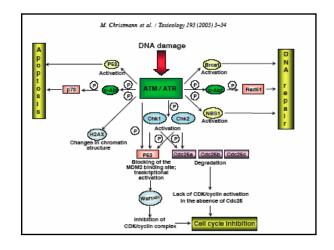
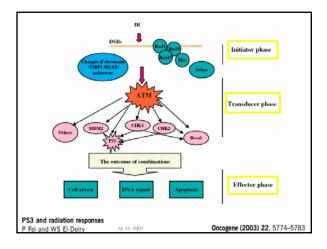
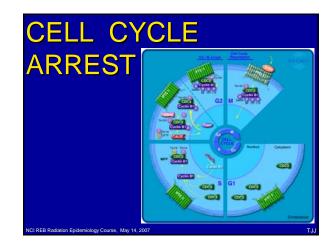
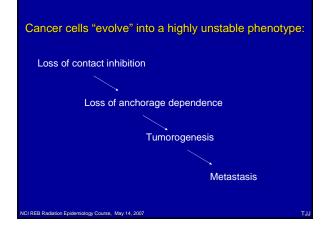
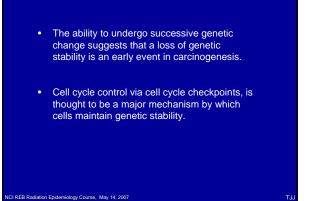

GOALS:


CI REB Radiation Epidemiology Course, May 14, 2007

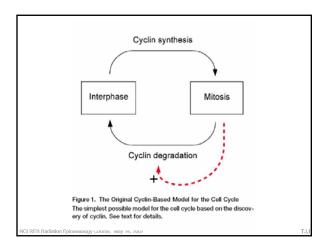

- Provide an overall description of how these three processes work to inhibit transformation.
- Describe how they are mechanistically connected.
- Show how they interact with radiation damage.
- Discuss molecular epidemiology implications for gene-environment interaction studies.
- Review epidemiological biases and confounding issues.

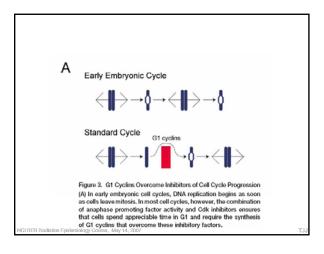

DNA damage is thought to be the primary mechanism by which radiation transforms cells.Yet, only a small number of cells are actually transformed.How are most cells protecting themselves from DNA damage-mediated transformation?

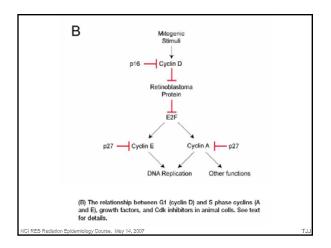

CI REB Radiation Epidemiology Course, May 14, 2007



WHY CHECKPOINTS?


REB Radiation Epidemiology Course, May 14, 2007


Fidelity of cell division is dependent upon faithful copying and segregation of genetic material, both spatially and temporally. That is, the ordered sequence of specific events is essential to proper execution of the task.


For this reason, cells have developed checkpoints that insure that the previous replication step is complete before the next step begins.

HOW DO CHECKPOINTS WORK?

- Checkpoints are governed by phosphorylation activity of a group of proteins called CDK (cyclin dependent kinases).
- The CDKs are active only in complexes that contain at least one other protein, called a "cyclin".
- Changes in the cyclin and kinase components of the complexes are the "switches" that control and regulate progression through the cell cycle.
- In this model, a cohort of proteins required for progression of a particular phase are activated (or inactivated) by phosphorylation of the cyclin/CDK complexes.

In mammalian cells, multiple CDKs appear to be involved:

CDK4 functions early (in response to growth factors) CDK2 is required to start DNA replication CDC2 is essential for mitosis

Cyclin D E and/or A A and B

CI REB Radiation Epidemiology Course, May 14, 2007

Cyclin/CDK complexes seem to be regulated by a variety of feedback mechanism, both positive and negative, that include:

Transcription of cyclin

REB Radiation Epidemiology Course, May 14, 2007

- Degradation of cyclin
- Phosphorylation of CDKs

Negative feedback occurs during development, differentiation, and senescence. It probably acts to stop cell cycle progression when the integrity of the genome has been compromised for some reason.

WHAT EFFECT DOES DNA DAMAGE HAVE?

- A major challenge to genetic integrity is physical damage to DNA, and it appears that cells have developed strong negative feedbacks in response to DNA damage.
- Suppression of cell cycle works in concert with DNA repair to: 1. Allow time for DNA repair 2. To stimulate DNA repair activity
- Feedback mechanisms are mediated via intermediate proteins that detect or respond to either the damaging agent or the damage itself and act on the cyclin/CDK complexes to suppress their ability to promote progression to the next stage of the cell cycle. There are probably many checkpoints throughout the cell and only the major ones are known.

EB Radiation Epidemiology Course, May 14, 2007

 At least two checkpoints are responsive to DNA damage: 1. G1-S transition 2. G2-M transition

REB Radiation Epidemiology Course, May 14, 2007

CI REB Radiation Epidemiology Course, May 14, 2007

• In mammalian cells the G1-S checkpoint is best understood.

G1-S checkpoint:

An early response to DNA damage is induction of p53 by a post-translational mechanism.

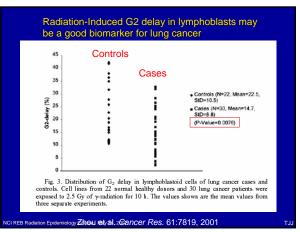
P53 then transcriptionally activates a set of p53 dependent genes:

- Gadd45 is a growth arrest DNA damage dependent gene • p21 inhibits the kinase activity of multiple cyclin/CDK
- complexes.

