OH radicals reacting with DNA cause SSB. Scholes et al. J. Molec. Biol. 2 379. 30% of directly ionizing events cause SSB. Raskasovskiy et al Radiat Res. <u>153</u> 436. A base is released at the site of each SSB. Ward and Kuo <u>66</u> 485. The termini of SSB are 5' phosphates and 3' phosphoglycolates (35%) and 3' phosphates (65%). Henner et al. J.Biol. Chem. <u>258</u> 713. 70% of SSB are overt breaks, 30% are alkali labile sites. LaFleur et al. Int. J. Radiat.Biol. <u>30</u> 223. Alkali labile (abasic) sites are not the same as acid induced abasic sites. LaFleur et al. Int. J. Radiat.Biol. <u>35</u> 241. 1 Gray produces 1000 SSB per cell Elkind and Redpath, In Cancer, A Comprehensive Treatise § 51. Most SSBs are repaired with a half-life of 3-4 min.

J.F.Ward, 2007

<u>Ratio of base damages to SSB</u> Milligan et al. Radiat. Res. <u>146</u> 436.

- Supercoiled plasmid DNA used as target.
- SSB measured as relaxed open circle
- DSB measured as linear
- Base damage measured as increase in strand breaks after treatment with base damage specific enzymes.
- Base damage produced by OH radicals are \approx 2.6 times as frequently as SSB.

J.F.Ward, 2007

Direct Ionization of DNA

Initial events (observed at 4°K) e.g. Debije and Bernhard, J. Phys. Chem. <u>B 104</u>, 7845.

Electron loss leads to guanine cation radicals and deoxyribose radicals.

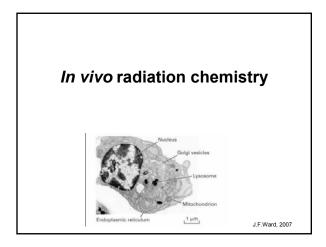
Electron gain leads to pyrimidine anion radicals.

Products, (after warming and dissolution):

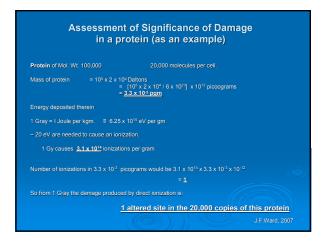
Bases, same types of alterations as those from 'OH radical attack. Swarts et al. Radiat. Res. <u>145</u>, 304.

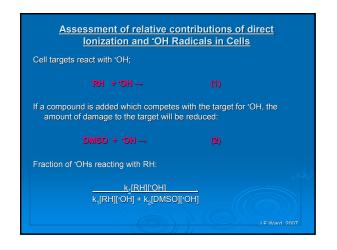
30% of directly ionizing events cause SSB. Raskasovskiy et al Radiat Res. $\underline{153}_{\rm i}$ 436.

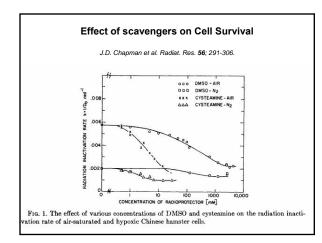
What have we learned from *in vitro* radiation chemistry?

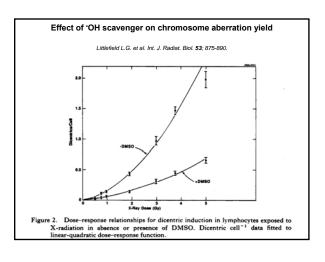

Structures of altered bases.

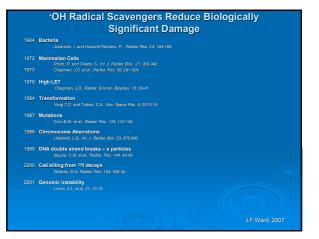
Strand break end-groups.

