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Neurobiology of Disease

Effects of Early Life Stress on [''C|DASB Positron Emission
Tomography Imaging of Serotonin Transporters in
Adolescent Peer- and Mother-Reared Rhesus Monkeys
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Peer-reared (PR) rhesus monkeys with early maternal separation later exhibit aggressiveness, impaired impulse control, alcohol abuse,
and low CSF 5-hydroxyindoleacetic acid. This study compared regional brain serotonin transporter (SERT) binding between nine PR and
seven mother-reared rhesus monkeys with [''CIDASB positron emission tomography (PET) imaging. Parametric images of binding
potential (BP) (which is proportional to B, /Ky, in which B, is transporter density and K, is dissociation constant) and relative blood
flow (R, ) were generated by the two-parameter multilinear reference tissue model. R, images were used for coregistration and normal-
ization of PET parametric data to the magnetic resonance imaging template space. Group BP differences were analyzed voxelwise by
Student’s ¢ test in SPM2. Region of interest-based parameter values were also calculated to obtain the magnitude of regional BP differ-
ences between the two groups. For the PR group, SERT BP was decreased by 10 -23% across a range of brain areas consisting of the raphe,
thalamus, hypothalamus, caudate and putamen, globus pallidum, anterior cingulate gyrus, and medial temporal regions, including
amygdala and hippocampus (cluster-level corrected p = 0.002). For the latter three regions, BP was decreased in the right hemisphere.
These results agree with the hypothesis that early maternal deprivation affects the development of the serotonergic system and suggest
that decreased serotonergic innervations in the critical brain regions may explain some of the behavioral and biochemical abnormalities
in PR monkeys.
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Introduction

Rhesus monkeys exposed to early life stress in the form of peer
rearing are known to show behavior aberrations during adoles-
cence characterized by impaired impulse control, aggressive be-
havior, anxiety-like behavior, social withdrawal, and excessive
alcohol consumption (Higley et al., 1991a,b; Suomi et al., 1992).
The pathophysiological mechanism underlying such behavior
aberrations may be linked to the impaired central serotonin
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(5-HT) transmission and neuroendocrine stress axis. Low CSF
concentrations of the major metabolite of 5-HT, 5-hydroxyin-
doleacetic acid (5-HIAA), and low basal plasma cortisol/ACTH
levels with impaired response to acute stress have been consis-
tently found in these animals (Higley et al., 1996a,b). Low CSF
concentrations of 5-HIAA are also found in humans in associa-
tion with impaired impulse control and aggressive behavior
(Brown et al., 1979; Linnoila et al., 1983, 1989; Stanley et al., 1985;
Kruesi et al., 1990), as well as type II alcoholism and antisocial
behavior traits (Virkkunen and Linnoila, 1993). CSF concentra-
tions of 5-HIAA are presumed to reflect central production of
5-HIAA, and differences in 5-HIAA productions may be attrib-
utable to changes in serotonergic innervations or altered turn-
over and metabolism of 5-HT.

During the early postnatal period, 5-HT plays a pivotal role in
the development of the CNS (Buznikov et al., 2001), and 5-HT
neurotransmission is involved in both activation and feedback
control of the neuroendocrine stress axis (Weidenfeld et al.,
2002). In turn, stress hormones are also involved in regulating the
expression of certain serotonin system genes, including that for
the serotonin transporter (SERT) (Tafet et al., 2001). SERT is
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located on the cell body and presynaptic terminals of the 5-HT
neuron and terminates the action of intrasynaptic 5-HT by re-
uptake of 5-HT back into the presynaptic nerve terminal. SERT is
also the site of action of commonly used antidepressant drugs
(Shaskan and Snyder, 1970; Lesch, 1997). SERT density generally
correlates with 5-HT nerve terminal density, and it can thus be
used as a marker of serotonergic innervations (Soucy et al., 1994).

