

# Using High Throughput Screening to Identify Predictive In Vitro Biomarkers for Acute Systemic Toxicity

Raymond Tice, Ph.D. Acting Branch Chief NTP Biomolecular Screening Branch Deputy Director, NICEATM National Institute of Environmental Health Sciences





To meet the challenges of 21st century toxicology, the NTP Roadmap includes a major initiative to develop a high throughput screening (HTS) program with 3 main goals:

- Prioritize chemicals for further in-depth toxicological evaluation
- Identify mechanisms of action
- Develop predictive models for *in vivo* biological response











### NIH Molecular Libraries Initiative http://nihroadmap.nih.gov/molecularlibraries/

- HTS methods are being used to identify small molecules that can be optimized as chemical probes to study the functions of genes, cells, & biochemical pathways.
- In mid-2005, NTP became a formal participant in the MLI by establishing a collaboration with the NIH Chemical Genomics Center (NCGC).
- As a result, the NTP gained the opportunity to link data generated from HTS assays for biological activity to toxicity data produced by the NTP's testing program.

















### Pin-tool for compound delivery from inter-plate titrations series



- 1536 compound -to- 1536 assay plate transfer
- Volume range for Pin-based transfers: 10 nL to 0.5  $\mu$ L
- Transfer time ~ 1-2 min per plate (includes wash cycle)
- No intermediate dilutions of compounds required







# The first NTP "1408" compound set

- All have been evaluated in one or more toxicological tests
  - 1353 unique compounds, 55 in duplicate to evaluate assay reproducibility
  - 1206 with NTP test data
  - 147 are ICCVAM reference substances recommended for the validation of alternative *in vitro* test methods (e.g., dermal corrosion, acute toxicity, endocrine activity).
- Selection was based on availability and solubility in DMSO at 10 mM, while avoiding excessive volatility.
- In addition to providing these compounds to the NCGC, we are providing the NTP compound library to the MLSCN repository so that other Centers, exploiting different HTS technologies, can have access to them.





### The 1353 Compounds - Product Classes







### Substructural components of the 1353 compounds







### Some characteristics of the 1353 compounds









### **Distribution of the NTP "1206" by Assay**









#### **NCGC HTS Criteria**

| Criteria                                                                         | Biochemical                                                                                                                                         | Cell-based                                                                                                                                          |  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Plate Format *                                                                   | 96-well or higher density plate<br><u>NCGC:</u> 1536 -well format<br>Assay volume 2 -6 ul                                                           | 96-well or higher density plate<br><u>NCGC:</u> 1536 -well format<br>Assay volume 4 -6 ul                                                           |  |
| Assay Steps                                                                      | ≤10 steps with 96 -well pla te.<br>Steps include, reagent additions,<br>timed incubations, plate transfers<br>to incubator, reading, etc.           | ≤10 steps with 96 -well plate.<br>Steps include, reagent additions,<br>timed incubations, plate transfers<br>to incubator, reading, etc.            |  |
| Minimum time increments and maximum assay duration                               | Minimum assay window is 5 min.<br>(i.e., earliest time point after last<br>reagent addition)                                                        | < 24 hr is ideal; max 48 hrs.<br>Minimum assay window is 5 min.                                                                                     |  |
| Reagent Addition Steps                                                           | 4 maximum                                                                                                                                           | 4 maximum                                                                                                                                           |  |
| Reagent removal steps *                                                          | No plate coating steps                                                                                                                              | No aspiration steps                                                                                                                                 |  |
| Temperature                                                                      | Between RT and 37°C                                                                                                                                 | Between RT and 37°C                                                                                                                                 |  |
| Demonstrated DMSO<br>Tolerance *                                                 | 0.5 – 1% DMSO                                                                                                                                       | 0.5-1% DMSO                                                                                                                                         |  |
| Signal : Background Ratio                                                        | ≥ 3 -fold                                                                                                                                           | ≥ 3-fold                                                                                                                                            |  |
| Day -to-Day variation of control<br>(e.g., IC <sub>50</sub> , EC <sub>50</sub> ) | < 3-fold                                                                                                                                            | < 3-fold                                                                                                                                            |  |
| Reagent stability @ final<br>working concentration                               | ≥ 8 hrs @ RT or on ice bath;<br>No on -line thawing                                                                                                 | ≥ 8 hrs @ RT or on ice bath;<br>No on -line thawing                                                                                                 |  |
| Validation run reagent supply                                                    | 10 – 96-well plate equivalents                                                                                                                      | 10 – 96 -well plate equivalents                                                                                                                     |  |
| Protocol                                                                         | Complete detailed protocol.<br>Data from 96 -well or high density<br>plate tests.                                                                   | Complete detailed protocol.<br>Detailed cell culture procedure,<br>passage # .Data from 96 -well or<br>high de nsity plate tests.                   |  |
| Detectors                                                                        | PE ViewLux (Top reading only:<br>FI, TRF, FP, Abs,<br>Luminescence)<br>MD Analyst (bottom reading FI)<br>Acumen Explorer (laser<br>scanning imager) | PE ViewLux (Top reading only:<br>FI, TRF, FP, Abs,<br>Luminescence)<br>MD Analyst (bottom reading FI)<br>Acumen Explorer (laser<br>scanning imager) |  |







