National Cancer Institute

Post-Chernobyl Thyroid Cancer in Exposed Children

Maureen Hatch, Ph.D. Radiation Epidemiology Branch

> Epidemiology Course May 16, 2007

The Chernobyl Accident – 26 April 1986

- 10 days of releases into the atmosphere
- Widespread and spotty fallout due to rain and changing wind directions
- Iodine 131 the principal contaminant
- Over 200,000 evacuated, 5 million living in contaminated regions

	Area in denosition_density ranges (km²)			
		Area in deposition-	density ranges (km-	
Country	37-185 kBqm ⁻²	185-555 kBqm ⁻²	555-1480 kBqm ⁻²	>1480 kBqm ⁻²
Russia	49,800	5,700	2,100	300
Belarus	29,900	10,200	4,200	2,200
Ukraine	37,200	4,200	900	600
Sweden	12,000		-	-
Finland	11,500		-	-
Austria	8,600		-	-
Norway	5,200		-	-
Bulgaria	4,800		-	-
Switzerland	1,300		-	-
Greece	1,200		-	-
Slovenia	300	-	-	-
Italy	300	-	-	-
Moldova	80		-	-

Exposure to Radioactive lodine from Chernobyl

- ¹³¹ I concentrates in the thyroid (thyroid dose much greater than average body dose)
- Can be inhaled and ingested (mainly in milk)
- Children received the highest doses (small thyroid mass, high milk consumption)

Iodine Deficiency in Contaminated Areas

- Possible risk factor for thyroid cancer
- Increases uptake of radioiodines
- May stimulate thyroid cell proliferation
- May increase effect of radioiodines

Radiation and Thyroid Cancer: What was Known before Chernobyl

- Atomic bomb
 Biggest increase in children
- X-ray exposures: medical uses •Increase following exposure in childhood
- ¹³¹I: dx and tx
 No obvious increase in adults but data sparse in children

Data from Chernobyl will contribute to:

- Understanding of ¹³¹I carcinogenesis
- Effective handling of future nuclear events
- Safe use of radioiodines in clinical practice

Exposure in Childhood to Fallout: Radioiodines from the Nevada Test Site ,1985-1986

- 3545 schoolchildren screened and interviewed, 2473 (2496) analyzed
- Doses based on diet and deposition
- Mean dose=170 (120) mGy
- Significant excess of thyroid neoplasms (n=19, 23)

Kerber R, et al., JAMA 1993; Lyon et al., Epidemiol 2006

Thyroid Disease in Those Exposed as Children to lodine 131 from the Hanford Nuclear Plant

- 5199 children from contaminated areas (1944-1957), 3440 screened and analyzed
- Thyroid radiation dose estimated through specially designed computer program
- Mean dose 174 mGy
- No dose-response relationship with benign or malignant thyroid disease

Davis S, et al., JAMA 2004

Thyroid Cancer in Contaminated Areas of Ukraine, 1981-1990 Year Thyroid Cancer (No.) 1981 0 1982 0

1902	U
1983	0
1984	0
1985	0
1986	0
1987	0
1988	0
1989	0
1990	3

2

Real effect or Screening effect?

Case-Control Study in Belarus

- Belarus, ages 0-16, dx in 1987-1992
- 107 cases, 214 controls (same opportunity for diagnosis)
- exposure assessment ecological

Astakhova L, et al. 1998

Case-Control Study in Belarus

Dose (Gy)	Cases	Controls	OR(95% CI)
< 0.3	64	88	1.00
0.3-0.9	26	15	2.38 (1.2, 4.9)
1+	17	4	5.84 (2.0, 17.3)

Astakhova L, et al., Radiat Res 1998

Thyroid cancer in Bryansk region of the Russian Federation

- Population-based case-control study (0-19)
- 26 cases, diagnosed before Oct 1, 1997
- 52 matched controls from Russian national registry
- Doses estimated from semi-empirical model

Davis S, et al., 2004

Odd Th	s Ratios ar yroid Canc R	nd 95% er by M ussian	Confider edian Ra Federati	nce Intervals for adiation Dose, on
	Median Dose (mGy)	No. of Cases	No. of Controls	OR (95% CI)
	23	4	16	1.00 (ref.)
	139	5	14	1.65 (0.32-8.50)
	427	4	16	3.05 (0.42-22.1)
	1049	13	6	44.7 (3.30-604)
	Davis S, et al., I	Rad Res 200	4	

Radiation Dose and Iodine Status: Belarus and Russian Federation, 1992- 1998

- Population-based case-control study (<15)
- 276 cases, 1300 matched controls
- Stable iodine status based on settlement soil levels
- Consumption of potassium iodide from interview
- Cardis E, et al., JNCI 2005

Risk of Thyroid Ca Belarus and Russia	ancer at 1 Gy, an Federation
• Median dose in contro	ols = 245 mGy
OR at 1 Gy (95% CI),	5.5 (3.1, 9.5) -
from different models	8.4 (4.1, 17.3)
Cardis E, et al., JNCI 2005	