To delineate regional abnormalities of the serotonergic system
in the brain of peer-reared (PR) rhesus monkeys, the authors
used positron emission tomography (PET) with a recently devel-
oped radioligand, [''C]-3-amino-4-(2-dimethylaminomethyl-
phenylsulfanyl)-benzonitrile ([ ''C]DASB) (Wilson et al., 2000,
2002). [''C]DASB binds reversibly to SERT with high affinity
and selectivity. [ ''C]DASB PET allows accurate quantitative im-
aging of SERT binding noninvasively without requiring blood
data (Ginovart et al., 2001; Ichise et al., 2003). The authors hy-
pothesized that, in this exploratory study, [ ''C]DASB PET imag-
ing would detect regionally decreased SERT binding in the brains
of PR compared with mother-reared (MR) monkeys, the latter
representing monkeys in natural conditions.

Materials and Methods

Animals. Two groups of mean age- and weight-matched young adoles-
cent male rhesus monkeys consisting of nine PR (3.3 % 0.4 years and
5.0 = 0.6 kg) and seven MR (3.4 £ 0.4 years and 5.4 = 0.8 kg) animals
were selected from two birth-year cohorts. We used only male animals to
avoid potential effects of the female estrous cycle on the imaging results.
The rearing conditions of these animals have been described in detail
previously (Higley et al., 1991a,b; Suomi et al., 1992), and all rearing
procedures were approved by the National Institute on Alcohol Abuse
and Alcoholism Animal Care and Use Committee. In brief, PR animals
were separated from their mothers at birth and hand-reared in a neonatal
nursery for the first 30 d of life. They were then placed in a cage with three
other age mates (peers), with whom they had continuous contact, but
they had no adult parental contact. The rearing conditions for MR ani-
mals approximated the natural rearing conditions. When both the PR
and MR animals reached an average age of 6 months, they were placed
together to form a larger permanent social group.

Positron emission tomography procedure. Before PET scanning, anes-
thesia was induced with ketamine (10 mg/kg, i.m.) and endotracheal
intubation was performed. After transportation to the PET suite, the
animals were placed under isoflurane anesthesia (1.6 = 0.1%). The head
of the animal was immobilized in a stereotactic frame. To minimize the
effects of ketamine, scans were started at least 2 h after ketamine admin-
istration. Vital signs were monitored throughout the experiment. All
imaging and associated procedures were approved by the National Insti-
tute of Mental Health Animal Care and Use Committee.

PET scans were performed with a GE Advance scanner (GE Medical
Systems, Waukesha, WI), with reconstructed resolution of 6 mm full-
width half-maximum in all directions in three-dimensional mode. Coro-
nal slices covering the whole brain were obtained. A transmission scan
was initially performed for attenuation correction. PET scans were ac-
quired for 120 min (33 frames with scan duration ranging from 30 s to 5
min) after bolus administration of 155 = 37 Bq (specific activity, 29.6 *
96.2 GBq/pumol) of [ ''C]DASB.

For image coregistration and normalization, each monkey had a T1-
weighted magnetic resonance imaging (MRI) scan on a GE Signa 1.5 T
scanner (spoiled gradient-recalled acquisition in a steady state; repetition
time, 13.1 ms; echo time, 5.8 ms; flip angle, 45°% 0.4 X 0.4 X 1.5 mm;
coronal acquisition on a 256 X 256 X 60 matrix).