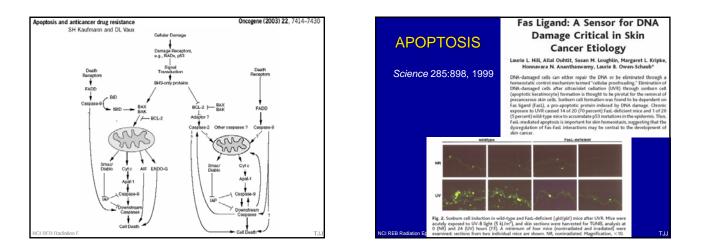
The major consequence of p53 induction is either arrest in G1 or apoptosis.

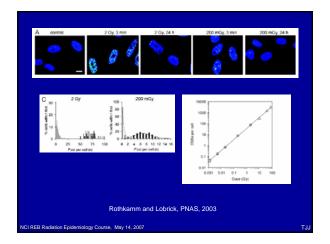
REB Radiation Epidemiology Course, May 14, 2007

DO DEFECTIVE CHECKPOINTS CAUSE CANCER?

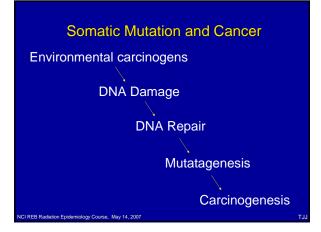

Evidence suggests that the loss of the G1-S checkpoint can result in cancer:

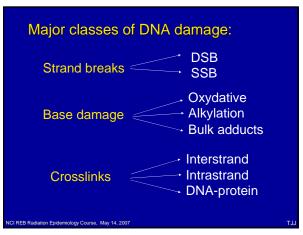
- 1. p53 is commonly mutated in a wide variety of cancers.
- 2. p53 mutant cells are typically highly aneuploid and have gene amplifications.
- 3. Some cancer viruses express proteins that bind to p53.
- 4. Cells from A-T patients (cancer prone) have abnormal induction of p53.

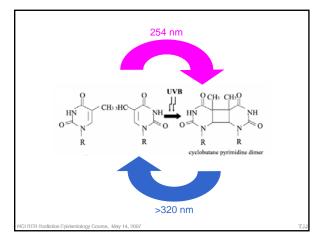

Evidence for the role of the G2-M checkpoint in cancer is weaker:


- 1. Cells from A-T patients undergo reduced G2-M arrest in response to DNA damage.
- 2. Cancer cell lines often have reduced G2-M arrest.
- 3. Some cancer cells have altered expression of cyclins A, B, and CDC2.

CI REB Radiation Epidemiology Course, May 14, 2007

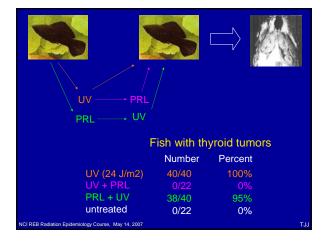


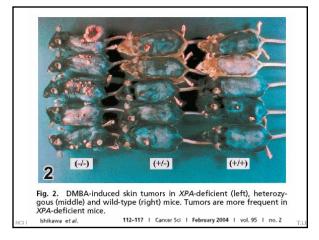

APOPTOSIS In situ fluorescence staining of apoptotic cells using the TUNEL technique. Positive staining in nuclei of disrupted follicles in himoto's thyroiditis gland (magnification × 250).



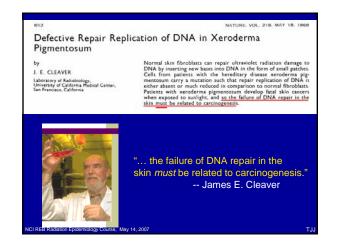
Major DNA repair pathways:

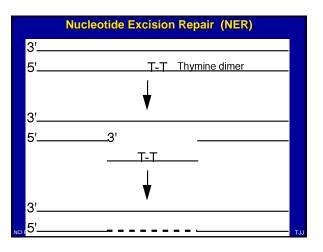
- Non-homologous end joining (NHEJ)
- Base Excision Repair (BER)
- Nucleotide Excision Repair (NER)
- Homologous Recombination Repair
- Illegitimate Recombination Repair
- Mismatch Repair (MMR)

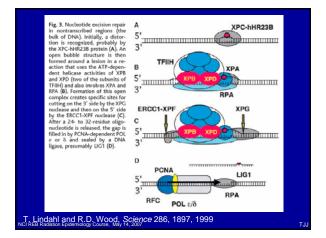

REB Radiation Epidemiology Course, May 14, 2007

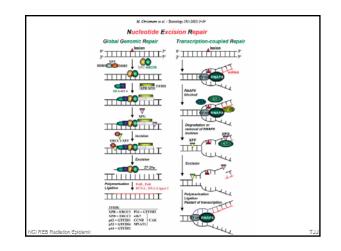


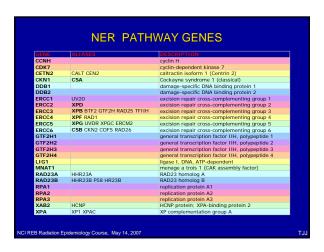
Proc. Netl. And. Sci. USA Vol. 74, No. 12, pp. 5574-5578, December 1977 Cell Biology (UV irradiation/photoreactivation/lish/thyroid) R. W. HART*, R. B. SETLOW, AND A. D. WOODHEAD Biology Department, Brookharm Stational Laboratory, Upton, New York 11973 Contributed by R. B. Setlow, September 12, 1977

