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Molecular interactions in solution are controlled by the bulk medium and by the forces originating in the
structured region of the solvent close to the solutes. In this paper, a model of electrostatic and liquid-structure
forces for dynamics simulations of biomolecules is presented. The model introduces information on the
microscopic nature of the liquid in the vicinity of polar and charged groups and the associated non-pairwise
character of the forces, thus improving upon conventional continuum representations. The solvent is treated
as a polar and polarizable medium, with dielectric properties described by an inhomogeneous version of the
Onsager theory. This treatment leads to an effective position-dependent dielectric permittivity that incorporates
saturation effects of the electric field and the spatial variation of the liquid density. The non-pairwise additivity
of the liquid-structure forces is represented by centers of force located at specific points in the liquid phase.
These out-of-the-solute centers are positioned at the peaks of liquid density and exert local, external forces
on the atoms of the solute. The density is calculated from a barometric law, using a Lennard-Jones-type
solute-liquid effective interaction potential. The conceptual aspects of the model and its exact numerical
solutions are discussed for single alkali and halide ions and for ion-pair interactions. The practical aspects of
the model and the simplifications introduced for efficient computation of forces in molecular solutes are
discussed in the context of polar and charged amino acid dimers. The model reproduces the contact and
solvent-separated minima and the desolvation barriers of intermolecular potentials of mean force of amino
acid dimers, as observed in atomistic dynamics simulations. Possible refinements based on an improved
treatment of molecular correlations are discussed.

I. Introduction

Molecular interactions in solution are modulated by the
aqueous environment, which may vary broadly in composition.
The solvent controls most of the molecular properties in the
cell,1,2 from chemical reactions of small molecules3 to the
structure, dynamics, and thermodynamics of macromolecules.4-7

In particular, the solvent controls the dynamics of molecular
encounters and association/dissociation mechanisms, thus par-
tially dictating the kinetics of biochemical pathways. These
processes usually involve the noncovalent binding of a small
peptide or organic molecule, either a naturally occurring
chemical species (e.g., hormones and neurotransmitters) or a
synthetic product (e.g., drugs and molecular probes), to a protein
(e.g., enzymes and transmembrane receptors). The statistical
distribution of ligand binding modes and the tightness of a
molecular complex depend on the forces exerted by the solvent,
particularly at the protein-solvent interface. The accurate
calculation and prediction of binding modes and free energies
may have far-reaching implications in pharmacology and
medicine.

Certain molecular processes in solution, such as protein
unfolding and molecular dissociation, can be studied experi-
mentally at the level of individual molecules.8-10 Atomic force
microscopy and laser tweezers are commonly used in single-
molecule pulling experiments. The free energy profiles extracted
from these studies are shaped by the forces exerted by the
aqueous environment. The interpretation of experimental ob-
servations and its relation to results from computer simulation

are topics of current research.11 Direct forces between macro-
molecules can also be measured using osmotic stress12,13 and
X-ray scattering experiments in molecular arrays. These tech-
niques provide information on the forces at short intermolecular
distances and on their modulation by the aqueous environment.14

Studies have suggested that the energy associated with the
structuring of water at the molecular interfaces may dominate
the interactions at close proximity.15

Reliable calculations of molecular interactions in solution,
interpretation of simulations data, and comparison with experi-
mental data depend on the efficiency of the algorithms used
for sampling the conformational space and the quality of the
model describing the interactions. A substantial part of the work
reported in the literature is concerned with the development of
sampling techniques and other numerical methods of calcu-
lation.16-18 Comparatively, less effort has been devoted to
improving models of molecular interactions, partially due to
the conceptual difficulties in understanding the effects of the
solvent at the atomic level.

Molecular interactions in pure water are modulated by bulk-
phase electrostatics and by solvent-induced forces.19 Bulk
electrostatic effects originate in the polarization and reorientation
of water molecules in the bulk phase. Solvent-induced forces
(SIF) result from the spatial rearrangement of the solvent
molecules excluded from the region occupied by the solute.20,21

This rearrangement perturbs the hydrogen-bonding (HB) net-
work of water in the solute’s hydration shells, thus generating
net forces and torques that affect the solute’s equilibrium
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structure and dynamics. At the molecular level, hydrophobic
and hydrophilic forces are special cases of SIF. The molecular
origin of SIF has been studied using computer simulations,21-24

and their role in protein-ligand interactions and protein folding
has been discussed.20,25-27

A complete description of solvent effects requires both bulk
electrostatic and solvent-induced forces to be accounted for.
Theoretically robust approaches exist to describe such effects,
including earlier and modern theories of dielectric media28,29

and theories of liquid structure.30-33 These approaches are
mathematically and physically rigorous, thus making them ideal
as a basis of simplified models for use in computer simulations
of macromolecules. Important progress has been made in this
direction in recent years,34-39 although the computational
demands have limited the practical applications to relatively
small solutes or model systems. Less rigorous but practical
models to represent solvent effects in macromolecules are also
available. These models have traditionally focused on solvent
electrostatics but have largely neglected SIF, except for simple
treatments of hydrophobic interactions. The performance of
these empirical models depends mainly on the quality and the
number of parameters defined. Most of these models have
marginal connection with basic physics theory; so, they cannot
be used as the basis for further theoretical developments. For
the same reason, the interpretation of results obtained in
computer simulations is usually limited, which is the most
serious limitation, regardless of their predictive power. The merit
of such models is mainly computational speed.

The above discussion highlights the main challenge in
developing a model of solvent effects in biomolecules, specif-
ically to find a reasonable balance between physical content
and computational efficiency. Attempts at this have been made
in the past to describe electrostatic effects of the solvent, for
example, by treating the solute as a set of point charges and
the solvent as a continuum medium and solving the Poisson-
Boltzmann equation numerically40,41 or by treating the solute
and the liquid as a lattice of point dipoles and solving the
resulting equations self-consistently.42,43These models have been
used to provide insight into the electrostatic effects of the solvent
on molecules of arbitrary shape. Because these approximations
have their own practical and conceptual limitations, an alterna-
tive to the electrostatic problem has been sought in the dielectric
theory of polar/polarizable liquids,44,45which is further discussed
in this paper. Physically meaningful, yet practical, solvent
models have been used not only in the context of macromo-
lecular electrostatics but also to represent electrostatic effects
in quantum chemical calculations of small molecules.46,47

In this paper, a model that combines both electrostatics and
solvent-induced forces is presented and discussed in detail. The
model is implemented and optimized for the calculation of forces
in peptides and proteins. The paper is organized as follows. In
section II, the basic theory is described, and the model is
introduced. In section III, the model is solved numerically for
single ions and ion pairs. These simple solutes are used to assess
the suitability of the model for describing electrostatic and
liquid-structure forces. In section IV, the application of the
model is extended to molecular solutes. In this case, the exact
numerical solution carried out in section III is abandoned for
the sake of computational efficiency. Instead, a suitable ap-
proximation is derived based on the observations described in
section III. This simplified model is optimized and applied to
amino acid dimers for the calculation of intermolecular potentials
of mean force. A summary and a discussion on possible
improvements of the model are given in section V.

II. Electrostatics and Liquid Structure

A solute immersed in a solvent perturbs the structure and
dynamics of the liquid with respect to those in the non-perturbed
state. These changes in the liquid generate a field that reacts
back on the solute, thus modulating its gas-phase properties. A
statistical mechanics treatment can formally describe the
perturbations in the liquid, from which information on its
dielectric response and structure can be obtained. The interest
here is on the resulting effects of the perturbed liquid on the
perturbing solute. In this paper, electrostatic and liquid-structure
forces are treated separately but related to one another through
the liquid density distribution.

The dielectric response of a medium can be studied statically
or dynamically.29 The latter is needed to describe the temporal
evolution of the polarization fieldP(r , t) upon changes in the
solute (e.g., in proton and electron transfer, or chemical reactions
in general). The dynamic response of dielectric media has been
a topic of extensive experimental and theoretical invest-
igations.48-50 Only static fields will be considered here. In a
polar and polarizable liquid composed of molecules with
isotropic polarizability,R, and permanent dipole moments of
magnitudeµ ) |µ|, the static polarization field at a positionr
can be written as28,51

where the number densityF(r ) represents the number of liquid
molecules per unit volume at positionr , and〈µ〉 is the statistical
average of the permanent dipole moments of a liquid molecule
at r . Ei(r ) is the internal (or microscopic) field at the position
of a liquid molecule. The orientations of the permanent dipoles
are determined by the directing field52 Ed(r ). Both internal and
directing fields act on individual water molecules, but they are
conceptually different from one another;52 expression for these
fields will be given below. Equation 1 is the usual separation
of the polarization into a component due to the induced dipoles,
PR (first term at the right-hand side), and a component due to
the permanent dipoles,Pµ (second term). Thus,PR is the only
contribution toP in a nonpolar (µ ) 0), polarizable (R * 0)
medium, whilePµ is the only contribution in a polar (µ * 0),
nonpolarizable (R ) 0) medium. In both terms,F accounts for
the number of liquid molecules locally contributing toP.
Equation 1 can be generalized to a multicomponent system.28

The polarization field is given, in general, by29 P(r )
) ∫ ø(r ,r ′) ‚ E(r ′)dr ', where ø(r , r ′) is the susceptibility
tensor, andE(r ′) is the macroscopic electric field at positionr ′
(i.e., the electric field described by Maxwell’s equations inside
continuous media). A phenomenological, yet general molecular
theory of dielectric response based on this nonlocal relationship
has been derived for spatially and temporally varying electric
fields.29 If the field varies smoothly with the distance (i.e., if
the wavelength is large compared to the characteristic molecular
length scale), a local form ofP(r ) can be used,

which definesε(r ) as the local, static dielectric permittivity of
the medium, assumed here to be a scalar quantity. The
approximation of eq 2 worsens as the distance to a solute
decreases because of the short-wavelength components of the
electric field. However, corrections for nonlo-
cality53-57 are beyond the scope of this paper, and eq 2 will be
used regardless of the proximity to the solute.