CSF sampling. Approximately 1 week before the scheduled PET scan
study, a cisternal CSF tap was performed using a 5 ml syringe and a 23 or
22 gauge needle to obtain a 2-3 ml sample of CSF, and concentrations of
CSF 5-HIAA were quantified with HPLC as described previously (Ander-
son et al., 1987). Additionally, CSF 5-HIAA data obtained previously
when animals were at ~6 months of age were included for the current
data analysis.
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Data analysis. Analysis of the PET data were performed in two stages:
generation of parametric images and statistical group comparisons. To
generate parametric images of binding potential (BP) (Mintun et al.,
1984) and relative tracer delivery (R,) from dynamic [''C]DASB PET
data, we used a computationally fast and noise-resistant parameter esti-
mation method, called two-parameter linearized reference tissue model
(MRTM2) developed by Ichise et al. (2003). MRTM2 requires a priori
estimation of k,, which was estimated by the three-parameter MRTM
using the regions of interest (ROIs) time activity curves of the cerebellum
(reference tissue), raphe, and thalamus as described in detail previously
(Ichise et al., 2003). The cerebellum ROI excluded the midline vermis
and regions containing dentate nuclei. MRTM2 parametric imaging was
performed by voxelwise weighted linear least-squares fitting with weights
equal to the inverse of the data variance. The data variance was obtained
by the method based on the noise equivalent counts (Pajevic et al., 1998)
implemented in pixelwise modeling software, PMOD [version 2.5,
PMOD group, Zurich, Switzerland (Mikolajczyk et al., 1998)].

To investigate regional differences in BP between the two animal
groups, an exploratory statistical parametric analysis was implemented
through SPM2 (www.fil.ion.ucl.ac.uk/spm). ROI-based parameter val-
ues were also calculated to obtain the magnitude of regional BP differ-
ences between the two groups.

For the SPM analysis, an MRI brain template was first created for
rhesus monkey using methods described by Black et al. (1997). In brief,
one monkey’s MRI scan of 16 was randomly selected to which each of the
remaining 15 MRI scans was normalized using a nonrigid-body 12-
parameter algorithm in SPM2. All 16 scans were then averaged to obtain
an initial template, which became the reference image for another itera-
tion of registrations, and they were then averaged to get a second tem-
plate. This process was repeated three times. Then, BP and R, images
were transformed into this group MRI template space using the product
of two transformation matrices: (R, to individual MRI) X (individual
MRI to group template MRI). The first registration was accomplished
with a rigid-body six-parameter algorithm in SPM2, whereas the second
was accomplished with the same nonrigid-body algorithm used for the
group template creation. The images were then smoothed with an 8 X
8 X 8 mm filter, and voxel-by-voxel paired ¢ statistics were performed.
Given the exploratory nature of this analysis, a threshold level of @ = 0.01
uncorrected for multiple comparisons was chosen.

To calculate ROI-based parameter values, several anatomical ROIs
were manually drawn on the sagittal template MRI images, in which the
SERT density is high enough to provide a reliable signal, with reference to
a stereotaxic rhesus brain MRI atlas (Paxinos et al., 2000). These ROIs
included the frontal, temporal, parieto-occipital, striatum, and thalamus
regions in each hemisphere, as well as the midline dorsal raphe, with the
ROI size ranging from 11 to 40 voxels (voxel size of 2 X 2 X 2 mm).
Regional BP values were obtained by applying this ROI set on the indi-
vidual parametric images that were normalized to the group MRI tem-
plate. For bilateral regions, right and left values were averaged. Regional
SERT BP values were compared between the PR and MR groups with
Student’s # test for independent samples. No corrections were made for
multiple comparisons.

Finally, CSF 5-HIAA concentrations were compared between the PR
and MR groups with Student’s t test for independent samples. The rela-
tionship between CSF 5-HIAA concentrations and regional SERT BP
values was evaluated by the Pearson’s correlation analysis. Statistical sig-
nificance was defined as p < 0.05.

Results

PET data

Parametric images of BP (Fig. 1) and R, were successfully gener-
ated in all animals. Exploratory statistical parametric analysis of
BP differences between the two animal groups by SPM2 (thresh-
old, T = 2.62; p < 0.01) showed a single large cluster of decreased
BP for the PR group (cluster extent, k; = 1418, multiple-
comparisons cluster-level corrected p = 0.002; T = 4.84, p <
0.001 for the peak voxel within the cluster). This interconnected
cluster extended across a range of brain areas consisting of the
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thalamus, hypothalamus, caudate, puta-
men, globus pallidum, anterior cingulate
gyrus (areas 24a and 24b), and medial
temporal regions, including amygdala and
hippocampus (Fig. 2). For the latter three
regions consisting of the globus pallidum,
anterior cingulate gyrus (particularly area
24b), and medial temporal regions, BP
was decreased asymmetrically involving
predominantly the right hemisphere. The
ROI analysis showed that BP was lower by
10-23% in the raphe, thalamus, striatum,
and temporal regions of the PR group (Ta-
ble 1). Finally, SPM2 analysis showed that
there were no increases of BP in any region
of PR compared with MR monkeys.

