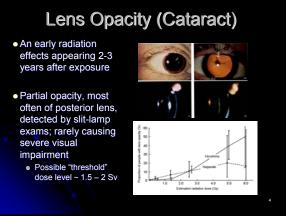
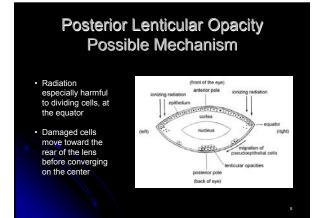
National Cancer Institute

Non-Cancer Diseases in Atomic Bomb Survivors

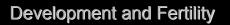

Kiyohiko Mabuchi Radiation Epidemiology Branch, DCEG May 15, 2007


Topics

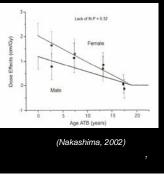
- Atomic-bomb survivors
 - Acute radiation effects
 - Late effects
 - Cataract
 - Growth and development, hyperparathyroidism
 - Cardiovascular and other adult-onset diseases
- In-utero exposure
- F1 second generation

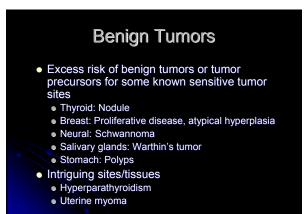
Acute Death & "Acute Radiation Syndrome"

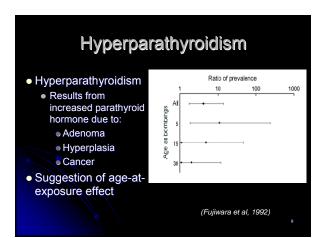
- Acute radiation syndrome
 - Vomiting, diarrhea, bleeding, hair loss
 - Damage to the intestine, bone marrow, hair-root cells
- Acute death (within 2 months):
 - 50% acute mortality at 1-1.2 km (Hiroshima) and 1-1.3km (Nagasaki) from the hypocenter
 - UNSCEAR estimate of 50% lethal dose at 60 days (LD50/60) ~ 2.5 Gy; >5 Gy if full medical care available

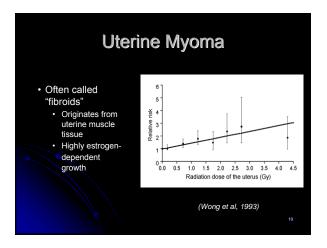


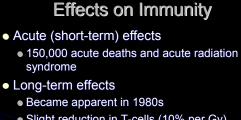
Lens Opacity As Late Effect


- Emerging evidence of long-term effect on aging-related cataract (cortical cataract)
- Lower or absent threshold dose level


AHS, 2000-02	Lens Opacity Classification System II (LOCSII) for grading opacity	
	AHS, 2000-02	


	Odd Ratio per Sv	р		
Nuclear color	1.01	ns		
Nuclear opacity	1.07	ns		
Cortical cataract	1.30	0.002		
Posterior sub-capsular opacity	1.44	<0.001		
(Nakashima et al, 2006)				




- Growth retardation Reduction in height and weight, ages 19-27 yrs, among those exposed at <10 yrs (Otake, 1994)
 - Apparent gender and age-at-exposure effect (Nakashima, 2002)
- No radiation effect on age at menarche or fertility

- Slight reduction in T-cells (10% per Gy) accompanied by slightly increased B-cells
- No effect on innate immunity function, e.g., natural killer cells

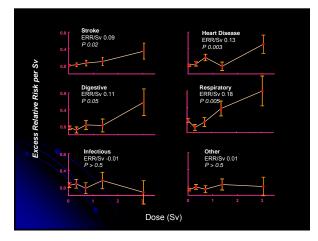
Late Immunity Effects **Health Implications**

- Reduced clearance of hepatitis B virus in the carriers (Fujiwara, 2002)
- Increases in chronic inflammation markers
 - Sedimentation rate, α-1 and α-2 globulin and sialic acid (*Neriishi, 2001*) • C-reactive protein and Interleukin 6 (Hayashi, 2003)
 - Reason for excess risk of cardiovascular and some
 there abrania disascess 2 other chronic diseases
- No increased risk for tuberculosis or autoimmune diseases (rheumatoid arthritis, autoimmune thyroiditis)