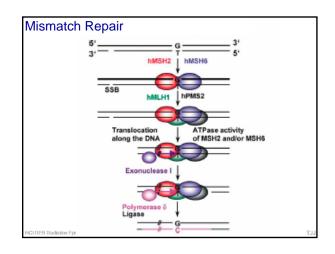


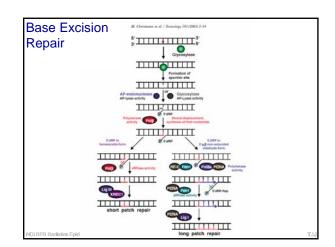

NCI REB Radiation Epidemiology Course, May 14, 2007

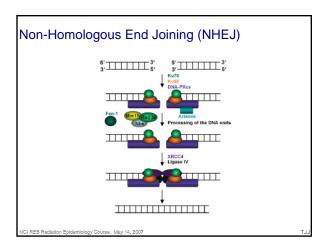


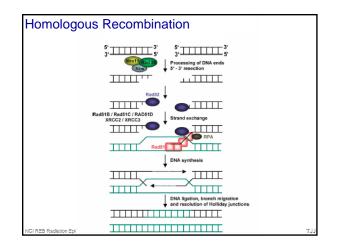


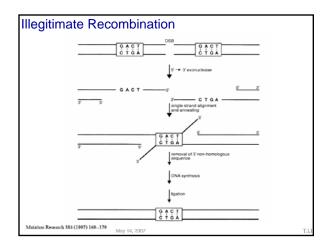

176	S.W.P. Wijnhoven, H. van	Steeg / Toxicology 193 (2003)	171-187	
Table 3				
Mouse models with inactivate Repair system	d DNA repair genes Type of DNA damage	Inherited human disease	Cancer risk	Transgenic mouse mode
Direct repair BER	Alkyl adducts Single-base	9 9	?	Mgmt Aag, Ogg, Udg, etc.
NER	Bulky adducts	XP CS XP-CS	+ - +	Xpa, Xpb, Xpc, Xpg Csa, Csb Xpb, Xpd, Xpg
		TTD	-	Xpd-Ttd
MMR	Base pair mismatch	HNPCC	+	Msh2, Msh3, Msh5, Msh6, Mlh1, Pms1, Pms2
Homologous recombination End joining	Strand breaks, cross-links Strand breaks, cross-links	e e	?	Rad52, Rad54, Rad54B Ku70, Ku80, DNA-PK _{C1}

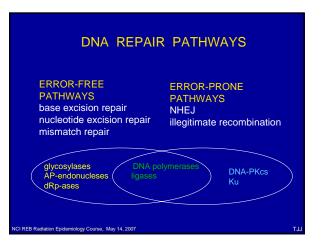


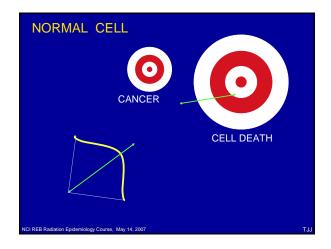


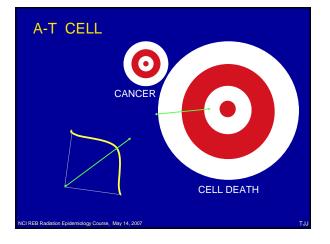


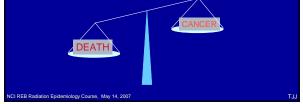





Mouse	Median survival	Tumor spectrum	Other abnormalities	References
Msh2-/-	5-6 months	Lymphoma (T-cell) Gastrointestinal and skin cancers in animals that do not succumb to lymphoma	Hyperrecombination	[14,43,44]
MihI=/=	6 months	Intestinal adenocarcinomas Lymphoma	Males and females are infertile (reduced levels of chiasmata)	[45,46]
Msh6 ^{-/-}	10 months	Lymphoma (B- and T-cell) Gastrointestinal tumors Uterine tumors	_	[47,48]
Msh3 ^{-/-}	Normal life span	No tumors until late age (scastrointestinal tumors)	-	[34,48]
Msh6=/=; Msh3=/=	6 months	Gastrointestinal tumors Non-Hodakin lymphomas	-	[34,48]
Pms2-/-	6-9 months	Lymphomas and sarcomas	Males are infertile (abnormal chromosome synapsis in meiosis)	[46,49]
Pms1 ^{-/-}	Normal life span	No increased tumor development	-	[46,49]

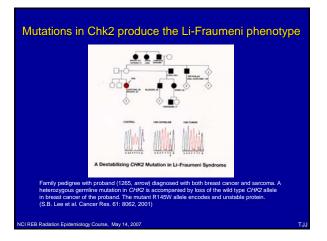






Are radiation sensitivity genes and radiation carcinogenesis genes the same?

- Several radiation sensitivity genes are known (e.g. ATM), but generally these genes confer sensitivity specifically to radiation-induced killing.
- Cellular radiosensitivity genes are potential radiation carcinogenesis genes, but association with increased cancer risk has not been established.
- The problem may be that sensitivity to radiation lethality and radiation carcinogenesis may be competing phenotypes.


OTHER TARGET QUESTIONS:

- If DNA repair deficiency predisposes to radiation induced cancer, then what are the mutated target genes that cause cellular transformation?
- What is the mechanism of transformation?