CSF data

The CSF samples obtained approximately
1 week before the scheduled PET scan
study were available for eight of nine PR
and only four of seven MR monkeys. For
these data, 5-HIAA concentrations tended
to be lower by 17% ( p = 0.19) in the PR
(339 = 91 nM) than in the MR (407 + 170
nM) animals. There were no significant
correlations between the CSF 5-HIAA
concentrations and the regional SERT BP
values. The CSF data obtained when these
animals were at ~6 months were available
for seven of nine PR and seven of seven
MR monkeys. For these data, 5-HIAA
concentrations also tended to be lower
(307 = 61 nm) by 13% in the PR than in
the MR animals (352 * 61 nM; p = 0.19).
In addition, for the PR group, there was a
positive linear correlation between the
5-HIAA concentrations and SERT BP in
the raphe (r* = 0.49; p = 0.08), thalamus
(r* = 0.68; p = 0.02), and temporal region
(r* = 0.88; p = 0.002) (Fig. 3), although
the correlation did not reach statistical sig-
nificance for the raphe.

Figure 1.
color, whereas the template MRIs are shown in grayscale. One PR monkey and one MR monkey are shown, respectively, in the top
two rows and bottom two lower separated by a horizontal white line. For each monkey, coronal (top left), sagittal (top right), and
transaxial (bottom left) slices are shown. The color scale on the left represents the range of BP values from 0 to 2.4. RT, Right.

Discussion

In the present [''C]DASB PET study of
rhesus monkeys, the SPM analysis showed
that SERT BP was lower in PR than in MR
monkeys across a range of brain areas consisting of the raphe,
thalamus, hypothalamus, caudate and putamen, globus palli-
dum, anterior cingulate gyrus, and medial temporal regions, in-
cluding amygdala and hippocampus (cluster-level corrected p =
0.002). The ROTI analysis showed that BP was lower by 10-23% in
the raphe, thalamus, striatum, and temporal regions of the PR
group (Table 1). As a term of reference, our recent test/retest
[''C]DASB PET study showed that the test/retest variability of
parametric image-based BP measurements in human was <5%
in the thalamus, striatum, and raphe, and 9-13% in the cortical
regions (Kim et al., 2006). In addition, in the same study, the
method of parametric image-based BP measurements in an ROI
was virtually identical to that of the conventional method of es-
timating a BP from the time activity curve of the same ROI. Thus,
the 10—-23% reductions of SERT BP in substantial areas of the
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Spatially normalized parametric images of SERT BP fused onto the rhesus MRI template. BP images are shown in

brain of the PR group detected with [''C]DASB PET in the
present study appear to be a robust finding.

The reductions of SERT BP for the PR group may be attribut-
able to reduced serotonergic innervations across a range of brain
areas. Alternatively, altered regulation of SERT protein expres-
sion may explain the BP decreases found in the present study. In
the case of dopamine transporter (DAT), extracellular dopamine
levels are known to regulate the transporter density (Gordon et
al., 1996; Han et al., 1999). However, evidence suggests that ex-
tracellular 5-HT levels typically show no influence on regional
SERT density (Graham et al., 1987; Dewar et al., 1992; Benman-
sour etal., 1999). In addition, [ ''C]DASB binding appears insen-
sitive to competition with extracellular 5-HT levels (Praschak-
Rieder et al., 2005; Talbot et al., 2005). A reduced production of
serotonin secondary to the widespread reductions of central se-
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Figure 2.

group. The color scale on the left represents the range of ¢ values from 0 to 4.8. RT, Right.