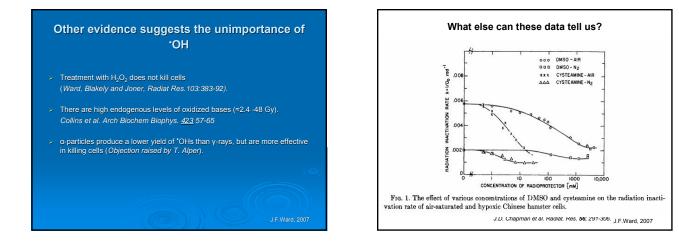

"Direct" and "Indirect" mechanisms cause the same types of damage.

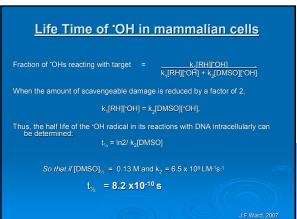

Relative yields of these damages.

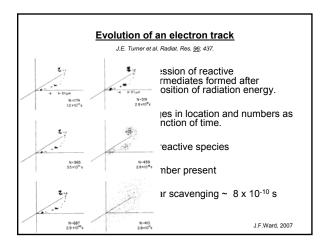

Reactions in which oxygen or radiation modifiers might act




	lon	izations in a Ty	pical Cell	
Cell S		0 ^{.9} cm ^{.3} , Density 1.15 g/	′cm³ – Mass 4.64 x	
Water	% 70	picograms 3250	Ionizations/Gr 1,000,000	ау
Inorganic Ions				
Small Metabolites		139		
Proteins			260,000	
RNA			16,000	
DNA	0.25	12	3,600	
Phospholipids			10,800	
Other lipids				
Polysaccharides			7,200	

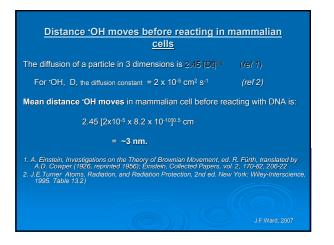


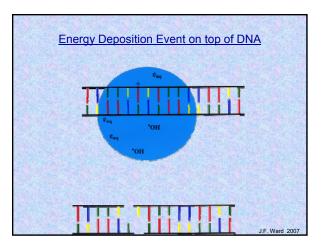


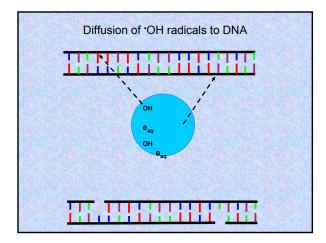


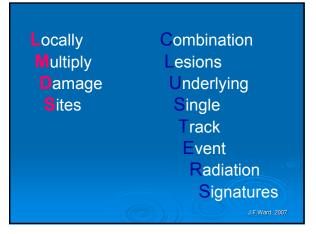
Conclusions of authors:

- 65 % of most biological effects are caused by 'OH radicals
- 1/2 maximum protection is provided by 0.13M DMSO
- OH radicals cause base damage and strand breaks in DNA. However:

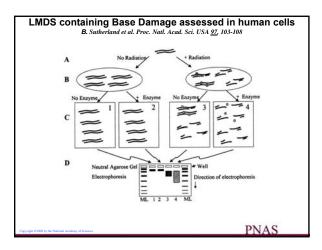


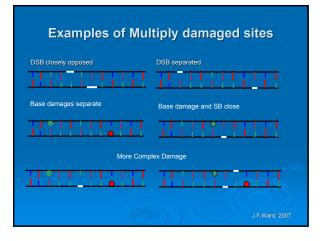





Entity	Energy	Size	Energy (%)	Events (%)
Spur	<100eV	4nm (diam.)	80	95
Blob	<500eV	7nm (diam.)	20	5
Short tracks	500-5,000eV			
DNA		2mm (diam)		
nucleosome		5.7nm thick		

Numbers of •OH per event	% of total events
1	54.4
2	24.8
3	8.0
4	2.3
5	1.3
6	0.4





Locally Multiply Damaged	Site Percent total LMDS
DSB	20
Oxy-purine complex	33
Oxy-pyrimidine complex	46