CI REB Radiation Epidemiology Course, May 14, 2007

Li-Fraumeni Syndrome

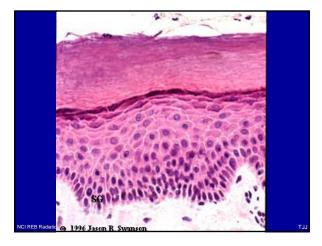
- Caused by a germline mutation in p53 gene (TP53)
- Characterized by the occurrence of early onset:
 - sarcomas
 - breast cancer
 - brain tumours
 - leukemia
 - adrenocortical tumors

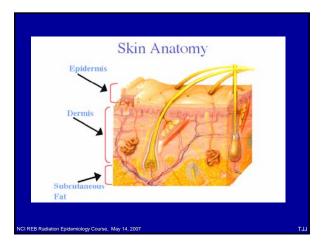
With all of these well-defined pathways and wellcharacterized genes that are known to be involved in resisting radiation damage to cells, it is tempting to speculate that different forms of the genes from these pathways might alter individual risk of radiation-induced cancer.

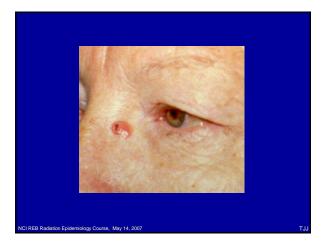
We know this to be true in the special case of individuals with genetic diseases that have functional mutations in both alleles. But is it true for heterozygotes of mutated genes, or normal individuals with polymorphic forms of these genes?

How do we go about answering this fundamental question?

EB Radiation Epidemiology Course, May 14, 2007

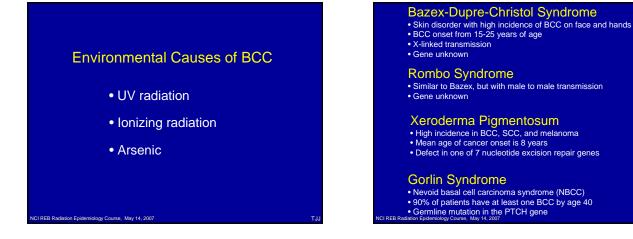

Gene-Environmental Interactions in Cancer


Which environmental carcinogens?

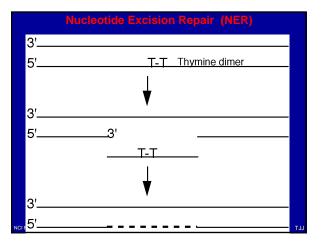

Which cancers?

Which genes?

May 14, 200


Problems for Epidemiology of BCC

BCC and SCC are not in most cancer registries because:


- Large numbers to follow
- Multiple lesions per individual
- Multiple lesions diagnosed simultaneously
- High cure rate

Nevertheless, it is estimated that the combined incidence of BCC and SCC is nearly equal to the incidence of all other cancers combined.

EB Radiation Epidemiology Course, May 14, 2007

	ALIASES	DESCRIPTION
CONH		cyclin H
CDK7		cyclin-dependent kinase 7
CETN2	CALT CEN2	caltractin isoform 1 (Centrin 2)
CKN1	CSA	Cockayne syndrome 1 (classical)
DDB1		damage-specific DNA binding protein 1
DDB2		damage-specific DNA binding protein 2
ERCC1	UV20	excision repair cross-complementing group 1
ERCC2	XPD	excision repair cross-complementing group 2
ERCC3	XPB BTF2 GTF2H RAD25 TFIIH	excision repair cross-complementing group 3
ERCC4	XPF RAD1	excision repair cross-complementing group 4
ERCC5	XPG UVDR XPGC ERCM2	excision repair cross-complementing group 5
ERCC6	CSB CKN2 COFS RAD26	excision repair cross-complementing group 6
GTF2H1		general transcription factor IIH, polypeptide 1
GTF2H2		general transcription factor IIH, polypeptide 2
GTF2H3		general transcription factor IIH, polypeptide 3
GTF2H4		general transcription factor IIH, polypeptide 4
LIG1		ligase I, DNA, ATP-dependent
MNAT1 RAD23A	HHR23A	menage a trois 1 (CAK assembly factor)
RAD23A RAD23B	HHR23A HHR23B P58 HR23B	RAD23 homolog A RAD23 homolog B
RPA1	HHK23B P36 HK23B	replication protein A1
RPA1		replication protein A2
RPA3		replication protein A2
XAB2	HCNP	HCNP protein; XPA-binding protein 2
XPA	XP1 XPAC	XP complementation group A

QUESTIONS:

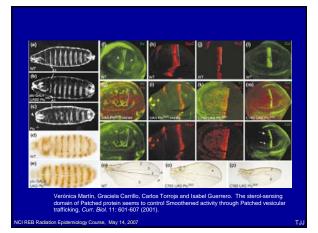
- If NER repair deficiency predisposes to radiation induced BCC, then what are the mutated target genes that cause cellular transformation?
- What is the mechanism of transformation?

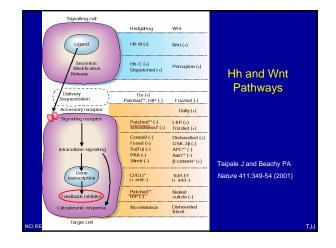
CI REB Radiation Epidemiology Course, May 14, 2007

