

Cost Analysis with Censored Data

Yijian (Eugene) Huang

Department of Biostatistics, Emory University

December, 2007

Outline

 Right censoring is common in data from clinical trials and observational studies

EMORY

- Statistical issues
 - 1. Induced dependent censoring
 - 2. Marginal identifiability
- Analysis strategies
 - 1. Imposing time limit
 - 2. Joint distribution / modeling with survival time
- Summary and discussion

Example: SWOG lung cancer trial

phase III on advance non-small cell lung cancer (Kelly et al. 2001): size 408

ENIORI

secondary endpoint: cost comparison PC vs. VC?

T: survival time; U: lifetime cost; C: censoring time

Time scale:

 $X = \min(T, C) \qquad \Delta = I(T \le C)$

Cost scale (assuming time-constant cost accumulation rate r):

Y = rX = min(U=rT, rC)

r $\uparrow \Rightarrow$ cost accumulated at death \uparrow , at censoring time \uparrow

EMOR

Implication: standard survival analysis techniques not applicable to cost-toevent

Issue #2: Marginal identifiability of cost distribution

Of interest: cost-to-event, or lifetime cost, U

Q: Possible to estimate (marginal) distribution of U?

Participants who survive beyond the study duration:

some accumulating little cost during the study

 \Rightarrow little info on their cost distribution

 \Rightarrow Pr(U \leq u) not identifiable for any u \in (0, ∞)

EMOR

What can one say, if any, about cost then?

Time-restricted cost:

```
2-yr-restricted cost = cost accumulated up to min(2 yr, lifetime)
```

```
time limit \leq study duration \Rightarrow identifiability
```

compromise between identifiability and cost of interest

One-sample problem

- Lin et al (1997)
 - partition time span to small intervals
 - mean cost in a small interval = survival rate × mean cost of alive
 - sum over all intervals
- Bang & Tsiatis (2000) suggested similar and improved estimators

Two-sample problem

 one-sample estimation procedure may be used to construct two-sample test, e.g. Ramsey et al (2002)

Regression problem

• Lin (2000): Using inverse probability weighted (IPW) estimation in linear regression to account for censoring

EMORY

Strategy #1: Imposing time limit - cont'd

	VC	PC	P-val
Mean 2 yr-restricted cost	\$40,292	\$48,940	.004
95% CI	36,226 – 44,359	44,674 – 53,208	

Comments:

- Widely used in practice censoring can be taken into account by IPW, and so standard software might be used
- Time limit is artificial. A tx favored in time-restricted cost ≠ favored in lifetime cost
- Can be misleading, particularly when tx has an effect on survival time

Strategy #2: Joint distribution with survival time

Joint distribution of (U,T) is largely identifiable with a general data structure (marked point process):

Strategy #2: Joint distribution with survival time - cont'd

One-sample problem

nonparametric approach (Huang & Louis 1998)

- NPMLE for $Pr(T \le t, U \le u)$
- generalization of K-M estimator

semiparametric approach (Huang & Berry 2006)

 postulate the association structure of (U,T), but leave the marginal distributions of U and T unspecified

EMOR

· consistently estimate the marginal distribution of U

Strategy #2: Joint distribution with survival time - cont'd

Two-sample problem (Huang & Lovato 2002)

- motivation: no tx effect on T \Rightarrow compare (U⁽¹⁾,T⁽¹⁾) and (U⁽²⁾,T⁽²⁾)
- calibrating tx effect on survival time with, say, $T^{(1)} = \beta T^{(2)}$

compare (U⁽¹⁾, T⁽¹⁾) and (U⁽²⁾, β T⁽²⁾)

Regression (Huang 2002)

calibration regression:

$$\log\binom{T}{U} = \binom{\beta'_0}{\beta'_1} Z + \varepsilon$$

- a generalization of accelerated failure time (AFT) model
- · simultaneous inference of covariate effects on U and T

Strategy #2: Joint distribution with survival time - cont'd

	Survival time			Lifetime cost				
	PC (vs. VC)	LDH	Age	PC (vs. VC)	LDH	Age		
Reg coef	.0221	.6335	0058	.3400	.1418	0050		
SE	.1364	.1507	.0065	.1094	.1154	.0059		

EMORY

Analysis results for the lung cancer trial (Huang 2002)

Comments:

- target lifetime cost U
- difficult to take advantage of cost accumulation data if available •
- consider U where end-study survival rate is ~50%?

Desirable? Yes! Realistic? Maybe not.

Summary and discussion

- For cost analysis in a clinical trial, targeting time-restricted cost would be reasonable if the treatment has little effect on survival time.
- If survival rate is fairly small, say < 20%, one might consider joint modeling of lifetime medical cost and survival time. In this case, model assumption can be reasonably checked.
- However, for many trials, treatment has an effect on survival time and survival rate is ~50% or higher at the end of study. What is a sensible yet estimable cost outcome to look at?

- Cost-effectiveness analysis?
- Some of the issues may be more economic than statistical.

Bang H & Tsiatis AA (2000) Estimating medical costs with censored data. *Biometrika* 87, 329-43.

Huang Y (2002) Calibration regression of censored lifetime medical cost. *JASA* 97, 318-27. correction, 97, 661.

Huang Y & Berry K (2006) Semiparametric estimation of marginal mark distribution. *Biometrika* 93, 895-910.

Huang Y & Louis TA (1998) Nonparametric estimation of the joint distribution of survival time and mark variables. *Biometrika* 85, 785-98.

Huang Y & Lovato L (2002) Tests for lifetime utility or cost via calibrating survival time. *Statistica Sinica* 12, 707-23.

Kelly K et al (2001) Randomized phase III trial of Paclitaxel plus Carboplatin versus Vinorelbine plus Cisplatin in the treatment of patients with advanced non-small-cell lung cancer: A Southwest Oncology Group trial. *J Clin Oncol* 19, 3210-8.

Lin DY (2000) Linear regression analysis of censored medical costs. *Biostatistics* 1, 35-47.

Lin DY, Feuer EJ, Etzioni R & Wax Y (1997) Estimating medical costs from incomplete follow-up data. *Biometrics* 53, 419-34.

Ramsey SD et al (2002) Economic analysis of Vinorelbine plus Cisplatin versus Paclitaxel plus Carboplatin for advanced non-small-cell lung cancer. *JNCI* 94, 291-7.