Locally Multiply Damaged Site	% Total	
DSB	27.5	
Oxy-purine complex	27.8	
Oxy-pyrimidine complex	24.7	
Abasic site complex	20	

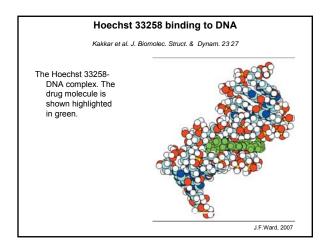
Variables of Multiply Damaged Sites

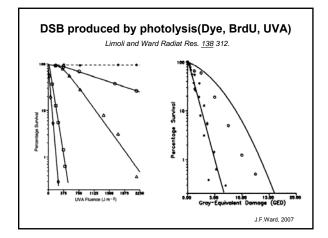
 $Size\,$ - distance over which damage spread

Complexity – numbers of damages per site

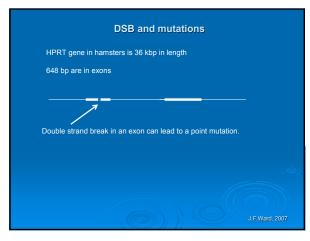
Composition - variety of base damages and SSB

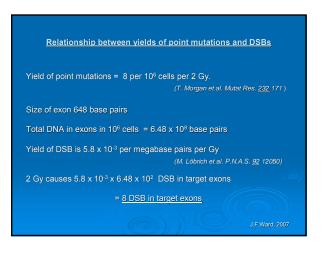
Spacing of constituent SSBs: DSB production by alternate method

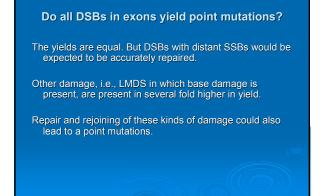

Limoli and Ward Radiat. Res. 134 160-9.


DNA labeled with 5-bromouracil.

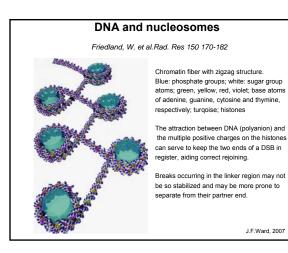
DNA loaded with Hoechst dye 33258.

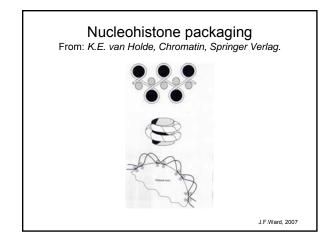

Exposed to UVA light; 360 nm (3.4 eV).


Measure DSBs and cell killing.



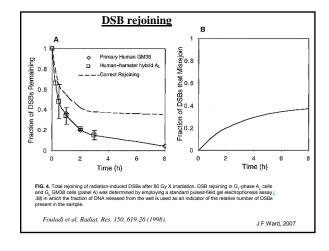
Conclusions from photolysis experiment Potential Consequences of DSBs > DSBs can be produced by agents other than A. Repair Base sequence unchanged ionizing radiation. > Not all DSBs are equally effective in killing cells. B. Rejoining Base sequence incorrect > DSBs which are more closely opposed are more lethal. C. Joining/Misrepair Deletion > Some ionizing radiation induced DSBs are nonlethal. D. Non-rejoining Deletion

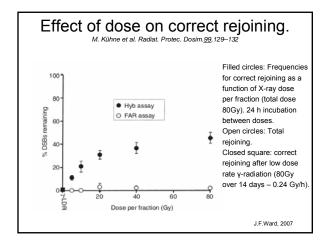




Are all DSB the same?