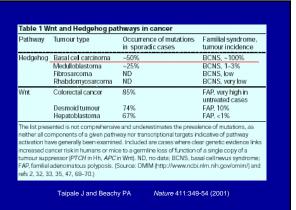
Tumor	Age, yr	Sex	Site	Codon	Sequence	Base change	Amino acid change
			0.00	7		$C \rightarrow G$	
NI 6 NI 9	86 77	2 Q	Preauricular Chest	56	tCt tcttCa	$C \rightarrow G$	$Asp \rightarrow His$
SI 2	82		Preauricular	56 104/105			$Glu \rightarrow stop$ $Glv \rightarrow Ala$ stop
SI 2 SI 20	82 82	ð	Temple	104/105	gcct		$Gly \rightarrow Ala \dots stop$ $Gly \rightarrow Ala \dots stop$
SI 20 SI 16	82 69	ð ç		104/105	gcct eCece	$C \rightarrow A$	$Giy \rightarrow Aia \dots stop$ $Pro \rightarrow His$
SI 16 SI 15	69	ş	Scalp Hand	151	cccCc	$C \rightarrow T$	$Pro \rightarrow Pris$ $Pro \rightarrow Ser$
51.15 NI 4	76	ð		152	acCa	$C \rightarrow I$	Pro → Ser His → Asn
NI 4 NI 3	68	8	Front scalp Cheek	245		$C \rightarrow A$ $C \rightarrow A$	$His \rightarrow Asn$ Glv $\rightarrow Cvs$
NI 9	77	Ŷ	Chest	245	gcCg gCCg	$C \rightarrow T$	$Gly \rightarrow Cys$ $Gly \rightarrow Asn$
SI 13	80	ě	Nose	245	aCC*g	$CC \rightarrow TT$	Asn-Arg → Asn-Trp
SCC 13	56	÷	Side of face	247-248	aCC-g ttCc	$C \rightarrow T$	$Asn-Arg \rightarrow Asn-Trp$ Glu $\rightarrow Lys$
NI 11	26 76	ð	Cheek	258	tCct	$C \rightarrow T$	$Giu \rightarrow Lys$ $Pro \rightarrow Ser$
SI 1	85	å	Face	2/8 285-286	ICCI	$C \rightarrow TT$	Glu-Glu → Glu-Lvs
NI 5	89	ð	Forehead	285-286	1Cct	$C \rightarrow T$	Glu→ Lys Glu→ Lys
NI 8	75	å	Postauricular	317	cccCa	$C \rightarrow T$	$Gln \rightarrow stop$
SI 1, SI 15, mutation a sumor. For samples w	and SCC t the site or r SI 13 and ere also th	13. Sample ould be ex 16 and N ose that c	e NI 9 contained tw cluded based on th I 3, 6, and 9, the m	to point mutat e presence of utant band wa toplastic cells	a normal sequents as present at les SI, Sweden; 1	13, 15, 16, and 20 nce in a section o s than a 1:1 ratio NI, New York; u	s observed in all cases except and NI 4 and 11, an inherited f normal tissue or in a second to the wild-type band; these uppercase letter of sequence,

Mutation spectrum matched UV mutagenesis and differs from mutations in internal tumors: p53: squamous cell carcinoma of the skin UV p53: internal malignancies 40 40 40 b c d а bcd а bcd а 96 0 p53 in 13 s ed with p53 i ferrepresented in en or internal malig s of the 75% expe-ion at a CG dinue genes in man n DNA. The ecause CG frequencie p53 mutations, UV n 12) The s are und s genes l cell c y p53 DE-Brash et al., PNAS 88:10124, 1991

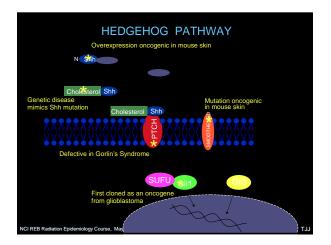
For BCC, PTCH may be even a bigger target than p53 p53 PTCH Profi Effect DBU Nalecti $\label{eq:constraint} \begin{array}{ll} Thr = Br, \\ Thr = Met \\ Thr = Br, & NT, \\ Val = Ala, & NT \end{array}$ 23(129%) 23(1214) 8(362), 9 26(967) -11M Fair Aug-Tup NT Con-Co Face Face 8 8 сс.-тт⁴ «Са.-«Та NT NT NT 5330 6435 1035 1035 6435 6435 6435 6435 6435 Алр-Алд — Алр - Тар Нас – Тут ANTE. 62523.9 Pro – Sec. NT, Ser – Am T Face Face Face Face Face \$15b ¢Cc→cTs Pro -- See KAAKSS 3 1994aul3, Franchill, Cc280Tc Thr - Br 20(485), 23(991) 6030 633) 863) 2630 633) Face Face Face Face 1000 Also - Yal The - Be ambend as described by Johann DNA stand (NT) of the eVI as Different of a donet to the PTCH gen J Dermatol Sci 29:1, 2002 REB Radiation Epidemiology Course,

