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Molecular interactions in solution are controlled by the bulk medium and by the forces originating in the
structured region of the solvent close to the solutes. In this paper, a model of electrostatic and liquid-structure
forces for dynamics simulations of biomolecules is presented. The model introduces information on the
microscopic nature of the liquid in the vicinity of polar and charged groups and the associated non-pairwise
character of the forces, thus improving upon conventional continuum representations. The solvent is treated
as a polar and polarizable medium, with dielectric properties described by an inhomogeneous version of the
Onsager theory. This treatment leads to an effective position-dependent dielectric permittivity that incorporates
saturation effects of the electric field and the spatial variation of the liquid density. The non-pairwise additivity
of the liquid-structure forces is represented by centers of force located at specific points in the liquid phase.
These out-of-the-solute centers are positioned at the peaks of liquid density and exert local, external forces
on the atoms of the solute. The density is calculated from a barometric law, using a Lennard-Jones-type
solute-liquid effective interaction potential. The conceptual aspects of the model and its exact numerical
solutions are discussed for single alkali and halide ions and for ion-pair interactions. The practical aspects of
the model and the simplifications introduced for efficient computation of forces in molecular solutes are
discussed in the context of polar and charged amino acid dimers. The model reproduces the contact and
solvent-separated minima and the desolvation barriers of intermolecular potentials of mean force of amino
acid dimers, as observed in atomistic dynamics simulations. Possible refinements based on an improved

treatment of molecular correlations are discussed.

I. Introduction are topics of current researéhDirect forces between macro-
) ) ] ] molecules can also be measured using osmotic $tfésmnd
Molecular interactions in solution are modulated by the x_ray scattering experiments in molecular arrays. These tech-
aqueous environment, which may vary broadly in composition. g es provide information on the forces at short intermolecular
The solvent controls most of the molecular properties in the gitances and on their modulation by the aqueous envirorthent.

1,2 i 1 . . .
cell, fro[jn chemlcal ;eictlonsd of small fmolemﬂe’sl) éh%e Studies have suggested that the energy associated with the
Istructut.re,l yn?rr]nlcs, Ian tt ern:o lynt?]mlgs 0 macror;lo € IU esl. structuring of water at the molecular interfaces may dominate
n particular, the solvent controls the dynamics of molecular y, . ieractions at close proximitj.

encounters and association/dissociation mechanisms, thus par- . . ) . . .
Reliable calculations of molecular interactions in solution,

tially dictating the kinetics of biochemical pathways. These . i ; . . . !
processes usually involve the noncovalent binding of a small interpretation of simulations data, and comparison with experi-

peptide or organic molecule, either a naturally occurring Mental data depend on the efficiency of the algorithms used
chemical species (e.g., hormones and neurotransmitters) or 407 S8mpling the conformational space and the quality of the
synthetic product (e.g., drugs and molecular probes), to a proteinm0d9| de_scrlbmg the interactions. A subs_tantlal part of the work
(e.g., enzymes and transmembrane receptors). The statistica'leF’O”?d in the I}terature is concerned wlth the development of
distribution of ligand binding modes and the tightness of a S@mpling techniques and other numerical methods of calcu-
molecular complex depend on the forces exerted by the solvent,ation*~# Comparatively, less effort has been devoted to
particularly at the proteinsolvent interface. The accurate Improving models of molecular interactions, partially due to
calculation and prediction of binding modes and free energies the conceptual difficulties in understanding the effects of the
may have far-reaching implications in pharmacology and solvent at the atomic level.
medicine. Molecular interactions in pure water are modulated by bulk-
Certain molecular processes in solution, such as protein phase electrostatics and by solvent-induced fotzeBulk
unfolding and molecular dissociation, can be studied experi- electrostatic effects originate in the polarization and reorientation
mentally at the level of individual moleculé&s!® Atomic force of water molecules in the bulk phase. Solvent-induced forces
microscopy and laser tweezers are commonly used in single-(SIF) result from the spatial rearrangement of the solvent
molecule pulling experiments. The free energy profiles extracted molecules excluded from the region occupied by the saftie.
from these studies are shaped by the forces exerted by theThis rearrangement perturbs the hydrogen-bonding (HB) net-
aqueous environment. The interpretation of experimental ob- work of water in the solute’s hydration shells, thus generating
servations and its relation to results from computer simulation net forces and torques that affect the solute’s equilibrium
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structure and dynamics. At the molecular level, hydrophobic Il. Electrostatics and Liquid Structure
and hydrophilic forces are special cases of SIF. The molecular

o . . . A solute immersed in a solvent perturbs the structure and
origin of SIF has been studied using computer simulatféris, P