P(r ) ) F(r )REi(r ) + F(r )〈µ〉 (1)

P(r ) ≈ ø(r )E(r ) )
ε(r ) - 1

4π
E(r ) (2)
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Expressions of the internal and directing field as a function
of the macroscopic field are derived here in the context of the
Onsager theory.28,52The instantaneous reaction field,R(r), acting
on a single water molecule with a fixed orientation ofµ, located
at the center of a spherical cavity positioned atr , and with a
volume equal to that available to the molecule, is given byR(r )
) f(r )µ*. In this expression,µ* is the total dipole moment of
the molecule given byµ* ) µ + RR(r ), where the last term is
the dipole induced by the reaction field itself. For a spherical
cavity, f is a scalar quantity and, then,R(r ) ) µf(r )/[1 - Rf(r )].
The scalarf can be calculated assuming that the cavity has a
volume of 1/F(r ) and is surrounded by an infinitely extended
continuum with permittivityε(r ). This approximation has been
discussed51,58and can be considered a limit for the actual value
of the local reaction field. In this case,f is given by28,52

By definition, the difference between the internal and directing
fields acting on a single water molecule is the average reaction
field calculated over all of the orientations of the dipole, that
is, Ei(r ) - Ed(r ) ) 〈R(r )〉. From this definition and the equation
given above forR(r ), the internal field can be written as

Following refs 28 and 52, the directing field satisfies the
equationEd(r ) ) Ec(r ) + f(r )REd(r ), whereEc is the cavity
field and fREd is the reaction field at the position of the
molecule, originating in the dipoleREd induced by the directing
field itself. Ec is defined as the total field at the center of a
physical cavity surrounding the molecule and is given28 by
Ec(r ) ) 3ε(r )E(r )/[2ε(r ) + 1]. From these two equations, an
expression for the directing field is obtained, which is given by

Introducing eqs 4 and 5 into eq 1 and using eq 2 yields a closed
equation forε(r ) in the form

whereE(r ) ≡ |E(r )|, â ≡ 1/kBT (T is the absolute temperature;
kB is the Boltzmann’s constant),L(x) ) 1/tanh(x) - 1/x is the
Langevin function which arises in the calculation28 of the
canonical average〈µ〉 over the dipole orientations in eq 1.

In the Debye theory,59 Ei andEd were not distinguished from
one another. They were taken as equal to the Lorentz field,58

EL, which is defined as the electric field inside an ideal cavity
surrounding the water molecule, and given byEL(r ) ) [ε(r ) +
2]E(r )/3. The Debye theory was used earlier to derive an
expression similar to eq 6 for uniform liquids based on the
Lorentz-Debye-Sack (LDS) approximation.44,45,51,58Reaction
field corrections52 were introduced at a later stage in the
derivation. To deal with nonuniform liquids, however, it is
convenient to introduce the reaction field and its dependence
on F formally intoEi andEd, as in eqs 4 and 5. The LDS theory
has been used in the past and forms the basis of the continuum
electrostatics model44 reviewed in section IV.1.

Settingµ ) 0 in eq 6 leads to the dielectric permittivity of a
nonpolar, polarizable liquid or to the optical (high-frequency)
permittivity ε∞ of a polar and polarizable liquid. For a uniform
liquid, F(r ) ) F0 ) 1/V, whereV is the molecular volume (V ∼
29.8 Å3 for water, estimated at 25°C and 1 atm60), an equation
relatingε∞ andR is obtained,

In the limit E f 0 (non-perturbed liquid, orr f ∞), eqs 6 and
7 lead to the Onsager equation,51,52,58

whereε0 is the static dielectric permittivity of the liquid in the
bulk phase.

Equation 6 can be used to calculateε(r ) onceE(r ) andF(r )
are known. These quantities (E and F) are determined by the
geometry and the charge distribution of the solute. Theories of
liquid structure30,31 provide the proper framework to obtain an
expression forF(r ) in the case of a general solute-liquid
interaction potential energyU(r ). A particular approach to this
problem is based on a variational principle, where a free energy
functional G[F′(r )] is defined and minimized with respect to
F′(r ). The functionF′(r ) that satisfiesδG[F′(r )]/δF′(r ) ) 0 is
the equilibrium, nonuniform spatial density distributionF(r )
sought. This approach yields a formal expression for the liquid
density in the form31

whereη depends on the temperature and the mass of the liquid
molecules. The functionalc[F(r );r ] in eq 9 is the single-particle
direct correlation function, which is related to the Orstein-
Zernike two-particle direct correlation functionc(2) through
c[F(r );r ] ) ∫F(r ′)c(2)(r ,r ′)dr ′. In eq 9, the term
-c[F(r );r ]/â can be viewed as an effective potential which is
determined by the interactions between the liquid molecules.
Much of the theoretical work on the theory of liquid structure
has been aimed at finding approximate solutions of eq 9 or
simplified expressions forc(2)(r ,r ′) for practical calculations.
The simplest approximation is to neglect pair correlations
altogether; therefore, the local spatial density is given by a
barometric law,30,31

This functional form will be used here. With this approximation,
Veff(r ) is an effective solute-liquid interaction potential energy.
A Lennard-Jones (LJ) type function will be used here,

whereri ) |r - r i|, and the sum runs over theN atoms of the
solute. The distancesσi mainly determine the positions of the
density peaks around a molecule (N > 1) or the first peak of
the radial distribution function,g(r) ) G(r)/G0, of the liquid
around a monovalent ion (N ) 1). The energiesêi mainly
determine the height of the density peaks. Comparison of eqs 9

4π
3

R
V

)
(ε∞ - 1)(2ε∞ + 1)

9ε∞ + 2(ε∞ - 1)2
(7)

4π
9kT

µ2

V
)

(ε0 - ε∞)(2ε0 + ε∞)

ε0(ε∞ + 2)2
(8)

F(r ) ) η exp{-âU(r ) + c[F(r );r ]} (9)

F(r ) = F0 exp{-âVeff(r )} (10)

Veff(r ) ) ∑
i ) 1

N

êi[(σi

ri
)12

- 2(σi

ri
)6] (11)

f(r ) ) 8π
3

F(r )
ε(r ) - 1

2ε(r ) + 1
(3)

Ei(r ) ) Ed(r ) +
f(r )

1 - Rf(r )
〈µ〉 (4)

Ed(r ) ) 1
1 - Rf(r )

3ε(r )

2ε(r ) + 1
E(r ) (5)

[ε(r ) - 1][1 - Rf(r )]

4πF(r )
)

3Rε(r )

[2ε(r ) + 1]
+

µ
E(r )

L{ 3âε(r )µE(r )

[1 - Rf(r )][2ε(r ) + 1]} (6)
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and 10 indicates thatVeff contains information on the exact
solute-liquid potential energy,U, and on all of the intra-liquid
interactions that can possibly be captured into the LJ functional
form of eq 11 and its parameters. In particular,Veff contains
the van der Waals solute-liquid interaction potential commonly
used in classical mechanics force fields. It also contains
information on the short-range electrostatics, particularly, that
associated with the direct solute-water hydrogen-bond interac-
tions in the hydration shells of polar and charged groups. In
this paper, the choice of a LJ-type function as an effective
solute-liquid interaction potential is based solely on practical
considerations. LJ potentials have been used extensively in
simulations of liquids,61 and their mathematical properties are
well characterized.62 The only requirements forVeff are (i) to
reproduce the short-range structure of the liquid surrounding a
molecular solute and (ii) to provide for the short-range non-
pairwise additivity of the resulting forces. These forces will
operate in addition to the long-range electrostatic forces exerted
by the essentially structureless bulk liquid. The adequacy of
eqs 10 and 11 and the conditions to achieve these goals will be
assessed and discussed in detail in the following sections.

III. Solvation of Alkali and Halide Ions

The model introduced in section II is now applied to single
ions and ion pairs. For these simple solutes, the free energies
and forces can be calculated exactly by numerical integration.

III.1.Single Ions. For a monovalent ion, the parameterσ in
eq 11 is separated into two parts,σ ) RI + Rw, whereRI is the
radius of the ion in the liquid phase at infinite dilution, andRw

is an extension identified with the radius of a water molecule
(∼1.38 Å). This definition is consistent with the way the ionic
radii are calculated from experimental data.63,64 The radiusRI

can be determined experimentally using X-ray or neutron
scattering, or through computer simulations. Simulations permit
a straightforward representation of the ideal infinite dilution,
but their reliability is limited by the quality of the force field.
On the other hand, experiments may produce better estimates
of ionic radii, but the salt concentrations used may corrupt the
interpretation of the results due to the proximity of the ions in
the solution. As a compromise, the ionic radii used here were
determined by neutron scattering experiments at relatively low
salt concentrations. To illustrate, three alkali metal and two
halide ions are considered: Li+, Na+, K+, Cl-, and F-, with
ionic radii65-67 given in Table 1. The reversible work of
polarization of the dielectric medium is given by68

whereE0(r ) is the electric field of the solute at positionr in
the absence of the dielectric medium (vacuum field), and the
integration is carried out over the entire space;D(r ) ) ε(r )E(r )
is the displacement field. Using eq 2 andE(r) ) E0(r)/ε(r), with
|E0(r)| ) 1/r2 for the ion atr ) 0, eq 12 yields

whereε(r) is obtained from eq 6. The densityF(r ) in eq 6 is
given by eq 10 with the potential of eq 11; the value ofµ is
given by eq 8 withε0 ) 78.39 andε∞ ) 1.47 (the values60

corresponding to pure water at 1 atm and 25°C). Here, the
polarizability,R, is given by eq 7, whereF(r) e F0, and by the
corresponding density-dependent expression (i.e., withF(r)
replacing 1/V) whereF(r) > F0. This assumption is physically
reasonable sinceR reaches its finite, gas-phase value as the
density decreases, leading toε∞ f 1 andε f 1 asF f 0. On
the other hand, asF(r) increases,R decreases in a similar
proportion, keepingε∞ approximately constant.28