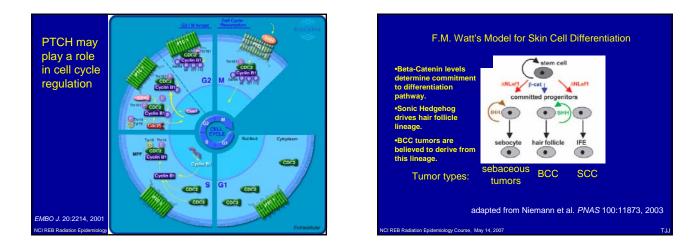

53	p53						PTCH PTCH				
ison(Codon)	Nucleotide Change ^b	Predictive Effect	DNA Strand ^e	LOH4	Exon (Codon)	Nucleotide Change ^b	Predictive Effect	DNA Strand	$\mathrm{roll}_{\mathrm{rs}}$		
				-	21(1195).	aCa3572aTa,	$\mathrm{Thr} \twoheadrightarrow \mathrm{Ile},$				
8(282)	$CC_{g \rightarrow c}T_{g}$	$Arg \to Trp$	NT	-	21(1214) 8(262), 9(439), 16(903)	aCg3629aTg aCc1073aTc, gTc1304gCc,	Thr \rightarrow Met Thr \rightarrow Be, Val \rightarrow Ala,	NT, NT	-		
						2694complex	Frameshift				
(281-282)	CC→TI ⁴	Asp-Arg → Asp -Trp	NT	-					+*		
5(179)	cCa→cTa	$His \rightarrow Tyr$	NT	-	6(252), 9(410)	Cc742Tc, aGi1217aAi	$Pro \rightarrow Ser,$ Ser $\rightarrow Asn$	NT. T	+*		
5(152)	cCe→cTe	$Pro \rightarrow Ser$	NT	-		#GH217aAt	Ser → Asn	1	+*		
				-					+*		
				-					+*		
									÷*		
				-	10(469), 13(691)	1394ins13, Cc2060Tc	Frameshift, Thr → Be	NT	+		
				-					-		
					10(478)	gCa1421gTa	Ala - Val				
5(140)	$aCc \to aTc$	$\mathrm{Thr} \to \mathrm{Be}$	NT	-	13(678)	Cc2021Tc	$\mathrm{Thr}\to\mathrm{Be}$	NT	-		
5(140)	aCc→aTc	$\mathrm{Thr} \to \mathrm{Ile}$	NT	-	10(478) 13(678)	gCa1421gTa Cc2021Te	$Ala \rightarrow Val$ Thr \rightarrow He	NT	-		

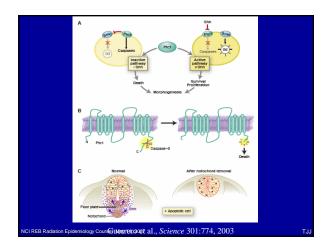

12

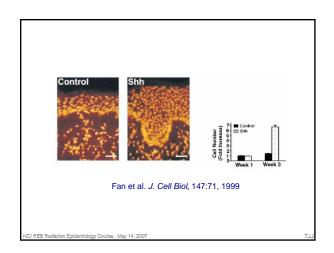

Gorlin Syndrome

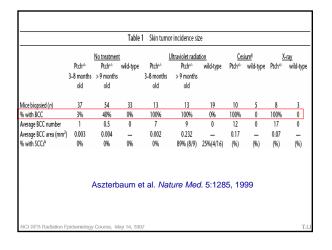
- Nevoid basal cell carcinoma syndrome (NBCCS)
- Autosomal dominant disease with high penetrance
- \bullet Accounts for ~0.5% of all BCC cases (probably much higher percentage of early onset BCC)
- 20% of the patients also develop medulloblastoma and other cancers.
- Patients treated with radiotherapy develop large numbers
 of basal cell carcinomas in the radiation field.
- Gene responsible is the human homolog of the "Patched" gene (PTCH) in Drosophila, and may be a tumor suppressor in mammalian cells.
- Patched is a transmembrane signal transduction protein upstream of sonic hedgehog, Smoothened, and the proto-oncogene Gli1.
- PTCH heterozygote mice have enhanced sensitivity to radiationinduced teratogenesis.
- Radiation Epidemiology Course, May 14, 2007

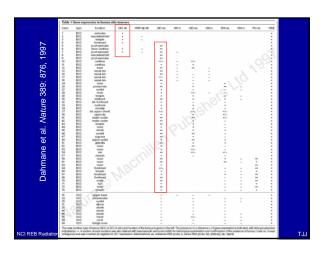


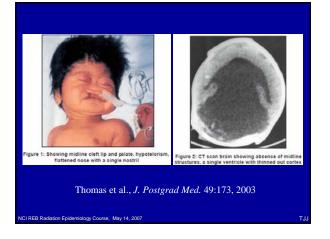


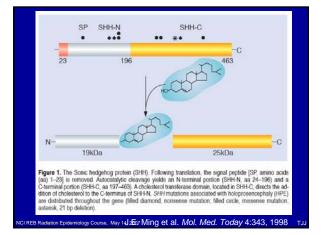




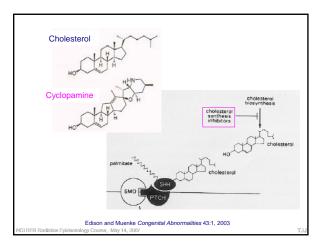


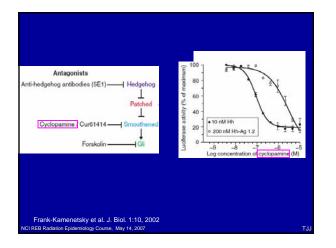


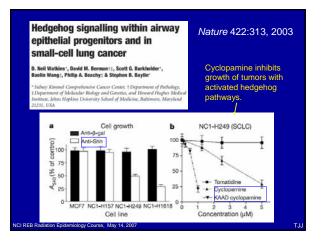


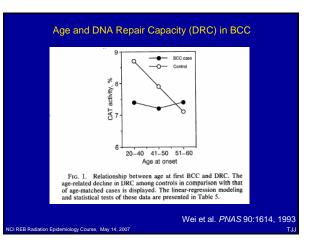

REB Radiation Epidemiology Course, May 14, 2007

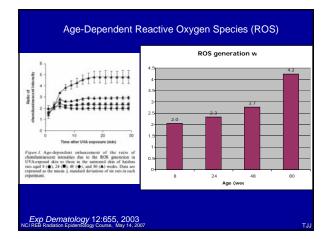
Gene	Condition	Clinical characteristics	Reference
Sonic hedgehog	Hokprosencephaly	Incomplete separation of cerebral terrispheres, cranicitacial anomalies	24.25
		(e.g. cyckow)	122223
	Tumors	Basal out caronoma	-41
		Modul classing	41
		Breast caronoma	41
Patched	Nevoid basal cell carcinoma syndrome	Basal cell carcinomas, syskeratotic palmariplantar pits.	8.33.34
	(Gorlin syndromii)	jaw cysis, skeletal anomales	
	Tumora	Sporadic basal cell carcinoma	35
		Medullobiastoma	36
		Trichospithelioma	39
	Holoprosencephaly	Breast carcinoma	37
		Meningoma	37
		Eschaged cattingma	38
Smoothened	Tumor	Basal cell carcinoma	45
GLIS	Greig cephalopolysyndactyly	Polydactyly, syndactyly, hypertelorism	20,46
	Palister-Hall syndrome	Hypothalamic hamanoma, polydactyly, anal anomalies	47
	Postaval polydactyly type A	Postanial polydactyly	48