. . S . . . . dynamics of the liquid with respect to those in the non-perturbed
and their rolle n protezugygand interactions and protein folding state. These changes in the liquid generate a field that reacts
has been discussé back on the solute, thus modulating its gas-phase properties. A
A complete description of solvent effects requires both bulk statistical mechanics treatment can formally describe the
electrostatic and solvent-induced forces to be accounted for.perturbations in the liquid, from which information on its
Theoretically robust approaches exist to describe such effects gie|ectric response and structure can be obtained. The interest
including earlier and modern theories of dielectric m&fi&  nhere is on the resulting effects of the perturbed liquid on the
and theories of liquid structuf€-33 These approaches are perturbing solute. In this paper, electrostatic and liquid-structure
mathematically and physically rigorous, thus making them ideal forces are treated separately but related to one another through
as a basis of simplified models for use in computer simulations the |iquid density distribution.
of macromolecules. Important progress has been made in this  The dielectric response of a medium can be studied statically
direction in recent year¥73° although the computational  or dynamically?® The latter is needed to describe the temporal
demands have limited the practical applications to relatively eyolution of the polarization field(r, t) upon changes in the
small solutes or model systems. Less rigorous but practical solute (e.g., in proton and electron transfer, or chemical reactions
models to represent solvent effects in macromolecules are alsn general). The dynamic response of dielectric media has been
available. These models have traditionally focused on SOlventa topic of extensive experimenta| and theoretical invest-
electrostatics but have largely neglected SIF, except for simple jgations#3-59 Only static fields will be considered here. In a
treatments of hydrophobic interactions. The performance of polar and polarizable liquid composed of molecules with
these empirical models depends mainly on the quality and thejsotropic polarizability,a, and permanent dipole moments of
number of parameters defined. Most of these models haVemagnitudQu = |u|, the static polarization field at a position
marginal connection with basic physics theory; so, they cannot can be written &85!
be used as the basis for further theoretical developments. For
the same reason, the interpretation of results obtained in P(r) = p(r)aE(r) + o(r)@0 (1)
computer simulations is usually limited, which is the most
serious limitation, regardless of their predictive power. The merit |00 the number densipfr) represents the number of liquid
of such models is mainly computational speed. molecules per unit volume at positionandzCis the statistical
The above discussion highlights the main challenge in average of the permanent dipole moments of a liquid molecule
developing a model of solvent effects in biomolecules, specif- atr. Ej(r) is the internal (or microscopic) field at the position
ically to find a reasonable balance between physical contentof a liquid molecule. The orientations of the permanent dipoles
and computational efficiency. Attempts at this have been made are determined by the directing fi€fE(r). Both internal and
in the past to describe electrostatic effects of the solvent, for directing fields act on individual water molecules, but they are
example, by treating the solute as a set of point charges andconceptually different from one anoth&rexpression for these
the solvent as a continuum medium and solving the Poisson fields will be given below. Equation 1 is the usual separation
Boltzmann equation numericaff/! or by treating the solute  of the polarization into a component due to the induced dipoles,
and the liquid as a lattice of point dipoles and solving the P, (first term at the right-hand side), and a component due to
resulting equations self-consistertfy!3These models have been  the permanent dipole®, (second term). Thug, is the only
used to provide insight into the electrostatic effects of the solvent contribution toP in a nonpolar 4 = 0), polarizable ¢ = 0)
on molecules of arbitrary shape. Because these approximationsmedium, whileP, is the only contribution in a polau(= 0),
have their own practical and conceptual limitations, an alterna- nonpolarizable ¢ = 0) medium. In both termsy accounts for
tive to the electrostatic problem has been sought in the dielectricthe number of liquid molecules locally contributing @
theory of polar/polarizable liquid¥;*>which is further discussed  Equation 1 can be generalized to a multicomponent sy&tem.
in this paper. Physically meaningful, yet practical, solvent  The polarization field is given, in general, By P(r)
models have been used not only in the context of macromo- = f y(r,r') - E(r')dr', where y(r, r') is the susceptibility
lecular electrostatics but also to represent electrostatic effectstensor, andE(r’) is the macroscopic electric field at position
in quantum chemical calculations of small molecufes. (i.e., the electric field described by Maxwell's equations inside
In this paper, a model that combines both electrostatics andcontinuous media). A phenomenological, yet general molecular
solvent-induced forces is presented and discussed in detail. Théheory of dielectric response based on this nonlocal relationship
model is implemented and optimized for the calculation of forces has been derived for spatially and temporally varying electric
in peptides and proteins. The paper is organized as follows. In fields? If the field varies smoothly with the distance (i.e., if
section Il, the basic theory is described, and the model is the wavelength is large compared to the characteristic molecular
introduced. In section III, the model is solved numerically for length scale), a local form d®(r) can be used,
single ions and ion pairs. These simple solutes are used to assess )
the suitability of the model for describing electrostatic and - _elr)—
liquid-structure forces. In section 1V, the application of the P(r) ~ x(NE(r) = 4 E(r) @)
model is extended to molecular solutes. In this case, the exact
numerical solution carried out in section Ill is abandoned for which defines(r) as the local, static dielectric permittivity of
the sake of computational efficiency. Instead, a suitable ap- the medium, assumed here to be a scalar quantity. The
proximation is derived based on the observations described inapproximation of eq 2 worsens as the distance to a solute
section Ill. This simplified model is optimized and applied to decreases because of the short-wavelength components of the
amino acid dimers for the calculation of intermolecular potentials electric ~ field.  However, corrections for  nonlo-
of mean force. A summary and a discussion on possible cality>®~57 are beyond the scope of this paper, and eq 2 will be
improvements of the model are given in section V. used regardless of the proximity to the solute.
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Expressions of the internal and directing field as a function
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Settingu = 0 in eq 6 leads to the dielectric permittivity of a