The value ofê in eq 11 for each ion is determined from the
standard Gibbs free energy of hydration∆G0. The work of
polarization ∆Ae, calculated from eq 12, corresponds to a
Helmholtz free energy of an isochoric thermodynamic process.
The relation between both quantities is71,72

where∆Gnp is the nonpolar component of the free energy. This
term can be decomposed as∆Gnp ) ∆Gcav + ∆Gsr, where∆Gcav

accounts for the reversible work of cavity formation, which can
be described by scaled particle theories,69,70and∆Gsr is a short-
range solute-liquid interaction term. For charged species,∆Gnp

makes a small contribution to∆G0. Since the interest here is in
the electrostatic component of∆G0, the nonpolar term is
approximated as∆Gnp ∼ 1.325 kcal/mol for all of the ions.71,72

Partitioning the experimental∆G0 of a neutral salt into
components assigned to the individual ions requires knowing
the absolute value of the Gibbs free energy of hydration of a
proton, ∆GH, which is used as a reference.72,73 Cluster-ion
solvation data have recently been used74 to determine∆GH; these
provide a more reliable estimate than traditional methods. This
value has been used to calculate the hydration energies of alkali
and halide ions,74,75 and their values are given in Table 1 (a
standard conversion term76 of ∼1.9 kcal/mol has been added
to the work of polarization∆Ae in eq 14 to relate it to the
experimental quantity∆Ge

0 ≡ ∆G0 - ∆Gnp).
With the above specifications, the integral of eq 13 can be

carried out numerically, andê is chosen for each ion as to satisfy
eq 14. The results are presented in Table 1. This procedure is
similar to that used in the context of classical force fields to
parametrize ion-water van der Waals interactions.77 Figure 1
shows the permittivity profiles for Na+ and Cl- as a function
of the distance to the center of the ion. The figure illustrates
the saturation effect of the electric field in the spatially uniform
liquid [F(r ) ) F0] (dotted line) and the additional modulation
of ε(r) due to a nonuniform liquid density (solid lines). A
discussion on the treatment of the ion/liquid interface and the
sensitivity of the results to the form ofε(r) is given in section
V. If correlations were introduced, the effectiveε(r) would

TABLE 1: Experimental and Calculated Propertiesa of
Alkali and Halide Ions in Water b

RI -∆G0 -Ae
0 -Ae -Ae′ ê κ RB ε(RB) δ

Li+ 0.52 126.5 129.7 129.7 83.0 1.30 4.7 1.16 3.3 0.64
Na+ 1.12 101.3 104.5 104.2 65.2 1.20 7.7 1.50 7.1 0.38
K+ 1.32 84.1 87.3 87.1 50.2 6.00 8.6 1.81 31.1 0.49
F- 1.24 102.5 105.7 105.6 67.9 0.55 8.5 1.48 6.6 0.24
Cl- 1.72 72.7 75.9 76.1 42.8 6.55 11.2 2.07 53.8 0.35

a Energies in kcal/mol; distances in Å.b RI: experimental ionic radii
in solution;63 ∆G0: experimental Gibbs free energy of hydration;74,75

∆Ae
0 ) ∆G0 - ∆Gn (∆Gn ) 1.325; a standard conversion term of 1.9

was used);71,72,76∆Ae: electrostatic contribution to the Helmholtz free
energy of hydration calculated with eq 13;∆Ae′: contribution of the
first hydration shell to∆Ae; ê: ion-water interaction parameter inVeff(r)
[cf.eq 11] in cal/mol;κ: calculated coordination number;RB: Born
radii (include saturation effects of the electric field; uniform liquid);
ε(RB): static dielectric permittivity at a distancer ) RB from the center
of the ion;δ ) RB - RI.

∆Ae ) 1
8π ∫

R3

E(r )‚D(r )dr - 1
8π ∫

R3

|E0(r )|2dr )

- 1
2∫

R3

P(r )‚E0(r )dr (12)

∆Ae ) - 1
2

lim
Ru f ∞

∫
0

Ru
ε(r) - 1

r2
ε(r)

dr (13)

∆G0 ) ∆Ae + ∆Gnp (14)
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display an oscillatory behavior with the distance,57,78 instead
of the monotonic increase displayed in Figure 1. In the absence
of correlation, the first peak of the radial distribution function
g(r) is shallow (not shown), and neither a second peak nor a
first minimum is observed. Therefore, the coordination number
κ is calculated asκ ) F0 ∫r2g(r)dr, where the upper limit of
integration is taken asRm ) RI + 2Rw, which defines the first
hydration shell around the ion. This upper limit would cor-
respond to the position of the first minimum ofg(r), which is
usually smaller thanRm. The coordination numbers obtained
with the values ofê calculated above are presented in Table 1,
showing reasonable agreement with experimental and theoretical
estimates.63 The inset of Figure 1 shows∆Ae as a function of
the integration limitRu in eq 13, showing that convergence is
achieved only atRu > ∼30 Å. The contribution of the first
hydration shell to∆Ae (denoted by∆Ae′ in Table 1) is similar
in magnitude to the bulk contribution.

III.2. Ion Pairs. III.2.1. Electrostatic Modulation. For an
arbitrary static charge distribution, the relationship between the
macroscopic and vacuum fields is given by68 E(r ) ) E0(r ) -
∇ ∫P(r ′)‚∇′|r - r ′|-1dr ′, for |r | > 0. Solving this equation for
E(r ) (or the corresponding expression for time-dependent
fields29) is the basic goal of a dielectric theory, but it is a difficult
task, in general.29,79,80 Only for a point charge areE(r) and
E0(r) linearly related throughE(r ) ) E0(r )/ε(r ). In the general
case, however, an effective local dielectricε(r ) can be defined
such that the fields satisfy the same linear relation. The
approximation introduced here and used earlier45,51 is that the
effective local permittivity also satisfies eq 6. In this case, eq 6
can be solved for two interacting ions at infinite dilution, and
the electrostatic component of the hydration energy,∆Ae(r), of
the pair can be obtained by numerical integration of eq 12, where
now r is the distance separating the ions. For the purpose of
discussion, the pairs Na+-Cl-, Na+-Na+, and Cl--Cl- will
be considered. The values ofê and σ found above for single
ions are transferred to the corresponding ions in the pair,
regardless of the interionic distance, which is a simplification.
The hydration energy of each pair can be divided into three
components,

The last two terms are self-energies;∆Aself,1(r) results from
zeroing the charge on ion 2 (i.e., Cl- in the Na+-Cl- pair),
while ∆Aself,2(r) results from zeroing the charge on ion 1. The

values ofê andσ of an ion are retained when its charge is set
to zero, which is an assumption. Thus,∆Aself measures the
change in the hydration energy of an ion a distancer from a
solvent-excluding cavity. The numerical solution of eq 12, for
each value ofr, is plotted in Figure 2A and 2B. The proximity
of a solvent-excluding cavity causes|∆Aself(r)| of an ion to
decrease, as expected, because of the removal of polarizable
medium near the charged particle. The term∆Aint(r) is calculated
from eq 13 as the difference between the total∆Ae(r) and the
sum of the self-energies. Figure 2B shows that the self-energy
terms decay sharply with the interionic distance and are
practically constant forr > σ1 + σ2. In contrast, the slow decay
of ∆Ae(r) with the distance (Figure 2A) is related to the
interaction term∆Aint(r). The behavior of∆Ae(r) at small
interionic distances, or its limit asr f 0, is of no physical or
practical interest, unless the size of the particle resulting from
the limiting process is also specified. This is so because the
charge alone does not determine the particle’s hydration energy;
information on its size is also needed, which is determined by
the electron structure.81 The electrostatic component of the
solvent force on ioni is thenFe,i ) -d∆Ae(r)/dri. The total
electrostatic energy of the system is given byET(r) ) ∆Ae(r)
+ ∆E0(r), where∆E0(r) ) 1/r is the Coulomb energy in the
vacuum.

The inhomogeneity of the system discussed above arises from
the saturation effects of the field and the nonuniform density
distribution. Saturation effects are manifested in smaller values
of the local dielectric permittivityε(r ) in the vicinity of charges.
The density distributionF(r ) of the liquid further modulates
ε(r ). If the liquid is assumed to be spatially uniform but
saturation effects are still retained, the density modulation of
the polarization field is removed, and the integral of eq 12
diverges for solutes containing point charges. To avoid this

Figure 1. Permittivity profiles for a monovalent ion in water as a
function of the distance to the center of the ion (eq 6): Na+ and Cl-

in a uniform (F(r) ) F0) medium (dashed line); and Na+ (thin solid)
and Cl- (thick solid) in a nonuniform medium (F(r) given by eq 10).
Inset: electrostatic contribution to the free energy of hydration of alkali
and halide ions as a function of the upper limit of integration in eq 13
in a nonuniform medium (the asymptotes correspond to the values-∆Ae

in Table 1; in units of 102 kcal/mol).

∆Ae(r) ) ∆Aint(r) + ∆Aself,1(r) + ∆Aself,2(r) (15)

Figure 2. (A) Electrostatic contribution of the free energy of hydration
of ion pairs as a function of the interionic distance (eq 13): Na+-Cl-

(solid line); Na+-Na+ (thin dashed); and Cl--Cl- (thick dashed). (B)
Self-energy contributions to the free energy (eq 15): Na+ (thin solid)
and Cl- (thick solid) in the Na+-Cl- pair; Cl- in the Cl--Cl- pair
(thick dotted); Na+ in the Na+-Na+ pair (thin dotted). Energies in units
of 102 kcal/mol. The distances,r ) σ1 + σ2, of contact of the solvation
spheres are labeled a-c.
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divergence, a region containing the charges can be excluded
from the integration domain. For a single ion, a spherical region
of radius RB is used; thusRB defines the lower limit of
integration in eq 13.RB is closely related to the Born radius82

commonly used in macroscopic electrostatics but with saturation
effects explicitly included.44,51,81,83,84Table 1 shows the Born
radii and the values of the permittivityε(RB) for the five ions
considered here. Following precedence,RB can be decomposed
into two terms44,81,85,86in the formRB ) RI + δ, whereδ is an
extension of the ionic radius. Thus,RB is viewed as the size of
a cavity formed by the ion in the dielectric medium. Table 1
shows thatδ is positive and larger for cations than for anions;
its value depends on the ion type and not only on its charge.
This result has been discussed previously44,81,85,86and interpreted
as a manifestation of the different orientations of water
molecules in the hydration shells of ions.