# **HTS Assays Supplied to the NCGC**

- Cytotoxicity Assays (selected because a measure of cytotoxicity is needed in virtually all cell-based HTS assays)
  - CellTiter-Glo® Luminescent Cell Viability Assay (measures ATP levels)
  - Cytotox-ONE<sup>™</sup>Homogeneous Membrane Integrity Assay (measures release of lactate dehydrogenase from membranedamaged cells)
- **Apoptosis Assays** (selected because a common pathway for many types of toxicity and diseases)
  - Caspase-Glo® 3/7 Assay
  - Caspase-Glo® 9 Assay
  - Caspase-Glo® 8 Assay
- P-glycoprotein (Pgp-Glo<sup>™</sup> Assay) ATPase Assay (aka MDR1 or ABCB1) (involved in drug resistance)







### **NCGC: Human and Rodent Cell Types**

| Species | Cell names       | Sources                           |                 |  |
|---------|------------------|-----------------------------------|-----------------|--|
| Human   | Hek 293          | Embryonic kidney cells            | Transformed     |  |
| Human   | HepG2            | Hepatocellular carcinoma          | Transformed     |  |
| Human   | SH-SY5Y          | Neuroblastoma                     | Transformed     |  |
| Human   | SK-N-SH          | Neuroblastoma                     | Transformed     |  |
| Human   | Jurkat           | T cell leukemia                   | Transformed     |  |
| Human   | BJ               | Normal forskin fibroblasts        | Non-Transformed |  |
| Human   | HUV-EC-C         | Normal vascular endothelial cells | Non-Transformed |  |
| Human   | MRC-5            | Normal lung fibroblasts           | Non-Transformed |  |
| Human   | Mesangial cell   | Normal cells from renal glomeruli | Non-Transformed |  |
| Rat     | Proximal tubules | Normal cells from kidney          | Primary         |  |
| Rat     | H-4-II-E         | Hepatoma                          | Transformed     |  |
| Mouse   | N2a              | Neuroblastoma                     | Transformed     |  |
| Mouse   | NIH 3T3          | Fibroblasts from mouse embryo     | Non-transformed |  |