Table 1. Comparison of BP between PR and MR groups based on the ROl analysis (Student’s t test for

independent samples)

BP DECREASE

T values:
Threshold
T=2.62

p <0.01
uncorrected

Voxelwise comparison of SERT BP between PR and MR rhesus monkeys by SPM2. The panels show coronal (left top),
sagittal (right top), and axial (left bottom) views of the rhesus MRI template represented in grayscale, with superimposed p values
for at test (thresholded at p << 0.01; T = 2.62) representing an interconnected cluster of voxels with decreases of BP in the PR

J. Neurosci., April 26, 2006 - 26(17):4638 — 4643 « 4641

toms can be reversed using standard
selective serotonin reuptake inhibitor
(SSRI) treatments (Mineka and Suomi,
1978; Higley and Suomi, 1989; Higley et
al., 1991a,b). PR animals are furthermore
more likely to consume alcohol in exces-
sive quantities in free-access paradigms
(Higley et al., 1996a,b). This alcohol-
consuming behavior is also reversible us-
ing SSRIs such as sertraline (Higley et al.,
1998). These behavioral, biochemical, and
current imaging data taken together sug-
gest that parental input may be of critical
importance for the development of the
central serotonergic system and that, in
the absence of such input, substantial
brain areas rich in serotonin may be im-
paired. However, not all animals were af-
fected equally, and there was some overlap
between the PR and MR groups in the
present study.

Low CSF concentrations of 5-HIAA
are also found in human children and
adults in association with impaired im-
pulse control and aggressive behavior
(Linnoila et al., 1983, 1989; Kruesi et al.,
1990). Using the SERT tracer, [ ''C]McN
5652 (["C]-(+)-6B-(4-methylthiophenyl)-
1,2,3,5,6a, 10B-hexahydropyrrolo[2, 1-a]
isoquinoline), Frankle et al. (2005) found
decreased SERT densities in the anterior

cingulate cortex of 10 human subjects

ROl E; R % decronse , with impulsive aggression compared with
10 healthy subjects. Frankle et al. (2005)
Raphe 1.84 = 0.21 211015 13 <001  found that decreased SERT binding was
Thalamus 1.55 £ 0.19 172 £0.12 10 <005  more marked on the left side, whereas we
Striatum 077 =0.18 101 =019 3 <005 found greater losses on the right side in PR
Temporal 0.78 = 0.14 0.96 = 0.10 19 <0.01 .
Frontal 0.34 + 0.06 042 £ 0.10 18 o;1  monkeys. As discussed by Frankle et al.
Parieto-occipital 041 = 0.06 047 +0.13 12 027  (2005), traumatic brain lesions to the left

rotonergic innervations, as opposed to altered turnover and me-
tabolism of 5-HT, may then account for the reduced CSF levels of
a metabolite of 5-HT (5-HIAA) typically found in these animals.

In the present study, 5-HIAA levels tended to be lower in the
PR than in the MR animals in which the statistical comparison
may have been underpowered because of the small limited CSF
sample size. In addition, the CSF data obtained when these PR
animals were at ~6 months showed a significant positive corre-
lation between CSF 5-HIAA concentrations and SERT BP in mul-
tiple brain regions. Typically, low CSF 5-HIAA concentrations
are found in PR monkeys early, and these reductions of 5-HIAA
concentrations are known to persist into adolescence and adult-
hood (Higley et al., 1996b; Shannon et al., 2005). From a psychi-
atric perspective, PR monkeys with decreased CSF 5-HIAA
concentrations are known to be at risk for a variety of serotonin-
mediated psychopathological problems. For example, PR ani-
mals tend to show anxiety-like behavior, hyperarousal and high
anxiety during minor stressors, high rates of violent aggression,
and social withdrawal (Mineka and Suomi, 1978; Higley and
Suomi, 1989; Higley et al., 1991a,b; Suomi et al., 1992). PR ani-
mals are also more likely to show despair in studies using nonhu-
man primates to model depression, and these depressive symp-