An additional approximation to the uniform liquid is the
neglect of saturation effects. This leads to the usual Born
approximation in macroscopic electrostatics, that is,∆Ae ≈ (1/
ε0 - 1)/RB for a monovalent ion, withRB now being the standard
Born radius.82 The practical and conceptual problems of
introducing a solute/liquid dielectric discontinuity when dealing
with microscopic solutes have been recognized and discus-
sed.83,84,87-89 The model presented here provides a simple recipe
to avoid such discontinuities in a physically meaningful way.

III.2.2. Liquid-Structure Forces.The structure of the liquid
is represented by the spatial variations of the liquid density [cf.
eq 9]. In addition to bulk electrostatics, the liquid structure
generates forces that further modulate interactions. The dif-
ferential force dF(r , r ′) on atom i of the solute at positionr
exerted by the liquid molecules within a volume dV′ at position
r ′ is given by20,22,27

whereU(r , r ′) is the interaction potential energy between the
atom and a liquid molecule, and dn(r ′) ) F(r ′)dV′ is the number
of liquid molecules atr ′. Here, the potential energy is given by
U(r , r ′) ≈ Veff(|r - r ′|) [cf. eq 11], and the density atr ′ is
given by eq 10. The total liquid-structure forceFs,i(r ) on atom
i is then calculated by integrating dF(r , r ′) over r ′,

The integration is carried out over the space occupied by the
liquid, or it can be extended to the entire space provided that
F(r ) formally accounts for the region inaccessible to the liquid,
for example, another molecule, a lipid bilayer, or an idealized
confining boundary, such as a container or solid surface.

The liquid-structure forces on a pair of interacting ions will
be analyzed first. In the discussion below, ion 1 is located at
the origin of a cylindrical coordinate system (η, θ, z), and ion
2 is at a distancer from ion 1 in the+z direction. For a given
value of r, dF(r, r ′) is calculated at each pointr ′ and then
integrated in space to yield the total forcesFs,i(r) ) Fs,i(r)ẑ on
ion i. From eq 17, the forceFs,2(r) on ion 2 is given by

after integrating over the azimuthal angleθ. The function
F(η, z; r) denotes the (η, z)-dependent density for an interionic

separationr (a similar equation can be obtained forFs,1(r);
Fs,2(r) ) -Fs,1(r) in equilibrium). In eq 18,Fs,2 < 0 implies
that the solvent induces an attractive force between the charges,
while Fs,2> 0 implies a repulsive force. The potential associated
with Fs,2(r), that is, a potential of mean liquid-structure force
type, is given by90

To solve eqs 18 and 19, the values ofσ1, σ2, ê1, andê2 must be
specified. The values reported in Table 1 were obtained from
the requirement that the dipole density of the liquid around
single ions produce the correct polarization field, hence, the
correct values of the hydration energies. Because the same
functional form of Veff is also used to represent the liquid-
structure forces on interacting ions, the values in Table 1 are
revisited. To this end, eq 18 was solved numerically for generic
values ofσ’s andê’s, as to cover all possible cases of relative
ion sizes and ion-liquid interaction strengths. Typical results
for Fs,2(r) andφs,2(r) are shown in Figure 3 for Na+-Cl-; the
valuesê1, ê2, σ1, andσ2 are taken directly from Table 1, but
the energies are rescaled as to preserve the relative liquid-ion
interaction strength,ê1/ê2. The values used in Figure 3 areê1

) 0.3 andê2 ) 1.5 kcal/mol (ion 2 is Cl-). At a large interionic
separation, the force is attractive. As the distance decreases,
the force reaches a minimum atr ) rm > σ1 + σ2. It vanishes
at r ≈ σ1 + σ2 (point of contact of the solvation spheres) and
becomes repulsive. It then reaches a maximum atr ) rM < σ1

+ σ2 and starts decreasing again as the ions move closer to
each other. In general, the force displays a second (positive or
negative) minimum at shorter distances. Depending on the
parameters, the force might show a second maximum as the
distance decreases even further. The force vanishes atr ) 0, as
expected. For small values ofê1 and ê2, the liquid becomes
more uniform, although the minimum atrm and the maximum
at rM can still be identified. These observations suggest that
the forces associated with the desolvation barriers and the
solvent-separated minima of interionic potentials of mean force
(PMF)91-93 can be reproduced with a suitable choice ofσ’s and
ê’s. However, a complete representation of the effects of the
liquid structure on the PMF would require one to account
explicitly for the interactions between liquid molecules. The
approach developed here captures the effects that can be
embedded in an effective liquid-solute potential [cf. eq 11].

In section IV.2, an analysis of the liquid density as a function
of the interionic distance and the induced effects leading

dF(r , r ′) ) -∇rU(r , r ′)F(r ′)dV′ (16)

Fs,i(r ) ) ∫dF(r , r ′) ) -∫∇rVeff(|r - r ′|)F(r ′)dV′ (17)

Fs,2(r) ) 24πê2σ2
6 ∫

-∞

∞

∫
0

∞

F(η, z; r)
η(r - z)

[η2 + (r - z)2]4

{ σ2
6

[η2 + (r - z)2]3
- 1}dηdz (18)

Figure 3. Liquid-structure force (eq 18) (thick line; in kcal/mol/Å)
and associated potential (eq 19) (thin; in kcal/mol) for the Na+-Cl-

pair as a function of the interionic distance. The relative positions of
the solvation spheres of the ions are shown schematically to scale.

φs,2(r) ) -∫
∞

r

Fs,2(r)dr (19)
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to the modulation of the liquid-structure force shown in Figure
3 will be presented.

IV. Molecular Solutes

The model presented in section II and solved numerically in
section III for the specific case of ions and ion pairs can be
applied to molecular solutes as well. Computationally efficient
grid-based methods can be used to integrate eqs 6, 12, and 17
in arbitrary geometries. However, simplifications are still needed
because the computational task may be too demanding in
simulations of macromolecules or other biological applications.
Such simplifications are presented in this section.

The total noncovalent force,Fi, on an atom i of a molecule
is divided into four terms

whereFc,i andFvdW,i are the total bare Coulomb and van der
Waals forces on atomi due to all other atoms of the solute,
respectively.Fe,i is the total electrostatic force exerted by the
essentially structureless liquid of the bulk phase, andFs,i is the
total force exerted by the structured liquid surrounding the
molecule. A simplified, pairwise model forFe,i has been
reported,94 and a summary is given below for completeness;
the connection with the electrostatic model introduced in section
II will be discussed. A simplified, non-pairwise model ofFs,i

will be derived and discussed in detail in the following sections.
IV.1. Bulk Electrostatic Forces. A continuum model of

solvent electrostatic effects based on a uniform version of eq 6
has been reported.44,45 The model is based on a superposition
of screened Coulomb potentials (SCP) and describes the
interaction (∆Aint) and the self-energy (∆Aself) terms of the
hydration energy of a molecule. To obtain expressions for these
terms in molecular solutes, the hydration energies of one charge
and of two interacting charges were first analyzed. The insight
from these studies provided the basis to derive an expression
for the hydration energy ofN interacting charges. These steps
have been discussed in previous publications,44,45,83 and a
summary is given below.

IV.1.1. Single Charge Q.In this case, the electric potential
in a polar/polarizable liquid is given byφ(r) ) φ0(r)/D(r) where
φ0(r) is the potential in the vacuum at a distancer from the
charge. The scalar functionD(r) is the screening function, which
is related toε(r) through the definition of electric potential,E(r )
) -∇φ(r ). For a point charge, the relationship between both
quantities is95 ε ) D/[1 + (r/D)dD/dr]. This equation can be
solved forD(r) once the dielectric permittivityε(r) is known
from experimental data or from theoretical considerations.44,45

In the existing SCP model,ε(r) is given by eq 6 in ref 44, which
is based on the LDS theory. If the liquid density is not uniform,
eq 6 should be used instead (this case will not be addressed
here). The hydration energy of the charge is given by eq 13,

whereRB is the Born radius discussed in section III.2.1, which
includes the saturation effect of the field. In this form,∆Aself

can be evaluated with little computational cost provided that
the functional form ofD(r) is known and a prescription to
determineRB is given. A sigmoidal function ofD(r) that
reproducesε(r) in polar/polarizable liquids has been reported58,96

and discussed.44,45This function depends on a single parameter

λ that controls the rate of increase ofD(r) with the distance to
the charge.45 In the SCP model, the single parameterλ embeds
the physical quantities of the system contained in the uniform
version of eq 6:ε0, ε∞, T, R, µ, V, andQ. The assignment of
RB follows the same idea discussed in section II for ionic
sources, that is, a charge radiusRQ plus an extensionδ (RB )
RQ + δ).