- Measurements of DSBs are carried out after stripping away all other cellular material.
 Such material (e.g. nucleosomes) may act to hold the ends of DSBs in register enabling their rejoining.
- Removing DNA from cell may also break hydrogen bonded base pairs in between SSBs on opposite strands. The hydrogen bonding could serve to hold the ends together favoring fast rejoining.
- c. DSBs measured by these means are greater than the yields existing in cells.
- d. Yields measured by biochemical methods (P F G E., Elution, Centrifugation, etc.) are 37 per cell, but *in situ* by premature chromosome condensation (PCC) are 4-6 per cell.





- 1. In the linker region the ends readily separate.
- 2. Held together by holding the ends in register on histones.
- 3. Held together by hydrogen bonding between complementary bases.
- Biophysical DSB measurement techniques detect all three types.

Within the cell they can have different outcomes.

10

What have we learned from in vivo chemistry

- a. OH Radicals have short lives and travel short distances.
- b. OH Radicals react close to where they are produced.
- c. The clusters of ionization from radiation give rise to multiply damaged sites.
- d. There is a variety of MDS.
- e. All DSBs are not alike.

Conclusions about DSBs

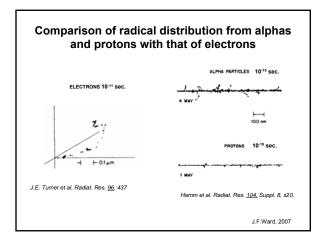
- Many techniques for measuring DSBs recruit lesions whose ends do not separate within the cell.
- From the chemistry by which they are produced three classes of DSBs are predicted.
- The DSBs whose ends become available for misrejoining may be only 20% of the measured yields (5-6 cell⁻¹Gy⁻¹).
- DSBs whose ends do not separate may still be detrimental; as a source of point mutations.
- LMDS containing base damage do not give rise to DSBs but can be a source of point mutations.

J.F.Ward, 2007

Damage produced by 1 Gray

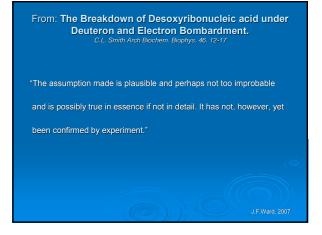
- 1,000 single strand breaks
- 3,000 damaged bases
- 37 double strand breaks (measured by harsh techniques)
- 5 actual double strand breaks (mild techniques) 190 multiply damaged sites

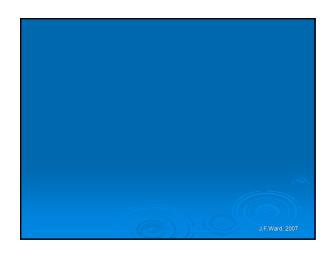
In contrast, UV damage


Sun exposure at 600m, produces thymine dimers in yield equivalent to 14 Jm^2s^{-1} of 253.7 nm light

locker et al., Eur. J. Biochem <u>142</u>, 313

This corresponds to a thymine dimer yield of 1.2 x 10⁵ per cell per hr. *Ward, Radiat. Res.* <u>152</u> 104.


Some Numbers


in a cell, a uose rate or	iniolay per year
produces 1	Actual DSB (PCC) every 185 years
	1 DSB every 25 years
	1 SSB per year
	1 base damage every 4 months
	1 LMDS every 2.5 years
Human body has 10 ¹⁴ c	ells, a dose rate of 1mGray per year
produces in 1	second
	2.5 x 10 ⁶ Actual DSB per second
	1.9 x 10 ⁷ DSB every second
	4.8 x 10 ⁸ SSB
	1.4 x 10 ⁹ base damage
	1.9 x 10 ⁸ LMDS
Abkowitz et al. Blood 1	00, 2665
Number of pluripotent h	ematopoietic stem cells per human ~1.12 x 104 - 2.24 x 104]
? Calculate # of DSBs p	er dose.

"New" Paradigms of Radiation Action

Apoptosis
Bystander Effect
Chromosome Instability
Death Inducing Effect
Gene Induction
Low Dose Hypersensitivity
Protein Mobilization