### NCGC qHTS results map for Jurkat cell screen







### **Cytotoxicity Concentration Response Curves of Duplicate Compounds**







# Cytotoxicity potency distribution of the NTP 1408 compounds in 13 cell types



#### **Structure-Toxicity** National Toxicology Program **Relationships Across Assays**



**HEK293** 

JTP

Mesangial

**Rat Renal Proximal Tubule** 



1353 compounds are clustered based on chemical signatures/fingerprints





# Toxicant compound signatures determined by RT-CES system in HepG2 cells



Protein synthesis inhibition

DNA damage

Apoptosis, Ion channel, Kinases





### The NTP 1353 unique compounds







| Target (s) / Biology                         | Assay Category                        | PubChem AID | #<br>Compounds<br>Screened | # Samples<br>Screened | Data Points<br>Measured |
|----------------------------------------------|---------------------------------------|-------------|----------------------------|-----------------------|-------------------------|
| O-Glc NAc Transferase                        | Isolated Molecular Target             | 447         | 70,308                     | 548,402               | 1,645,207               |
| Schistosoma Peroxiredoxins                   | Isolated Molecular Target             | 448         | 70,308                     | 548,402               | 21,135,360              |
| Hsp90 co-chaperone interaction               | Isolated Molecular Target             | 595         | 73,422                     | 572,692               | 1,434,624               |
| Tau polymerization                           | Isolated Molecular Target             | 596         | 71,982                     | 561,460               | 811,008                 |
| Multi-protein DNA Replication System         | Isolated Molecular Target             | 603         | 73,892                     | 576,358               | 1,373,184               |
| Caspase-1                                    | Isolated Molecular Target             | pending     | 80,124                     | 624,967               | 7,848,960               |
| Caspase-7                                    | Isolated Molecular Target             | pending     | 80,037                     | 624,289               | 7,818,240               |
| beta-lactamase                               | Isolated Molecular Target             | 584         | 71,982                     | 561,460               | 12,026,880              |
| BRCT-pSXXF (GREEN)                           | Isolated Molecular Target             | pending     | 78,845                     | 614,991               | 2,179,584               |
| BRCT-pSXXF (RED)                             | Isolated Molecular Target             | pending     | 78,845                     | 614,991               | 2,179,584               |
| YjeE:ADP binding                             | Isolated Molecular Target             | 605         | 71,977                     | 561,421               | 1,387,008               |
| Oxidoreductase HADH2                         | Isolated Molecular Target             | pending     | 85,316                     | 665,465               | 12,951,552              |
| Oxidoreductase HSD17b4                       | Isolated Molecular Target             | pending     | 78,845                     | 614,991               | 3,111,936               |
| 15-Lipoxygenase 1 (15hLO1)                   | Isolated Molecular Target             | pending     | 78,081                     | 609,032               | 1,428,480               |
| Pyruvate Kinase, Leishmania                  | Isolated Molecular Target             | pending     |                            |                       |                         |
| Cruzain, Trypanosoma cruzi                   | Isolated Molecular Target             | pending     |                            |                       |                         |
| 12-Lipoxygenase (12hLO)                      | Isolated Molecular Target             | pending     |                            |                       |                         |
| 15-Lipoxygenase 2 (15hLO2)                   | Isolated Molecular Target             | pending     |                            |                       |                         |
| JNK3 activation                              | Cellular Pathway, ALPHA               | 530         | 11,210                     | 87,438                | 1,032,192               |
| Potentiators of CRE signaling                | Cellular Signaling, Reporter gene     | 662         | 93,601                     | 730,088               | 2,981,376               |
| Cell signaling AP-1 BLA                      | Cellular Signaling, Reporter gene     | 357         | 76,644                     | 597,823               | 3,337,728               |
| Cell signaling HRE BLA                       | Cellular Signaling, Reporter gene     | pending     | 81,956                     | 639,257               | 4,087,296               |
| IkB stabilization                            | Cellular Signaling, Sensor            | 445         | 137,522                    | 1,072,672             | 6,807,552               |
| Anthrax intoxication pathway                 | Cellular Signaling, Sensor            | pending     | 40,513                     | 316,001               | 8,002,560               |
| TSH R                                        | Cellular Signaling, Sensor            | pending     | 84,122                     | 656,152               | 2,783,232               |
| Neuropeptide S receptors (NPS)               | Cellular Signaling, Sensor            | pending     | 10,877                     | 84,841                | 1,523,712               |
| mRNA Splicing thalassemia                    | Cellular Signaling, Splicing reporter | pending     | 71,683                     | 559,127               | 3,247,104               |
| p53 two temp., synthetic lethal              | Cellular viablity                     | pending     | 124,570                    | 971,646               | 4,475,904               |
| Huntington polyglutamine expansion-GFP/ATP   | Cellular viablity                     | pending     | 56,494                     | 427,094               | 854,188                 |
| ERK Phosphortyation                          | Cellular Pathway, ALPHA               | pending     |                            |                       |                         |
| Imprinting                                   | Cellular Signaling, Reporter gene     | pending     |                            |                       |                         |
| Profiling for detergent-sensitive inhibitors | Profiling, Chemical Library           | 585         | 71,982                     | 561,460               | 18,278,400              |
| P450 (CYP 3A4, Luc)                          | Profiling, Chemical Library           | pending     | 19,727                     | 153,871               | 405,504                 |
| TRF Sample Profiling                         | Profiling, Chemical Library           | pending     |                            |                       |                         |







BJ

HEPG2

Jurkat

# Understanding toxicity from biological and chemical fingerprints (Chihae Yang, Leadscope)







- Formulated to address chemical screening and prioritization
- Testing contracts (ACEA, Attagene, BioSeek, Cellumen, Expression Analysis, IVAL, NovaScreen, Phylonix) with >400 endpoints explored
- Phased approach Phase 1 = 320 well studied compounds
- Committed to stake holder involvement and release of data to public domain





### **NIEHS/NTP**

• **CEBS:** Integrates study design, clinical pathology, and histopathology data with microarray data, and enables discrimination of critical study factors.