IV.1.2. Two Interacting Charges Q1 and Q2. For two charges
in a polar/polarizable liquid, the expressions for the interaction
energy and the self-energy terms of eq 15 are

wherei ) 1 or 2, andD(r) in eq 22a differs quantitatively from
those in eq 22b but has the same sigmoidal behavior discussed
above for a single charge.45 The screening functions in the self-
energies are the same as those in eq 21, so the hydration energy
of each charge is recovered asr f ∞. The dependence of∆Aself,i

with r is introduced through the effective Born radiusRB,i(r) as
a linear combination of two Born radii44,94

whereR1B and R2B are the Born radiiRB of eq 21 for each
charge;ê12 and ê21 are the fractions of the solvent-accessible
surface area of Q1 and Q2, respectively. The factors 1- ê12

and 1- ê21 are the fractions of the solvent-excluded surface
area of each charge. The quantityR12 accounts for the effects
on Q1 of the absence of polarizable medium in the region
occupied by Q2; R21 accounts for the same effect on Q2 due to
the presence of Q1. The linear combination of eq 23a,b is the
simplest way to account for the dependence of∆Aself,i(r) versus
r [cf. eq 22b] observed in the exact numerical solutions plotted
in Figure 2B. The radiiR12 andR21 control the hydration energy
of the pair at short interparticle distances, and Figure 2B suggests
that R12 > R1w andR21 > R2w. Therefore, in analogy withR1B

andR2B, these Born radii are given byR12 ) R1w + δ12 andR21

) R2w + δ21 (with δ > 0 in both cases44). This model reproduces
the qualitative behavior of the self-energies [cf. Figure 2B] and
the interaction term [cf. Figure 2A]. Quantitative agreement is
attained with a suitable choice of parametersλ’s, δ12, andδ21;
the fractionsê12 andê21 can be calculated analytically.44,94

IV.1.3. N Interacting Charges{Qi}i ) 1,N. For a molecular
solute composed ofN atoms, eq 22a,b can be generalized as44

whereD is the screening functions of the fully hydrated solute
[the same as in eq 22], andD′ is the screening functions of the
gas-phase solute. In general,D′ > 1 since a molecule in vacuum
is itself a dielectric medium (ifD′ ) 1, eq 24 is a trivial
generalization of eq 22). Models have been proposed that

∆Aint(r) )
Q1Q2

r [ 1
D(r)

- 1] (22a)

∆Aself,i(r) ) 1
2

Qi
2

RB,i(r) [ 1
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- 1] (22b)

RB,1(r) ) R1Bê12(r) + R12[1 - ê12(r)] (23a)
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represent a molecule in vacuum as a dielectric composed of
charges and polar/polarizable dipoles.97,98 These models are
based on the theory of dielectric media discussed in section II
and, thus, have a direct relation with the model introduced in
this paper. A connection between the electron structure of a
molecule and the screening functions in solution has also been
discussed.45 In the SCP continuum model,RB,i is given by a
generalization94 of eq 23, which accounts for theN - 1 atoms
surrounding atom i;RB,i′ is obtained as a particular case.44 For
molecular solutes, the equivalent toRI or RQ is the covalent
radius,RC, of the atom in the molecule.44 The total free energy
of hydration of the molecule is given by eq 14. The nonpolar
term scales roughly as the solvent-accessible surface area
(SASA) of the molecule (i.e.,∆Gnp ) a + b SASA, wherea
andb are constants).

From eq 24, the total electrostatic energyET of the hydrated
molecule is given by44

As defined in eq 20, the electrostatic component of the solvent
force on an atomi of the solute is then calculated asFe,i )
-∇ET - Fc,i. A general expression has been derived in ref 94
and is given by

with the interaction and self-energy components given by

wherer ij ) r i - r j andr ij ≡ |r ij|. Equations 25-27 have been
implemented into the CHARMM molecular dynamics pro-
gram.99 In combination with an empirical correction for H-bond
interactions in solution100 (see section IV.2.4), these equations
define the SCP-based implicit solvent model (SCP-ISM). The
model has been parametrized for peptides and proteins and used
in previous studies, including structure calculations and dynamic
simulations.83,94,101,102

IV.2. Liquid-Structure Forces. To derive a computationally
efficient model forFs,i, a strategy similar to the one summarized
above forFe,i is followed.

IV.2.1. Two Interacting Charges Q1 and Q2. To gain insight
into the dependence ofFs,2(r) on r shown in Figure 3, the
integrand of eq 17 is analyzed. A force density function
F (η, z; r) for a fixed r can be defined from eq 17 asFs,2(r) )
∫∫F (η, z; r)dηdz. Figure 4 shows a gray-scale plot of
F (η, z; r) on a plane containing the pair of ions Na+-Cl- at
three representative interionic distances, 2, 5, and 7 Å; the black
represents regions of the liquid eliciting repulsive interionic
forces (Fs,2> 0), while the white shows the regions of attractive
forces. An isolated ion (r f ∞; left panel in Figure 5) is
surrounded by four distinct regions, generating forces that
exactly cancel each other in equilibrium (Fs,2) 0). This follows
from the functional form ofVeff after recognizing that a liquid

molecule located at a distancer′ < σ from the center of the ion
repels the ion, while a molecule atr′ > σ attracts the ion. As
the distance between the two ions decreases, the balance of
forces on the ions breaks down due to the spatial distortion of
F(r ) (along thez-axis): At r ) 7 Å (Figure 4A), the distortion
of the density in the attractive and repulsive regions is such
that overall attraction is favored (a in Figure 3). This net at-
tractive force originates mainly in a higher liquid density de-
veloped in the attractive region between the ions, relative to
that in the repulsive region. It can be shown that forr > σ1 +
σ2, there are two peaks ofF(r ) on thez-axis and in the attractive
region between the ions. The positions of the peaks and their
densities depend on the value of theσ’s and ê’s assigned to
both ions. As the ions approach each other so do the density
peaks, and they finally coalesce when the solvation spheres start
overlapping atr ∼ σ1 + σ2 (5.6 Å in this case; b in Figure 3).
These density peaks will play a central role in the model of
liquid-structure forces in molecular solutes developed in section
IV.2.2.2. Forr < σ1 + σ2, the local maxima of the density be-
tween the ions disappear, becoming a continuum of saddle points
corresponding to the intersection line of the solvation spheres.
At r ) 5 Å (Figure 4B), the density in the attractive region be-
tween the ions has been removed away from thez-axis, leaving
an unbalanced repulsive force (c in Figure 3). Atr ) 2 Å (Figure
4C), high liquid density begins to develop in the attractive region
at the left of ion 1, while the density in the repulsive region
between the ions has been completely removed; thus, an
attractive net force results (d in Figure 3). Spherical symmetry
is regained atr ) 0 (Fs,2 ) 0), but with the density distribution
controlled by both ions.

Figure 4. Gray-scale representation of the liquid-structure force density
functionF(η, z; r) (integrand of eq 18) for Na+-Cl-, as a function of
the interionic distance. Black: regions of the liquid inducing a repulsive
force between the ions. White: regions inducing an attractive force
between the ions. (A) Attraction is favored at large interionic distances
due to a high density being developed in the attractive region between
the ions (vertical arrow). (B) Density in the attractive region between
the ions is increasingly removed as the solvation spheres begin to
overlap (arrows); thus, an unbalanced repulsive force results. (C)
Density in both the attractive and the repulsive regions between the
ions is largely removed at small interionic separation, but higher density
starts developing in the attractive region at the left of Na+ (arrow);
thus, attraction is favored. For Na+-Cl-, σ1 + σ2 ) 5.6 Å. This
behavior explains the modulation of the force plotted in Figure 3. Ionic
radii are shown in scale as dashed circles.

Figure 5. (A) Schematic representation of the regions defining the
double-shell model of liquid-structure forces for ion pairs atr < σ1 +
σ2. (B) Gray-scale representation of the liquid-structure force density
function,F(η, z), for an isolated ion; white/black: regions of the liquid
inducing forces in the-z/+z direction on the central ion.
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The main characteristics ofFs,2(r) versusr, plotted in Figure
3, are preserved if the domain of the integral in eq 17 is restricted
to regions whereF > Fth, with Fth > 1 being an arbitrary
threshold. AsFth increases,|Fs,2(r)| becomes smaller for allr,
as expected, but both the minimum atrm and the maximum at
rM remain well defined. This suggests that the modulation of
Fs,2(r) versus r originates mainly in regions of high liquid
density. Because of the functional form ofVeff [cf. eq 11], these
regions are located near the solute and provide the short-range
character of the liquid-structure forces. If the regions of high
density are identified, the integration domain in eq 17 shrinks,
and the calculation of the force becomes computationally
tractable, even in complex solutes. These observations and the
analysis of the force density,F(η, z; r), discussed above suggest
a simple model for liquid-structure forces in a system composed
of two charges. In this model, the total forceFs,i on an ion will
be associated only with the peaks (forr > σ1 + σ2) and to the
continuous region of stationary points around the ions (forr <
σ1 + σ2). The forces exerted by the peaks will be discussed in
the more general case of molecular solutes (section IV.2.2
below); so, the focus here is only on the forces exerted by the
high-density regions atr < σ1 + σ2. These regions are unique
to the cylindrical symmetry of an ion pair and are generally
not present in molecules. For completeness, however, a model
is derived here to account for such effects. This model will play
a central role when explicit ions are included as part of the
molecular solute (e.g., as counterions) in dynamic simulations
using a continuum solvent model (to be reported).

To derive a model ofFs,i for r < σ1 + σ2, the solvent
surrounding ion 2 is divided into the regions shown in Figure
5A. This partition is suggested by the force density distribution,
F(η, z), on an isolated ion shown in Figure 5B and by the
behavior ofF(η, z; r) discussed in section III.2.4 and illustrated
in Figure 4, on ion pairs. An external shell of thicknessde is
formed by two hemispherical shells;Ve

+ exerts a repulsive force,
andVe

- exerts an attractive force. Similarly, the internal shell
of thicknessdi is formed by the hemispherical shellsVi

+ and
Vi

- (the index e/i indicates external/internal shell, while the signs
+/- indicate the direction of the induced force on thez-axis,
that is, repulsive/attractive). In the discussion belowVe

+, Ve
-,

Vi
+, and Vi

- will denote not only the corresponding regions
but also their volumes. If ion 1 is centered atr ) 0 and the
center of ion 2 is moved fromr ) 0 in the +z direction, the
volumesVe

- andVi
+ change according to the extent of overlap

of the solvation spheres (of radiiσ1 andσ2). These overlapping
regions are labeled Ve and Vi. If λe > 0 and λi > 0 are
parameters representing the force per unit volume exerted by
each shell, then

where the explicit dependence onr was indicated inVe
-(r) and

Vi
+(r). Since the volumes of the hemispherical shells areVe

+

) Ve + Ve
- andVi

- ) Vi + Vi
+, the force is given by

where the volumesVe(r) and Vi(r) can be calculated as the
difference of two volumes,Ve(r) ) V1e(r) - V12(r) andVi(r) )
V12(r) - V1i(r), whereV1e(r) is the volume of the region defined
by the intersection of the solvation sphere of ion 1 and the sphere
defined by the outermost surface of the external shell around
ion 2 (of radiusσ2 + de). V12(r) is the overlapping volume of
the solvation spheres of ion 1 and ion 2, andV1i(r) is the
overlapping volume of the solvation sphere of ion 1 and the

sphere defined by the innermost surface of the internal shell
around ion 2 (of radiusσ2 - di). These volumes can then be
written as

where the indexl is e, 2, or i,V1 ) 4πσ1
2/3, andθ(x) is the

Heaviside function defining the values ofr for which overlap
between the spheres exist. The functionsx1l andy1l are given
by x1l ) (r1 + r2) - r andy1l ) r - (r2 - r1), with r1 ) σ1 and
r2 ) σ2 + de (for l ) e), r2 ) σ2 (l ) 2), andr2 ) σ2 - di