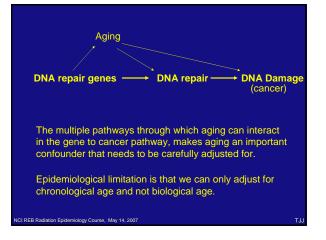


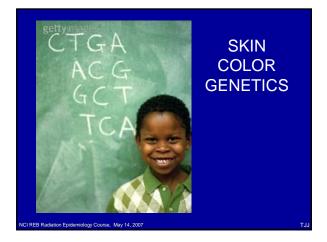

The munice Line	IGM	(m	ucleotide s hissense / r	ubstitutions nonsense)	CELERA					
Accession Number	Coden	Nucleotide	Amino acid	Phraotype	CM971261	663	eCAG- TAG	Gin-Term	Nevoid basal cell cascinoma syndrome	
CM014378	93	TACa- TAA	Tyn-Term	Neveral basal cell carcinoma synchrome	CM971262	688	gCAG- TAG	Gin-Term	Nevoid basal cell carcinoma syndrome	
CM971257	135	SCGA- TGA	Arg-Tem	Nevoid basal cell carcinoma syndrome	CM971263	694	#CAG- TAG	Gin-Term	Nevoid basal cell cascinoma syndrome	
CM004009	241	TTA-TGA	Lea-Term	Nevoid basal cell carcinoma syndrome	CM020751	728	ACG-ATG	Thr-Met 🤇	Holoprosencephaly	
CM961209	365	eCAG-	Gin-Term	Nevesd basal cell carcinoma avadcome	CM020752	\$27	eAGT- GGT	Set-Gly	Holoprosencephaly	
CM581663	376	TTC-TCC	Phe-Sec	Nevoid basal cell carcinoma syndrome	CM981664	926	TGGg- TGA	Trp-Term	Nevoid basal cell catcinoma syndrome	
CM961210	387	TGG-TAG	Trp-Tem	Nevos basal cell carcinoma syndrome	CM971264	945	eCGA- TGA	Arg-Term	Nevoid basal cell catcinoma syndrome	
CM020750	393	gGCA-	Ala-The	Holoprosencephaly	CM971265	1009	TACe- TAA	Tyr-Term	Nevoid basal cell catcinoma syndrome	
		TGGe-		Nevoid basal cell carcinoma	CM020753	1052	ACG-ATG	Thr-Met 🤇	Holoprosencephaly	
CM971258	460	TGA	Tip-Teim	syndrome	CM971266	1069	eGGC-	Gby-Arg	Nevoid basal cell carcinoma syndrome	
CM962578	509	rGGT-CGT	Gly-Arg	Nevoid basal cell carcinoma syndrome	CM011474	1132	±100-000	Sec-Pro	Nevoid basal cell catcinoma syndrome	
CM971259	513	#GAT- TAT	Asp-Tyr	Neveid basal cell carcinoma syndrome	CM962579	1132	TCC-TAC	Set-Tyr	Nevoid basal cell carcinoma	
CM971260	529	tAAA- TAA	1,ys-Tenn	Nevoid basal cell carcinoma syndrome	CM971267	1438	GAGg- GAT	Glu-Asp	syndrome Nevoid basal cell catcinoma syndrome	

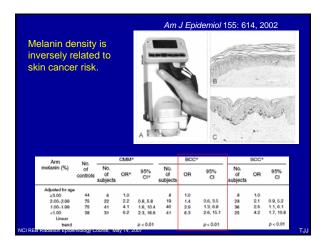


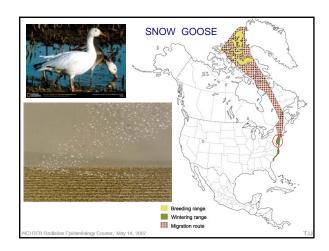


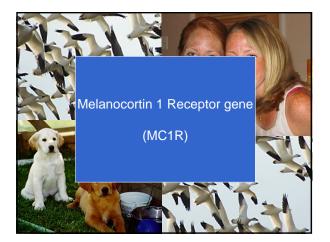


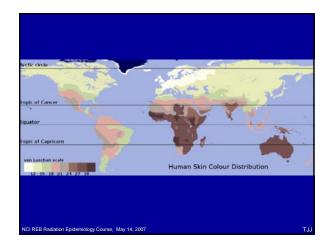

WERNER SYNDROME

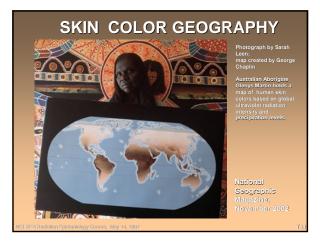

- A disease of accelerated aging.
- Gene (WRN) encodes a helicase (RecQ) involved in DNA repair and DNA replication.
- Normal aging may involve decrease in DNA repair.
- Scleroderma-like skin changes.
- Increased incidence of malignancy: GI tract, lung, kidney, ovary, breast.