Aging

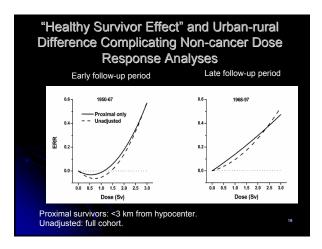
- No dose response for physiological markers of aging
 - Skin elasticity, vision, breathing capacity, etc
- - Alzheimer disease
 - Osteoporosis

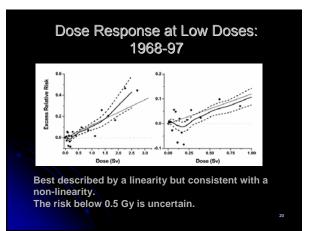
Psychological Effects

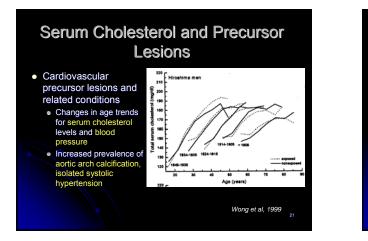

- Anxiety and somatization symptoms compatible with PTSD seen in the survivors 17-20 years after the bombings (Yamada, 2002) :
 - Increased ORs for anxiety (1.73) and for somatization (1.99) associated with acute radiation syndromes
 - Anxiety nervousness, fatigue, getting up tired in morning, etc
 Somtization – pain, GI and psychoneurological symptoms
 - ORs increasing with increasing distance from hypocenter, but independent of disease history
- Inverse dose response for suicide morality in LSS

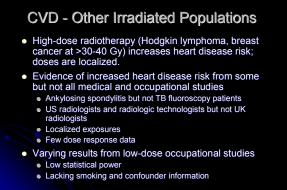
Cardiovascular and Other Chronic Diseases in LSS

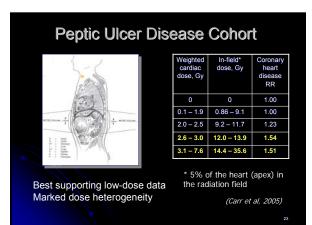
- Emerging evidence on radiation effects on heart disease, stroke and other adultonset chronic diseases
 - Small relative risk, but
 - Large absolute risk because of high background rates
 - Increasing evidence of a linear dose response

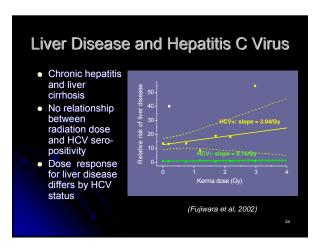

LSS Non-cancer Mortality - 1950-97

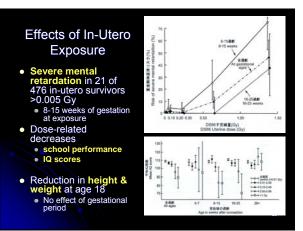

	Dose, Sv	Obs	Ехр	Excess	
	<0.005	13,832	13,954	0	
	0.005-0.1	11,633	11,442	17	
	0.1-0.2	2,163	2,235	17	
	0.2-0.5	2,423	2,347	47	
	0.5-1	1,161	1,075	61	
	1-2	506	467	68	
	2+	163	111	40	
	Total	31,881	31,631	250*	
Solig cancer deaths: 1,335 (440 excess) (Preston, 200					
	o I			16	




Confounding Does Not Explain the Dose Response

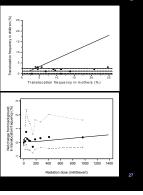

Subjects	Deaths	Noncand No adjustment	cer ERR/Sv Adjustment
10,308 men	1,163	0.07	0.09
13,154 women	1,121	0.14	0.14
Confounding factors used for adjustment:	• eo • oc • mi • ho • Ja	noking ducation ccupation arital status puse size upanese-style nysical activit	