(l ) i). The volumes Ṽ1l of the overlapping spheres are
continuous functions ofr given by 3Ṽ1l(r) ) πa2(3r2 - a) +
πb2(3r1 - b) [i.e., the overlapping volume of two spheres of
radii r1 andr2 with center-to-center distancer (see inset of Figure
5)]; the distancesa and b are given bya ) r2 - (r2 + r2

2 -
r1

2)/2r andb ) r1 - (r2 + r1
2 - r2

2)/2r, with r1 andr2 defined as
in x1l andy1l. Introducing these expressions into eq 29 yields
Fs,2(r) as a continuous function ofr that can be evaluated rapidly.
The precise form ofFs,2(r) depends on the values of the force
density parametersλe andλi, and the thicknesses,de anddi, of
the outer and inner shells, respectively. Figure 6 showsFs,2(r)
for two arbitrary sets of parameters (withλe < λi andde > di),
which can be compared to the plot in Figure 3. The minimum
at rm is due to the forces exerted by the peaks atr > σ1 + σ2,
which are not discussed in this section (see section IV.2.4). The
overall shape of the curve is reproduced but with 4 orders of
magnitude faster computation than the numerical integration of
eq 17. These practical considerations justify introducing the set
of four parameters (λe, λi, de, and di) in the model. These
parameters control the location (rR), the height (∆FR), and the
width (∆rR) of the repulsive force (the precise form ofFs,2 at a
short interionic distance is of no practical interest because of
the interionic core repulsion). The basis of this model is the
competition of forces exerted by the four hemispherical shells
around the ions. The strengths of the forces exerted by each
shell and the regions where each shell operates are controlled
by λ andd, respectively.

IV.2.2. N Interacting Charges{Qi}i)1,N. In analogy with the
case of ions, two kinds of systems will be considered, (1) single
amino acids and (2) amino acid dimers. Single amino acids are
used to gain insight into the structure of the surrounding liquid;
amino acid dimers are used to investigate the restructuring of
the liquid upon dimer dissociation and its effects on the
intermolecular forces.

IV.2.2.1. Single Amino Acids.The focus of this section is on
the forces induced by the structure of the liquid surrounding

Figure 6. Liquid-structure force between two ions atr < σ1 + σ2,
calculated with the double-shell model (eq 29) as a function of the
interionic distance (force in kcal/mol/Å). The parameters of the model
control the height (∆FM), width (∆rM), and location of the maximum
(rM) of the repulsive force (the two plots are for different sets of
parameters).

V1l(r) ) Ṽ1l(r)θ(x1l)θ(y1l) + V1θ(-y1l) (30)

Fs,2(r) ) λeVe
+ - λiVi

- + λiVi
+ (r) - λeVe

- (r) (28)

Fs,2(r) ) λeVe(r) - λiVi(r) (29)
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polar and charged groups. For these groups, the barometric law
of eq 10 is expected to be a better approximation than for groups
interacting more weakly with the solvent. In the case of nonpolar
solutes, a more explicit treatment ofc(2) in eq 9 is needed
because the effects related to liquid-liquid interactions may
not be properly captured in an effective liquid-solute potential.
Formally, however, the treatment of liquid-structure forces
described in this paper is general and can be applied to polar
and nonpolar solutes, provided that a suitable density function
F(r ) is available.

Experimental information on the structure of liquids can be
obtained from radial distribution functions, for which X-ray or
neutron scattering methods are commonly used. Because of the
practical difficulties, however, experimental studies have been
limited mainly to pure liquids or relatively small solutes (e.g.,
ions). Computer simulations can overcome these difficulties and
provide a great deal of information on the physics of hydration.
Despite their obvious limitations, computational methods have
a unique advantage over experimental techniques in that the
microscopic structure of the liquid around the solutes, its spatial
restructuring upon changes of a solute conformation, and the
forces elicited by the liquid can be studied in atomistic detail.
Molecular dynamics (MD) simulations are used here to elucidate
the structure of water surrounding single polar/charged amino
acid side chains. The computational setup of the simulations is
the same as described in ref 90. A classical, nonpolarizable,
rigid three-point water model has been used to represent the
liquid. The MD simulations were carried out at a temperature
of 25 °C; the volume and number of water molecules in
the simulation box were kept constant, with a density
F0 ≈ 0.03325 Å-3 (corresponding to∼0.993 g/cm3). Four
charged (Arg+, Lys+, His+, and Asp-) and four polar, net-
neutral (His, Asn, Tyr, Ser) amino acids were modeled as
described.90 Spatial distribution functionsg(r ) ) F0

-1F(r ) )
F0

-1δN(r )δV-1 were calculated for each solute, whereδN(r ) is
the average number of water molecules within an element of
volume δV located at position r , given by δN(r ) )
τ-1∫N(r , t)dt, with N(r , t) ) ∑ δ(r - r i(t)), and the sum runs
over all of the water molecules;δ(x) is 1 for x ) 0 (i.e., if the
oxygen atom of water i is withinδV at timet) and 0 otherwise;
τ is the total simulation time, which is long enough to ensure
convergence of the distribution functions. The positions of the
peaks ofF(r ) around each molecule were calculated as described
in ref 19. The focus here is only on the first peaks, defined as
the set of points{r f}f)1,n, consistent with direct H-bond
interactions with polar protons or acceptor atoms of the solute’s
functional group.19 The set of values ofg(r ) at the positions of
the peaks are denoted by{gf}f)1,n, with gf ≡ g(r f).

The positions of the peaks around each molecule are shown
in Figure 7 (red dots). The peaks distributions can be understood
in terms of the spatial symmetry of the functional groups. For
Arg+ (A), they appear in the plane of the ring, near the hydrogen
atoms, in the direction of the N-H bonds (2.8< gf < 3.4). In
Lys+ (B), the peaks are in a tetrahedral arrangement with respect
to the central nitrogen (2.8< gf < 3.3). In His+ (C), the peaks
are in the plane of the ring (gf of 2.8 and 3.7); in both cases,
the peaks appear in the direction of the N-H bonds. In
Asp- (D), three peaks are located in a tetrahedral arrangement
around each of the oxygen atom in the-COO- group; an
additional peak is shared by both oxygen atoms (1.9< gf <
3.4). For the polar amino acids, the values ofgf are, in general,
smaller than those for charged molecules. In Asn (H) three peaks
are located around the oxygen atom, with a tetrahedral arrange-
ment similar to those around the oxygen atoms in Asp-. Two

other peaks are observed near the protons in the direction of
each N-H bonds (1.7< gf < 2.6). The removal of a proton in
His+ causes one of the peaks to split into two of lower densities,
one at each side of the His0 (G) ring (1.8 < gf < 2.5). The
positions of the peaks in Tyr (F) and Ser (E) are similar, as
expected from the geometry of their functional groups (the
double bond character of the-CO- bond in Tyr has no direct
effect on the results of the classical simulations). In both cases,
two peaks are observed close to the oxygen atom, and a third
peak is bonded to the polar proton in the direction of the O-H
bond. For both molecules, 1.8< gf < 3.6, where the larger
value corresponds to the peak close to the proton. The peak
distributions are elicited by the geometry of the side chains only
and contain no information on the quantum mechanical nature
of the solute or water molecules.

Parametrization. The densities and positions of the peaks
identified above are used to optimize the solute-liquid potential
Veff(r ) of eq 11. In principle, each atomi of the solute can be
assigned a parameter,êi and σi, to be optimized. Here, this
general optimization is simplified by defining a subset of atom
types: polar hydrogen (êH and σH) and acceptor (êA and σA)
atoms in neutral functional groups, polar hydrogen (êH′ andσH′)
and acceptor (êA′ andσA′) atoms in charged functional groups,
and all other atoms (ê0 andσ0). With this definition, there are
four or six parameters per molecule, depending on the amino

Figure 7. Peaks of liquid density surrounding charged and net-neutral
polar amino acids. Red dots: first peaks calculated from a time average
of water dynamics in an atomistic simulation of the liquid. White
dots: peaks calculated numerically from the liquid densityF(r ) (eq
10) with an optimized effective solute-liquid interaction potentialVeff

(eq 11).
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acid type. The optimization then consists of finding the values
of theê’s andσ’s that reproduced the positions{r f} and densities
{gf} of the peaks obtained from the MD simulation. The solute-
liquid interaction potential is optimized for each molecule
separately. The optimization is carried out using simulated
annealing Monte Carlo in the space of the parameters.103 A
function S is defined as

whererp andgp are the position and density of a peak ofF(r )
calculated from eq 13, using the potentialVeff(r ) of eq 16, which
contains the set{ê, σ} to be optimized. The peaks are formally
defined as the set ofm points{rp}p)1,m, whereF(r ) has local
maxima. The basic assumption is that the static number density
F(r ) defined in eq 11 can be equated to the number density
δN(r )/δV obtained as a time average from the liquid dynamics.
The functionS is minimized using a Boltzmann-like factor,
exp(-S/T), with the dimensionless variableT decreasing in a
logarithmic schedule. Trial moves are accepted or rejected
according to a Metropolis criterion.104 For arbitrary values of
{ê, σ}, the number,m, of peaks ofF(r ) is, in general, different
than n, so the following criterion is used. Ifm > n in a trial
move, the subset ofn peaks used in eq 31 is that which
minimizes the distance defined by the square root of the first
sum in eq 31; ifm < n, then the trial move is rejected. To
identify a peak ofF(r ), a two-step focusing protocol is used for
computational efficiency. Thus, spherical grids of radiirg and
cell size (∆r, ∆θ, ∆φ) (in spherical coordinates) centered at
each of the polar hydrogen and acceptor atoms of the solute
are defined. Local maxima ofg(r ) are found within each grid
by directly comparing the value ofg(r ijk) at a point (i, j, k)≡
(ri, θj, φk) of the grid with the values ofg(r i′,j′,k′) at each of the
26 neighboring points (i′, j′, k′) ) (i ( a, j ( b, k ( c), with
a, b, c equal to-1, 0, +1 (not all 0). A local maximum at (i,
j, k) is defined by the conditiong(r ijk) > g(r i′,j′,k′) for all (i′j′k′).
Once a maximum ofg(r ) is found atr ijk in this grid, a new
fine-grained homogeneous grid of cells size (∆r′, ∆θ′, ∆φ′) is
built aroundr ijk, with ri-1 < r < ri+1, θj-1 < θ < θj+1, and
φk-1 < φ < φk+1. A search of a local maximum at each point
(i, j, k) in this new grid is repeated as before. Once a new
maximum is found at a pointr ijk in the finer grid, the peak is
defined by its coordinatesrp ≡ r ijk and its densitygp ≡ g(r ijk);
these are the values used in eq 31. The uncertainty in the
locations of the peaks calculated from the MD simulations is
0.65 Å (see ref 19 for details), while the partitions of the
spherical grids are chosen such that the uncertainty in the
location of a peak is 0.05 Å or less. If two peaks at positions
rp′ and rp′′ are separated by a distance|rp′ - rp′′| < 1.38 Å,
then they are replaced by a single peak located atrp ) (gp′rp′
+ gp′′rp′′)/(gp′ + gp′′), with densitygp ) (gp′ + gp′′)/2.