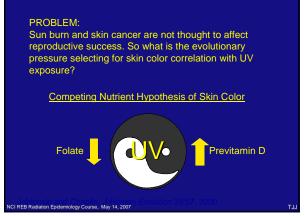


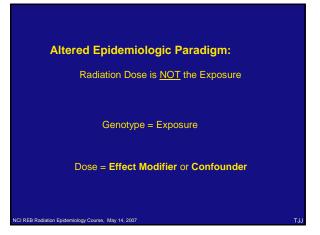


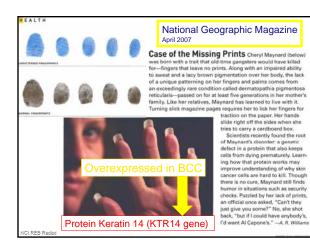


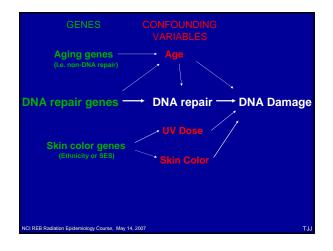

Skin color is a powerful risk modifier: Whites have ~100-fold higher BCC incidence than blacks. Whites have ~10-fold higher SCC incidence than blacks.

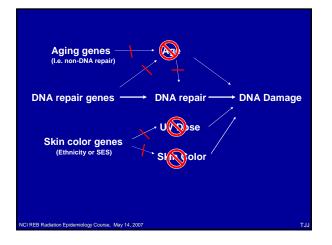

CI REB Radiation Epidemiology Course, May 14, 2007

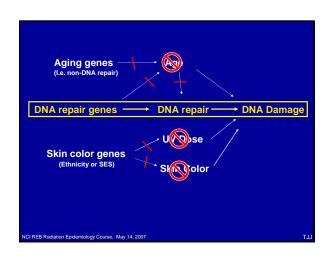


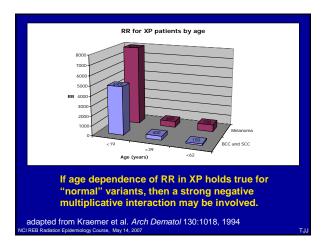












cond Maligr	lancy						
Women's Health I	nitiative	Observ	ational :	Study			
Prevalence and Odds of History of	Other Maligna			Cancer History	Status at Enr	ollment	
		Reported even	r having NMSC				
	No (n -	85,170)	Yes (#	= 7665)	_		
Other history of malignancy	No.	SC	No.	5*	OR	95% Wald confidence limits	Pva
Any other cancer (excluding NMSC)	9927	11.66	1878	24.86	2.30	2.18-2.44	< 0
Breast	4444	5.22	831	10.91	2.09	1.93-2.26	< 0
Ovary	540	0.63	98	1.29	2.01	1.61-2.50	< 6
Endometrium	1302	1.53	264	3.47	2.00	1.74-2.29	< 6
Colon, rectum, bowel, or intestine	727	0.85	124	1.63	1.68	1.38-2.04	< 6
Thyroid	401	0.47	94	1.24	2.60	2.07-3.28	< 0
Cervix	1030	1.21	165	2.17	1.92	1.62-2.28	< 6
Melanoma	885	1.04	299	3.93	3.29	2.87-3.76	< 6
Liver	25	0.03	10	0.13	5.96	2.71-13.11	< 6
Lung	162	0.19	56	0.74	3.43	2.51-4.69	< 6
Brain	43	0.05	9	0.12	2.12	1.02-4.39	0.04
Bone	51	0.06	13	0.17	2.90	1.55-5.44	0.00
Stomach	47	0.06	12	0.16	3.17	1.63-6.18	0.00
Blood (leukemia)	64	0.08	24	0.32	3.58	2.21-5.80	< 6
Bladder	168	0.20	23	0.30	1.26	0.81-1.95	0.31
Lymphoma	163	0.19	42	0.55	2.73	1.92-3.86	< 0
Hodgkin disease	37	0.04	17	0.22	5.69	3.12-10.39	< 0
Other	979	1.17	209	2.89	2.26	1.94-2.64	< 0

BCC itself is a risk factor for other cancers

Radiation as a Model Carcinogen:

- Known to be a human carcinogen for almost 100 years.
- Strong epidemiological evidence shows clear dose response.
- High dose risks known with reasonable precision/accuracy.
- Low dose risks are highly uncertain and model dependent.
- All tissues believed to be at risk.
- · Some risk incurred at all dose levels (i.e. no threshold).
- Dosimetry is very good. (What is a "pack-year" anyway?!)
- All individuals in a population are exposed to some degree. · Range of exposures within a population can be quite broad.
- Direct interaction with the target of carcinogenesis, and confines the problem to downstream of DNA damage.
- Major cellular protective molecular mechanisms known in some degree of detail (e.g. DNA repair and cell cycle arrest).

Radiation is a relatively weak carcinogen (room for genetic enhancement).

REB Ra

in Epid

ology Course, May 14, 2007

TAKE-HOME MESSAGE

- Radiation has many advantages as a model carcinogen for studying gene-environment (G-E) interactions in cancer.
- BCC has many advantages as a cancer model for G-E interactions.
- DNA repair genes in the NER pathway are prime candidates for G-E interaction in BCC.
- Genes in Hedgehog pathway may also be very important to BCC etiology.
- Cell cycle, apoptosis, and other pathways may play a role in BCC, but the evidence is weaker. •
- Care must be taken to avoid confounding genes, such aging and skin color related genes.
- Dose should be viewed as a powerful affect modifier and potential confounder. •
- There is probably a strong multiplicative interaction between age of onset and BCC $\ensuremath{\mathsf{RR}}$, that needs to be adjusted for.
- Genes involved in BCC are probably important for other cancers as well. gy Course, May 14, 200