#### turning knowledge into practice

# Using Costs in Cost-Effectiveness Models for Chronic Diseases: Lessons from Diabetes

Presented by
Thomas J. Hoerger
RTI International

#### Presented at

Health Care Costs: In Pursuit of Standardized Methods and Estimates for Research and Policy Applications December 6-7, 2007

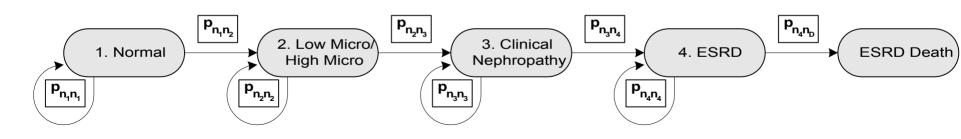


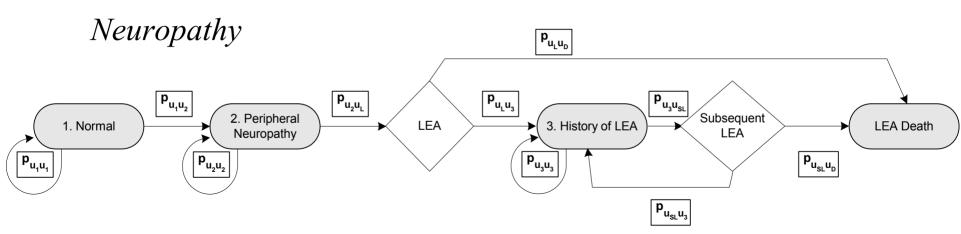
3040 Cornwallis Road Phone 919-541-7146 P.O. Box 12194 Fax 919-541-6683

Research Triangle Park, NC 27709 e-mail tjh@rti.org

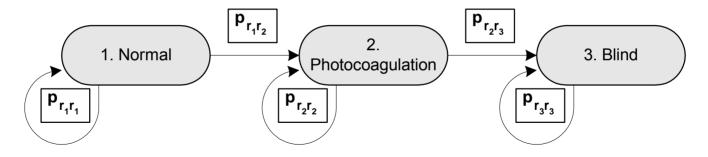
### CE Models for Chronic Disease: Key Issues

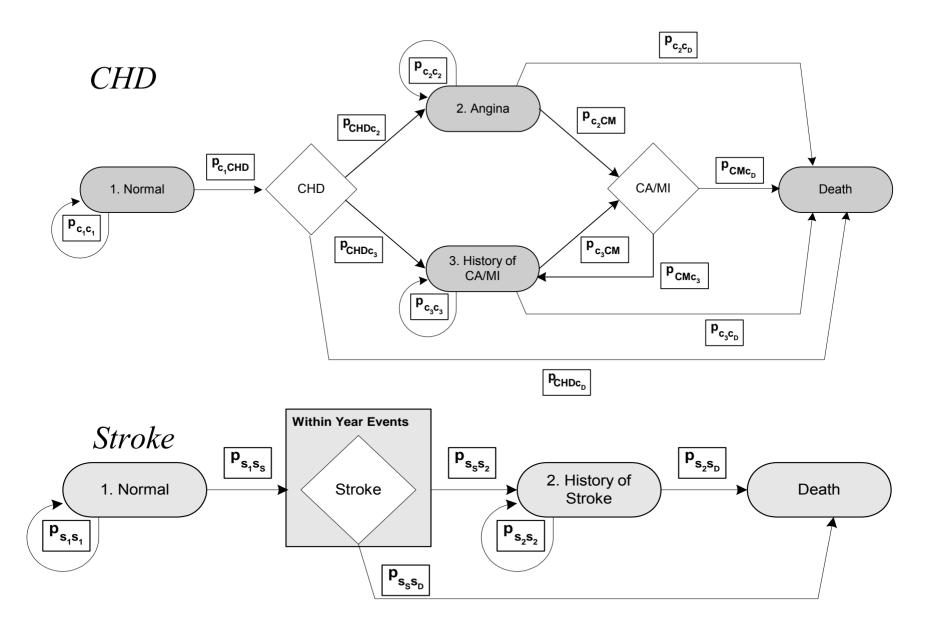
- Long time horizons
  - Interventions now, benefits later
- Simulate results, because trials infeasible
- Diseases often complex
- Disease progression is key
- Costs? Almost an afterthought
- Our diabetes model illustrates these issues





# The CDC-RTI Diabetes Cost-Effectiveness Model

- Markov model of disease progression and cost-effectiveness
- Follows patient from diabetes diagnosis to death or age 95
- Follows development of complications on 5 disease paths
  - Nephropathy, neuropathy, retinopathy
  - CHD and stroke
- 20,000+ lines of code in C++
- Usually focus on health care system perspective





#### Nephropathy





#### Retinopathy





Point: Lots of work on disease progression (50% of project)