Figure 7 shows the location of the peaks after optimization
of the potentialVeff (white dots). In all cases, the distributions
of {rp} closely follow those of{r f}, although some deviations
are observed in Asp- (in particular, the distances of{rp} to the
oxygen atoms in the-COO- group tend to be shorter than those
for {r f}). These deviations are not surprising since, for Asp-,
28 scalar quantities are optimized with only 4 parameters.
Additional peaks may also appear in some cases. In His+, two
more peaks are observed at each side of the ring’s plane on a
line passing through the ring’s geometric center; a similar peak
is observed at one side of the ring in Arg+. The root-mean-
square deviation (rmsd) of{rp} with respect to{r f}, averaged

over the eight molecules, is 0.8 Å. The values of{gp} are also
well reproduced, yielding an average rmsd with respect to{gf}
of 0.4. These results show that a barometric law with an
optimized Lennard-Jones-type potential,Veff(r ), yields satisfac-
tory results despite the relatively small set of parameters used.

IV.2.2.2. Amino Acid Pairs.A systematic study of the
intermolecular H-bond interactions between polar/charged amino
acid side chain dimers in pure water has been reported.90 Those
simulations were aimed at (i) quantifying the strength of the
interactions in solution and obtaining information on the minima
and barriers of the intermolecular potentials of mean force
(PMF),φ(r), and (ii) understanding the structural and dynamical
properties of the liquid surrounding the solutes and the molecular
origin of the forces exerted by the liquid. Point (i) was reported
in ref 90 where detailed information on the PMF, a quantity
which is not accessible experimentally, was obtained. Tech-
niques are currently being developed to experimentally explore
the energy landscapes of molecules in solution and provide more
direct information on the PMF.105-107 Point (ii) was partially
addressed in ref 19, a study that provided insight into the liquid
structure and its effects on the intermolecular interactions. The
theoretical model presented in this paper is based on the
observations reported in refs 19 and 90, which can be viewed
as the experimental component of this work.

The PMF of a dimer is characterized by the positions of the
contact minimum,rcm, the desolvation barrier or transition state,
rts, and the solvent-separated minimum,rss, along with the
corresponding values of the potentials, that is,φcm ≡ φ(rcm),
φts ≡ φ(rts), andφss≡ φ(rss). A simplified yet complete solvent
model requires these minima and barriers to be accounted for.
The minima and the desolvation barriers are determined not
only by the electrostatic forces exerted by the bulk liquid but
also by the SIF originating in the microscopic nature of the
solvent. The SCP-ISM, which is based on the SCP continuum
electrostatics model reviewed in section IV.1, empirically100

accounts for the values ofφcm obtained in atomistic dynamic
simulations of the liquid.90 This empiricism is needed because,
if the correct value ofφcm is sought and only an electrostatic
model is used, the correction for the missing SIF effects on
φcm must be incorporated in some way. Some of the problems
observed in macromolecular simulations seem to stem from a
failure to appreciate this. Barriers and minima of intermolecular
potentials have been observed with a macroscopic electrostatic
model and a suitable choice of the solute/solvent dielectric
interface.108 In the SCP-ISM, the correction is made by
adjusting the Born radii [cf. eq 23] of protons shared by the
donor and the acceptor atoms in hydrogen bonds. This empirical
correction also reproduces barriers and additional minima that
are qualitatively similar to the desolvation barriers and solvent-
separated minima of the PMF (not shown). However, such
additional modulation is a byproduct of the approach employed
to control the values ofφcm at rcm. A physically complete solvent
model should account explicitly for the SIF responsible for the
form of the PMF; in such a case, the empiricism discussed above
can be removed.

In analogy with the case of ion pairs, the liquid-structure
forces are here assumed to originate mainly in regions of high
liquid density. In molecular solutes of arbitrary shape, such
regions correspond to peaks located in the vicinity of the
molecule. In this case, the liquid-structure force,Fs,i, associated
with the peaks is responsible for the non-pairwise additivity of
the liquid forces and is discussed in detail in this section. From
eq 17,Fs,i can be written as

S2({ε, σ}) ) Å-2 ∑
f ) 1

n

|rp - r f|2 + ∑
f ) 1

n

|gp - gf|2 (31)
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where r is the position of atom i in the solute,n is the total
number of peaks in the liquid, andN(r j) is the number of water
molecules at the positionr j of the j-th peak. The number of
water molecules atr j is N(r j) ) V(r j)F(r j), whereF(r j) is the
density at the peak [cf. eq 10], andV(r j) is a local volume which
accounts for the spatial extent of the peak in the three-
dimensional space. Accounting forV(r j) is conceptually neces-
sary because the value of the density at a peak carries no
information on the density distribution around the peak; two
points of equal density might be surrounded by a different
amount of liquid, owing to different packing of the solute atoms
around each point. This information is automatically captured
when the integral in eq 17 is carried out over the space but is
removed when the integral is replaced by the sum over peaks
in eq 32. To account for molecular packing in a computationally
efficient way, a contact model, akin to that used in ref 94, may
prove useful. For simplicity, the position dependence of the
volume will be ignored, andV(r j) ) V for all peaks. A
correction,δFs,i, will be added later [cf. eq 34] to partially
compensate for this approximation. Regardless of the functional
form of V(r j), the total forceFs ) ∑ Fs,i and torqueτ ) ∑r i ×
Fs,i exerted by each peak is zero in equilibrium because the
gradient of the potential at the position of the peaks is zero by
definition.

Introducing eq 11 into eq 32, the total force exerted by the
peaks on atom i of the solute is given by

There is no conceptual need to restrict the summation in eq 33
to peaks located around polar and charged groups because eq
17 is general. However, as discussed in section IV.2.3, possible
limitations arise from the barometric law and the effective
potentialVeff. For nonpolar solutes, the force,Fs,i, calculated
from eq 32 is strictly zero, but it is different than zero if eq 17
is integrated numerically. Therefore, a nonpolar force,Fnp,i )
-∇∆Gnp, is added toFs,i of eq 32 as a correction term [cf.
section IV.1] to represent the forces in the limit of nonpolar
solutes. For nonpolar solutes,Fnp,i is the only contribution to
the total SIF (the simplest approximation to hydrophobic forces
commonly used in molecular simulations). For polar and charged
solutes, bothFnp,i andFs,i contribute to the total SIF. The force
given by eq 32 can be viewed as originating in the structure of
the liquid, induced in the presence of polar and charged groups.
If a more sophisticated treatment ofc(2) in eq 9 was available,
eq 32 could be extended to include all of the peaks surrounding
the solute. Then, the forceFnp,i would be included in the total
SIF, and there would be no need to resort to the empirical term
∆Gnp to represent such forces.

The intermolecular force and associated potential can now
be calculated for the amino acid dimers studied in ref 90. The
values of theê’s and σ’s obtained for single amino acids are
transferred to the case of the dimers. For illustration purpose,
V ) 1 Å3, but, in general, it should be considered a parameter
of the model, as discussed below. For the purpose of discussion,
only one representative dimer (Asp--Arg+) is considered here;
a detailed analysis of all of the dimers studied in ref 90 will be
reported elsewhere. The initial setup of the dimer conformation
and the protocol for the calculation of forces and potentials are

as described90 (except for the distance step, which is set here
to ∆r ) 0.02 Å).

The restructuring of the liquid as the dimer dissociates from
close contact is illustrated in Figure 8. The peaks ofF(r ) are
shown for representative intermolecular distances. The redis-
tribution of peaks closely follows the changes observed in the
dynamics simulations.19 Figure 9A shows the componentFs(r)
≡ Fs(r)‚R̂ (thin line) and the associated potentialφs(r) (thick
line) for the dimer.R̂ is a unit vector in the direction of the
line connecting the centers-of-mass of the two monomers. The
valuer is the proton-acceptor distance, and the intermolecular
force is calculated as in ref 90:Fs(r) ) [Fs,A(r) - Fs,D(r)]/2,

Figure 8. Restructuring of the liquid as the Asp--Arg+ dimer
dissociates from close contact. The density peaks’ redistribution is
shown for representative proton-acceptor distances (in Å): (A)r )
1.8; (B) r ) 3.2; (C) r ) 4.6; the arrow indicates a peak H-bonded to
the proton and acceptor atom simultaneously; (D)r ) 7; the shared
peak in (C) splits into two peaks marked with arrows. The peaks are
calculated numerically as the set of local maxima ofF(r ) (eq 10)
surrounding polar protons and acceptor atoms. This is to be compared
with the peaks’ redistribution calculated from the dynamics simulations
reported in ref 19.