frontal cortex have been shown by others
to give rise to aggression and hostility,
whereas right-sided lesions lead to anxiety/depression (Grafman
et al., 1996). As noted above, PR animals tend to show anxiety-
like behavior and social withdrawal among other behavioral ab-
errations. This is to our knowledge the first report of laterality
differences in differentially reared primates. Heinz et al. (1998,
2003) also studied PR and MR monkeys with ['*’1]B-
carbomethoxy-3B-(4-iodophenyl)-tropane ([ '**1] 8-CIT), a sin-
gle photon emission computed tomography (SPECT) radioli-
gand that labels both DAT and SERT. Contrary to the current
findings, these investigators found a negative correlation between
the raphe SERT binding and CSF 5-HIAA concentrations. The
discrepant findings may well be attributable to the specific radio-
ligand used. Although the vast majority of striatal uptake of
['°T] B-CIT reflects DAT, perhaps only 50% of midbrain reflects
SERT. Because of the lower spatial resolution of SPECT and the
poor selectivity of ['**I]B-CIT for SERT, the current findings
with [ ""C]DASB are more likely to be correct.

BP is commonly used a receptor parameter. BP (= f,B,,,../Kp,)
reflects the receptor (transporter) density (B,,,,), assuming that
the tissue-free fraction, f,, and the dissociation constant, Kp,, are
the same between the two groups, PR and MR groups in the
present study. Although the foregoing assumptions are widely



4642 - ). Neurosci., April 26, 2006 - 26(17):4638 — 4643

2.5+
L
2.04
L——:/_r_:_,..—-—"
®
1.5+ A A
& A
1.0+
|
0.5 u
0.0' - ; T ) L] '
0 200 250 300 350 400
CSF 5-HIAA (nM)
® raphe A thalamus B temporal
Figure3. Correlation between CSF 5-HIAA concentrations and SERT BP. For the PR monkey

group, there was a positive linear correlation between CSF 5-HIAA concentrations and SERT BP
in the raphe (r* = 0.49; p = 0.08), thalamus (r> = 0.68; p = 0.02), and temporal region
(r* = 0.88; p = 0.002). Oblique straight lines indicate linear regression lines.

accepted, there are PET methods that can potentially allow sepa-
rate estimation of B,,, and K, (Carson et al., 2002). The authors
evaluated the feasibility of performing the Scatchard analysis de-
scribed by Carson et al. (2002) with bolus/infusion administra-
tion of [ ''C]DASB at high and low specific radioligand activities
(data not shown). In this attempt, it was feasible to establish
equilibrium within the practical timespan of the PET experiment
(2 h) in selected regions of the brain (striatum). The lower striatal
BP in one PR monkey than that of another MR monkey was in
fact attributable to a lower B, value of the former than that of
the latter, although this finding needs to be replicated with a
larger sample size. The PET data analysis model MRTM2 used in
the present study generates parametric images of relative tracer
delivery, R;, in addition to BP. The tracer kinetic model-based
approach ensures that R; estimation is independent of BP
changes. Conversely, BP values are independent of regional blood
flow (tracer delivery) or plasma tracer clearance (Ichise et al.,
2001, 2003). The statistical quality of R, images obtained nonin-
vasively without blood data by MRTM2 is virtually identical to
those obtained by nonlinear kinetic analysis with blood data (Ich-
ise et al., 2003). The advantage of R, images is that these images
can be easily coregistered to the corresponding MRI, which al-
lows more accurate three-dimensional alignment of PET and
MRI space.

In conclusion, the current study showed widespread decreases
of SERT binding in the brains of rhesus monkeys exposed to early
life stress of maternal deprivation. These results agree with the
hypothesis that early maternal deprivation affects the develop-
ment of the serotonergic system and suggest that decreased sero-
tonergic innervations in the critical brain regions may explain
some of the behavioral and biochemical abnormalities in PR
monkeys.
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