### **EPA**

- **ACToR**: Centralizes many types and sources of data on environmental chemicals derived from more than 150 sources.
- **ToxRefDB:** Compiles *in vivo* toxicology data for ToxCast with current focus on all relevant data from data evaluation records on 280 food-use pesticides from OPPTS.
- **DSSTox:** Curates chemical structure and related assay data with its web site providing a publicly available forum for publishing downloadable chemical structure files.
- **Genomics Data Management:** Relies on Array Track to house genomics data from ORD labs.
- **BDSM:** Reference collection of gene-expression data for modeling animal development.







# **Current Activities (1)**

- In the next set of 1408 compounds, focus on:
  - compounds of specific interest for cancer and immunotoxicity
  - structurally-related compounds that have a range of activities
  - compounds that require metabolic activation
  - include duplicates
- Focus on assays that are representative of key steps in pathways important to cancer and immunotoxicity.
- Expand the use of human primary cells (metabolically competent).
- Establish protocols for water-soluble compounds.
- Consider current concentration limits.







# **Current Activities (2)**

- Evaluate differential responses among cell types.
- Evaluate relationship between HTS and mid-throughput screening assay data (*C. elegans*, zebrafish embryos) and *in vivo* adverse health responses (e.g., acute toxicity, immunotoxicity, cancer).
- Incorporate various measures of chemical space (log p, molecular weight, number of rotatable bonds, number of hydrogen acceptors and donors) into the analysis.
- Evaluate genetic differences in sensitivity using human hapmap cell lines and mouse strain cell lines
- Evaluate assay calls, reliability, and relevance.







### Genetics, Genomics, and Bioinformatics (C. Portier, NIEHS)

- Use knowledge about genes associated with disease
- Find the pathways linked to the genes and link them to disease
- Evaluate pathways most likely to be relevant targets
  - "Disease Pathways"
- Use toxicogenomics/proteomics databases on chemicals already studied to link chemicals to diseases through pathways
  - "Toxicity Pathways"
- Analyze the "Toxicity Pathways" to find best points for screening
  - Critical proteins/genes
  - Connection points between pathways

• Use "omics" and other molecular tools to validate choices





TOXICITY TESTING IN THE 21ST CENTURY: A VISION AND STRATEGY



www.nas.edu

- Assessment of key exposures (life stages) and toxicity outcomes (neurotoxicity)
- State-of-the-science testing and assessment procedures (genomics, bioinformatics, pharmacokinetics)
- Efficient experimental design and reduced use of laboratory animals
- New and alternative test methods
- Computational and molecular techniques in risk assessment







### **Interagency cooperation**

- Memorandum of understanding on "High-Throughput Screening, Toxicity Pathway Profiling and Biological Interpretation of Findings"
  - National Toxicology Program/ National Institute of Environmental Health Sciences
  - NIH Chemical Genomics Center/ National Human Genome Research Institute
  - Office of Research and Development/ US Environmental Protection Agency
- Purpose is to coordinate assays, compounds, data analysis (within and across assays, interpretation, and outreach.







Xia M, Huang R, Witt KL, Southall N, Fostel J, Cho M, Jadhav A, Smith CS, Inglese J, Portier CJ, Tice RR, Austin CP (2007) Compound cytotoxicity profiling using quantitative high-throughput screening. *Environ. Health Perspect. (Online Nov. 22 2007).* 

Huang R, Southall N, Cho M, Xia M, Inglese J, Austin CP (2008) Characterization of diversity in toxicity mechanism using in vitro cytotoxicity assays in quantitative high throughput screening format. *Chem. Res. Toxicol.* (In press).







# NTP/NIEHS

 John Bucher, Allan Dearry, Jennifer Fostel, Chris Portier, Fred Parham, Cynthia Smith, Kristine Witt

# NCGC

 Chris Austin, Ruilli Huang, Jim Inglese, Noel Southall, Menghang Xia

# **EPA**

 David Dix, Keith Houck, Bob Kavlock, Ann Richard