Radiation Dose and Iodine Status: Belarus and Russian Federation, 1992- 1998

Potassium iodide	Highest two tertiles of soil iodine	Lowest tertiles of soil iodine
No	3.5 (1.8, 7.0)	10.8 (5.6, 20.8)
Yes	1.1 (0.3, 3.6)	3.3 (1.9, 10.6)

Joint Effect of Iodine Deficiency and Radiation Dose: Bryansk region of the Russian Federation, 1996

- 3070 individuals in 78 settlements
- 2590 ages 6-18
- Urinary iodine measurements
- 34 histologically confirmed cancers
- Dose estimated from semi-empirical models

Shakhtarin V, et al., IJE 2003

Iodine Levels and Radiation Dose: Bryansk region, Russian Federation, 1996

Excretion (µg/dl)	Estimate	95% CI
< 5.0	24.1	(1.7, 78.31)
5.0 – 7.49	18.3	(10.7, 28.6)
7.5 – 9.99	16.2	(0.8, 49.3)
≥ 10	13.0	(-11.0, 71.2)

Shakhtarin V, et al., IJE 2003

Thyroid Cancer Risk in Areas of Ukraine

- Ecological study of 301,907 (1-18) in 1,293 rural settlements
- 24% with individual dose estimates; 76% with 'individualized' estimates
- 232 histologically confirmed thyroid cancers through 12/01
- ERR/Gy=8.0 (95% CI 4.6-15)

Likhtarov I et al., Radiat Res 2006

Ukrainian-American Thyroid Study Belarusian-American Thyroid Study

Approach

- Cohort study of 25,000 exposed children
- Biennial screening examinations of the thyroid gland, 1998 - present ______
 - Palpation
 - Ultrasound
 - Fine Needle Aspiration as indicated
 - Thyroid hormone, thyroid antibody and iodine excretion measurements

Study Endpoints

- Thyroid cancer Autoimmune
- Benign
 neoplasm
- thyroiditis (AIT)Thyrotoxicosis
- (hyperthyroidism)
- Diffuse goiter Nodular goiter
- HypothyroidismHyperparathyroidism
- Hypoparathyroidism
- Iodine deficiency

Dosimetry

- Direct measurements
- Questionnaire data
- Radioecologic modelling

Mean in Ukraine0.78 GyMedian0.30 Gy

Approximate Mean Doses From Selected Low Dose Radiation Exposures[†]

Source	Approximate mean individual dose, mGy
Thyroid dose from Chornobyl (Ukraine, <18 y at exposure)	780
Breast dose to scoliosis patients	100
Pediatric CT scan (stomach dose from abdominal scan)	25
Single screening mammogram	3
[†] Adapted from DJ Brenner et al. 2003	

Dose Categories (Gy)	Cases (n)	Odds Ratio (95% CI)
0 – 0.24	9	Ref.
0.25 – 0.74	9	2.31 (0.91 – 5.88)
0.75 – 1.49	10	6.25 (2.50 – 15.6)
1.50 – 2.99	8	8.97 (3.39 – 23.7)
3.00+	9	15.30 (5.88 – 40.0)

Models of Excess Relative Risk per Gray (ERR) and Interactions of Dose, Gender and Age at Exposure

Variable		Parameter an	d Estimates
Dose		ERR = 5.25*	
Gender: Male		RR = 2.21	p = 0.14
Female		RR = 16.57	
Dose		55 0 00	
Age at exposure:	0 – 4	RR = 9.08	p = 0. 58
	5 – 9	RR = 7.00	
	10+	RR = 3.39	
* Statistically significant			

Conclusions from Cohort Study

- Strong, linear relationship between dose and response
- Not confounded by screening
- Suggestive modification by gender and age at exposure, but not by iodine
- ERR = 5.25 v. ERR = 7.7 (pooled analysis of external radiation)

General Conclusions

- Consistent results from analytic studies (5-6 fold excess overall)
- Strong dose-response
- Magnitude of risk similar to external radiation

Questions Still Remain About....

- Age and gender as modifiers of thyroid cancer risk in children
- Role of iodine deficiency
- Risk of thyroid cancer in exposed adults
- Risk in those exposed in utero
- Specific molecular features
- Changes in tumor characteristics

Thyroid Cancer Morbidity and Mortality Due to Chernobyl

- ~ 5,000 cases of thyroid cancer through 2002
- 15 thyroid cancer deaths

Thyroid Cancer Morbidity and Mortality Due to Chernobyl

- Variable estimates of lifetime excess
 - 4,000 9,000 deaths (WHO, 2005)
 - 30,000-60,000 cancer deaths (Greens/EFA Party, 2006)
 - 93,000 cancer deaths (Greenpeace, 2006)

Postscript

- Cohort of 110,645 Ukrainian Male Cleanup Workers
- Nested case-control study of leukemia and related disorders
- 70 confirmed, analyzable leukemias, five matched controls (age, residence)
- Individual RADRUE (time and motionbased) dose estimate