In-Utero Cohort

- Mortality, cancer incidence and clinical (subset) follow-up of 3,600 exposed and unexposed subjects
 - Impaired mental and physical growth development - the major health effects
 - More recently, increased risk of solid cancer
 at young adult ages
 - Follow-up for non-cancer diseases to continue



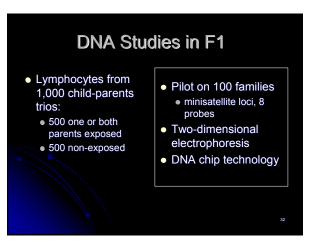
In-utero Exposure and Chromosomal Damage

- Lower translocation frequency from inutero exposure – mother-child comparison
- Apparent sensitivity at a low dose

 Suggestion of two subpopulations in lymphoid precursor cells in fetuses

(Ohtaki, 2004)

Somatic Effects – Conclusions (1)


- Acute deaths occurred from thermal, mechanical and radiation injuries, especially due to bone marrow depletion - acute effects on immunity
- Emerging evidence of long-term radiation effects of on immunity - characterized by subtle functional and quantitative abnormalities involving T- and B-cells.
- Possible implications for some non-cancer disease risks
- E.g., liver disease interacting with viral infection; cardiovascular disease through inflammatory process

Conclusions (2)

- Increasing evidence of a linear dose response, suggesting the low-dose radiation effect on cardiovascular and a variety of other chronic adult-onset diseases.
- Developmental effects are especially pronounced from exposure in utero or during early childhood.
 - Possible long-term effects and
- Implication for future cardiovascular and other disease risks
 Low-dose radiation effects observed for a wide range of non-cancer diseases are subtle, longterm and interacting with a variety of other risk
 - factors
 Difficulty in corroboration from other studies

Early Genetic Studies T7,000 newborns, 1948-54 Use of food ration program for pregnant women (>20 weeks) 90% all pregnancies in Hiroshima/Nagasaki Ollow-up by midwifes Physical examination during 2 weeks after birth Discal examination during 2 weeks after birth Stillbirth Malformations Neonatal death (2 weeks) Sex natio

	Birth D)efects	, 1948-5	53	
Total major birth defects: 0.91% (n=594) Tokyo Red Cross Hospital data: 0.92%					
	Mother's dose, Sv		Father's dose, Sv		
		< 0.01	0.01 – 0.49	> 0.50	
	< 0.01	5.0%	5.0%	5.7%	
	0.01 – 0.49				
	> 0.50	4.8%			
	0.00	6.1%		8.0%	

F₁ Cancer and Non-cancer Risk

- Mortality through 1999 (Izumi, 2003)
 - No excess cancer and non-cancer mortality
 - Hazard ratio for cancer = 0.96 (95% CI 0.59, 1.55)
 - Hazard ratio for non-cancer = 1.16 (95% CI 0.92, 1.46)
- Cancer incidence before age 20 yrs (Yoshimoto, 1990)
 - No excess for heritable and non-heritable type cancers

F1 Current and Future Studies

- Re-analysis of malformation and pregnancy outcome data using the latest dose estimates (DS02) - underway
- Question on risk for multi-factorial diseases (cancer, cardiovascular disease, diabetes, etc) through continued mortality and cancer incidence follow-up and subcohort clinical follow-up - underway

Acknowledgements

RERF

- LSS
 - Yukiko Shimizu
 - Dale Preston
 - Don Pierce Kazunori Kodama
- AHS
- Saeko Fujiwara
 Michiko Yamada
 Kazuo Neriishi
- Genetic/F1
 - Nori Nakamura
 Jack Schull
 - Jim Neel

- Immunology
 Yoichiro Kusunoki
 - Mitoshi Akiyama
- Statistics
 - Lennie Wong
 - Eiji Nakshima
 - Shizue Izumi

DCEG

- Ruth Kleinerman
- Charles Land Zhanat Carr (now WHO)