Fs,i(r ) ) - ∑
j ) 1

n

∇rVeff(|r - r j|)N(r j) (32)

Fs,i(r ) ) 12Vêiσi
6 ∑

j ) 1

n

F(r j)
(r - r j)

|r - r j|8 ( σi
6

|r - r j|6
- 1) (33)
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whereFs,A andFs,D are the total force on the acceptor and donor
monomer, respectively, evaluated at their centers-of-mass. The
total force on a monomer is obtained from the summation of
Fs,i of eq 33 over all atoms i of the monomer.Fs(r) < 0 implies
attraction between the monomers. The peaks associated with
the long-range attractive force are marked with arrows in Figure
8D. These peaks merge atr ) rm, yielding only one peak located
between the proton and the acceptor, which is marked with an
arrow in Figure 8C. The location of this peak is consistent with
water molecules bridging the proton and the acceptor atom
through H-bonds, as discussed,19 and is responsible for the
minimum ofFs(r) at r ) rm. The effect of these peaks is identical
to the effects of those discussed qualitatively in section III for
the case of ion pairs atr > σ1 + σ2 [cf. Figure 3]. In that case,
these peaks produce the long-range attraction between the ions
and are associated with the minimum ofFs(r) at rm in Figure 3.
Dynamics simulations show that new peaks appear between the
monomers as they dissociate beyond the solvent-separated
minimum distance, which further modulates the intermolecular
potential.19 The model developed here does not account for
liquid-liquid interactions, and thus, no new maxima and minima
exist forr > rm associated with the interactions between peaks.

Figure 9A also shows a maximum ofFs(r) at r ) rM. This
maximum is similar to that in Figure 3 for the case of ion pairs.
As discussed above,Fs(r) at rM contains only the information
embedded in the density at the positions of the peaks, not in
the amount of liquid surrounding the peaks. When the polar
proton and the acceptor atom of the dimer separate from each
other, it creates a situation qualitatively similar to that in Figure
4 for two ions. In an ion pair, the peaks that exist atr > σ1 +

σ2 are replaced by a continuum of saddle points atr < σ1 +
σ2. A molecular solute lacks the symmetry of the ion pair;
therefore, the peaks that exist atr > σH′ + σA′ in the dimer do
not completely disappear atr < σH′ + σA′. However, the spatial
extent of the peaks atr < σH′ + σA′ still generates a repulsive
force that complements the repulsive force calculated from the
peaks densities. A formal way of taking these effects into
account is through a suitable treatment of the local volumeV(r j).
This problem is simplified here, and a correction,δFs,i, to Fs,i

is introduced, which enhances the repulsive forces aroundr )
rM in a computationally efficient way. This correction is based
on eq 29 and applies only to acceptor atoms entering the
solvation sphere of a polar proton. Therefore, the liquid-structure
force on atomi is composed of non-pairwise contributions,Fs,i,
generated by the density peaks and given by eq 33 and of proton-
acceptor pairwise contributions,δFs,i, given by eq 29. Ifi is an
acceptor andj is a polar proton, eq 29 yields

where r ij ) r i - r j and r ij ≡| r ij|; λe, λi, de, and di are the
parameters fori; NH is the total number of polar protons in the
solute; and the force on a protonj is given by eq 34 after
changingr ij to -r ij and NH to NA (total number of acceptor
atoms). Figure 9B shows the correctionδFs(r) ≡ δFs(r)‚R̂ (thin
line) and the associated potentialδφs(r) (thick line) of the dimer.
As in Figure 9A,δFs(r) ) [δFs,A(r) - δFs,D(r)]/2, whereδFs,A

and δFs,D are the total force,δFs, on the acceptor and donor
monomer, respectively, evaluated at their centers-of-mass. The
most important feature displayed in Figure 9B is the added
repulsive force aroundr ) rM (parameters not optimized). This
force complements the repulsive force of the peaks in Figure
4A; the form of δFs(r) at small values ofr is of no practical
interest.

The total intermolecular force and associated potential can
now be calculated. The resulting force,Fi, on atomi is given
by eq 20. Fc,i and FvdW,i are calculated with the all-atom
representation109 of the CHARMM force field.99 Fe,i is given
by eq 26.Fs,i is given by eq 33; a nonpolar force correction,
Fnp,i, is added.δFs,i is given by eq 34. Figure 9C shows the
intermolecular potential calculated from the total forceF(r) )
Fc(r) + FvdW(r) + Fe(r) + Fs(r) (thick line) and the PMF
obtained from the MD simulations reported in ref 90 (thin).
The main features of the PMF can be reproduced within the
statistical errors, althoughrss is slightly shorter (∼4.1 vs∼4.6
Å). This is due to the small number of parameters used to
optimizeVeff(r ) for Asp-, which results in small deviations of
the positions of the peaks with respect to the results from the
simulation [cf.Figure 7].

V. Discussion and Conclusions

Molecular interactions in solution are controlled by bulk
electrostatic forces and by solvent-induced forces. A complete
description of solvent effects requires both to be accounted for.
Efforts in developing models for use in computer simulations
of macromolecules have focused almost exclusively on elec-
trostatic forces. In contrast, the forces exerted by the microscopic
nature of the structured solvent at the solute/liquid interface have
been traditionally neglected. In this paper, a model has been
developed to account for both effects, thus improving upon
continuum representations.

The model of electrostatics developed here was based on the
dielectric theory of polar and polarizable fluids. Both the

Figure 9. Forces and potentials for the Asp--Arg+ dimer. (A) Total,
non-pairwise intermolecular forceFs(r) (thick line) exerted by the peaks
of liquid density (eq 33) and associated potentialφs(r) (thin, as a
function of the proton-acceptor distance). The maximum repulsive and
attractive forces occur atr ) rM and r ) rm, respectively. The labels
A-D on the axis correspond to the distances in panels A-D of Figure
8. (B) Pairwise intermolecular correction forceδFs(r) (thick) (eq 34)
and potentialδφs(r) (thin). (C) Total intermolecular potential,φ(r),
calculated with the model developed in this paper (thick) and the total
PMF calculated from the molecular dynamics simulation reported in
ref 19 (thin). Error estimates from the simulations are shown at the
contact and solvent-separated minima and at the transition state. All
forces are in kcal/mol/Å; potentials in kcal/mol.

δFs,i ) ∑
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polarizability and the permanent dipole moment of the water
molecules were accounted for. The reaction field was explicitly
introduced into the internal and directing electric fields. The
model captures the saturation effects of the field and the spatial
dependence of the liquid density. The density was represented
by a barometric law with an effective Lennard-Jones-type
solute-liquid interaction potentialVeff. A closed equation for
the effective, position-dependent static dielectric permittivity,
ε, was derived for arbitrary solutes and solved numerically for
ions and ion pairs. Experimental free energies of hydration were
used to calibrate the ion-liquid interaction potential. The
potential thus derived was then used to calculate the free energy
of hydration of ion pairs as a function of the interionic distance.
The forces exerted by the structure of the liquid on ion pairs
were then calculated. The results showed that the forces
associated with the desolvation barriers and the solvent-separated
minima observed in interionic potentials of mean force can be
reproduced with a suitable choice of the effective potential
parameters.

The results summarized above were obtained by numerical
integration of eqs 6, 12, and 17. However, the numerical solution
of the forces may be too demanding in biological applications
of macromolecular simulations, and thus a simplified model for
bulk electrostatic and liquid-structure forces was proposed. The
electrostatic model has been developed previously, and its main
features were reviewed. The model for solvent-induced forces
was introduced here and analyzed in detail. The most important
characteristic of the model is its non-pairwise nature, typical
of the short-range liquid structure forces. The non-pairwise
additivity of the liquid forces arises from pairwise forces
between the solute and the peaks. The out-of-the-solute centers
then exert local forces and torques on the solute. The solute-
liquid interaction potential was optimized to provide a good
representation of the liquid structure surrounding single charged
and net-neutral polar amino acids. The model reproduces the
spatial distribution of peaks obtained from atomistic dynamics
simulations. Only peaks consistent with water molecules in
direct H-bond interactions with acceptor and donor groups were
considered. The fields created by these groups are strong enough
to control the structure and dynamics of the surrounding water.
Therefore, the effects of water-water correlations could be
neglected, to a reasonable extent, and their effect on the local
density could be captured in an effective water-solute interac-
tion potential. The model is not expected to provide a good
representation of liquid structure around nonpolar solutes, unless
a more explicit treatment of water-water correlation is intro-
duced. To partially compensate for this approximation in the
limit of nonpolar molecules, a force obtained from a nonpolar
solvation term was used.

Improvements of the model may follow two directions: to
account for dipole-dipole correlations in the calculation of the
electric polarization, hence, in the effective dielectric permittivity
of eq 6; and to account for water-water correlation in an
expression of the direct-pair correlation function, hence, in the
calculation of the liquid density of eq 9. A Kirkwood-Fröhlich
approximation29,110,111may be the first correction to the Onsager
model used here. The effects of dipole-dipole short-range
interactions in the saturation effects of the field have been
discussed.112-114 These corrections show that the onset of
saturation starts at smaller values of the electric fields.112 This
implies thatε reaches its bulk static value farther away from
the source when compared to results from the Onsager ap-
proximation. The structured liquid in the vicinity of a solute
may reinforce such effects. This illustrates a more general

problem of molecular electrostatics, namely, the sensitivity of
the results to the treatment of the solute/liquid interface. Reaction
field effects and electrostriction tend to increase the values of
the dielectric permittivity close to the solute,44,45,51,115but bulk
dipole-dipole correlation tends to decrease it,112 while correla-
tions closer to the source may decrease it further. The effect of
the liquid density is yet another factor to be considered, as
discussed here and elsewhere.57 The coexistence of these
competing effects makes it difficult to predict the correct
behavior ofε near a solute, and the distance at which bulk liquid
dielectric properties are recovered. This topic can be studied
with atomistic dynamics simulations of the liquid in the
proximity of a solute.116 To compare the results with the
prediction of the model developed here, a polarizable force field
would be required.117,118On the other hand, experimental data
provide some insight into the local electric field in proteins and
protein-liquid interfaces.119,120 In particular, pK shifts of
ionizable groups are sensitive to local protein electrostatics and
can be used as benchmarks to validate and optimize solvent
models.121 Data on pK shifts have been used44,58 to guide the
optimization of the screening functions of the SCP-ISM
reviewed in section IV.1.
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