#### Lots of Work on Intervention Effects

- Randomized clinical trials
  - Provide effects on intermediate outcomes
  - Must simulate effects on long-term outcomes based on disease progression model
- Get it right, or no one believes your results (20%)



#### When It Comes to Costs... "Grab and Go"

- Budget, time is almost gone (need to save time for analysis, reporting)
- Find cost data in the literature
- Don't look too carefully
- Stick it in, and get results

Far less time (5%), scrutiny than disease progression or intervention effects



#### How are Costs Measured?

- Direct data collection as part of study
  - Works for intervention costs
  - Micro-costing
  - Usually period is too short for complication costs
    - Too rare, too variable to see significant differences between arms
    - Yet complication costs account for large share of overall diabetes costs



## Complication Costs—Option 1

- Cost out individual complication events ("gross" costing)
  - Secondary data
  - Additive form
  - One-time and subsequent annual costs
  - Only need diabetes-related costs
  - Other medical costs drop out of incremental comparison due to additive form



## Microvascular Costs (Option 1)

|                       | 1-time costs | Annual costs |  |
|-----------------------|--------------|--------------|--|
| Microalbuminuria      | \$0          | \$0          |  |
| Nephropathy           | \$1,201      | \$0          |  |
| ESRD                  | \$0          | \$72,488     |  |
| Peripheral neuropathy | \$357        | \$0          |  |
| LEA                   | \$33,131     | \$0          |  |
| Photocoagulation      | \$2,943      | \$0          |  |
| Blindness             | \$0          | \$2,125      |  |

## Complication Costs—Option 2

- Cost regressions
  - Ln Y =  $\beta$ X +  $\epsilon$
  - x<sub>i</sub> are dummy variables for complications
  - Takes on multiplicative form when transformed
  - $Y = k e^{\beta X} = k' e^{\beta 1x_1} e^{\beta 2x_2} ... e^{\beta nx_n}$
  - $\bullet$  = k' \* mult<sub>1</sub> \* mult<sub>2</sub> \*...\*mult<sub>n</sub>
  - Note: incremental cost of complication depends on all other complications



## Multipliers (Option 2)

|                  | Multiplier |  |
|------------------|------------|--|
| Female           | 1.25       |  |
| African-Amer.    | 0.82       |  |
| Oral agents      | 1.10       |  |
| Insulin          | 1.59       |  |
| Microalbuminuria | 1.17       |  |
| Nephropathy      | 1.30       |  |
| ESRD             | 10.53      |  |

|                   | Multiplier |  |
|-------------------|------------|--|
| History of stroke | 1.30       |  |
| Angina            | 1.73       |  |
| History of CA/MI  | 1.90       |  |
| Periph vasc dis   | 1.31       |  |
| Hypertension      | 1.24       |  |
|                   |            |  |
| Baseline costs    | \$1,684    |  |

Ex. Female, insulin, microalbuminuria, hypertension

## Does It Make a Difference?

|                   | Additive Costs |                | Multiplicative Costs |               |                |          |
|-------------------|----------------|----------------|----------------------|---------------|----------------|----------|
|                   | Total<br>cost  | Total<br>QALYs | CE ratio             | Total<br>cost | Total<br>QALYs | CE ratio |
| Baseline          | \$52,758       | 12.7547        |                      | \$55,175      | 12.7547        |          |
| Interven-<br>tion | \$54,185       | 12.8999        |                      | \$58,418      | 12.8999        |          |
| Incremen-<br>tal  | \$1,428        | 0.1452         | \$9,832              | \$3,242       | 0.1452         | \$22,300 |

### Cost Standards for CEA—the Panel study

|                                                                                     | # of rec's |
|-------------------------------------------------------------------------------------|------------|
| Use societal perspective                                                            | 1          |
| What should be included in numerator                                                | 7          |
| What should be excluded in numerator                                                | 3          |
| Micro-costing preferred over gross-costing, but choice depends on feasibility, etc. | 1          |
| Value resources at opportunity costs                                                | 2          |
| How to use wages and prices to reflect opportunity costs                            | 10         |
| Use constant \$                                                                     | 1          |
| Total                                                                               | 25         |

Gold et al. Cost-Effectiveness in Health and Medicine. 1996. Ch.6.



## Not in the Panel Recommendations, But Possible Issues for Us to Consider

- Standard cost estimates for CEA (Panel recommended this for future research)
  - Can we come up with a standardized list of complications or conditions that is useful across a wide range of CE analyses?
  - 1-time and annual costs
  - Appropriate data sources
  - Who would do it?



### Possible Issues (cont'd)

- Use of regression-based estimates for costs
  - Implications of functional form
- How much emphasis to put on costs in sensitivity analyses
  - Point estimates
  - Underlying variation
- Should we standardize intervention costs?
- Should we standardize non-medical costs?