of the macroscopic field are derived here in the context of the nonpolar, polarizable liquid or to the optical (high-frequency)

Onsager theor§#52The instantaneous reaction fieRi(r), acting

on a single water molecule with a fixed orientationuoiocated

at the center of a spherical cavity positioned aand with a
volume equal to that available to the molecule, is giverriay)

= f(r)u*. In this expressionu* is the total dipole moment of
the molecule given by* = g + aR(r), where the last term is
the dipole induced by the reaction field itself. For a spherical
cavity, fis a scalar quantity and, theR(r) = uf(r)/[1 — of(r)].

The scalarf can be calculated assuming that the cavity has a

volume of 1p(r) and is surrounded by an infinitely extended
continuum with permittivitye(r). This approximation has been
discusse®t-58and can be considered a limit for the actual value
of the local reaction field. In this casgijs given by®52

e(r) —

f(r)__ ()2(r)+1

®)

By definition, the difference between the internal and directing

fields acting on a single water molecule is the average reaction

field calculated over all of the orientations of the dipole, that
is, Ei(r) — Eq4(r) = OR(r) From this definition and the equation
given above foR(r), the internal field can be written as

f(r)
1— af(r)

Following refs 28 and 52, the directing field satisfies the
equationEq(r) = E(r) + f(r)aEq«(r), whereE; is the cavity
field and faEq is the reaction field at the position of the
molecule, originating in the dipoleE, induced by the directing
field itself. E¢ is defined as the total field at the center of a
physical cavity surrounding the molecule and is gi’eiy
Ec(r) = 3e(r)E(r)/[2¢(r) + 1]. From these two equations, an
expression for the directing field is obtained, which is given by

1 3e(r)
1—af(r) 2¢(r) + 1

E(r) = E4r) + (O] 4)

E r) = E(r) (5)

permittivity €., of a polar and polarizable liquid. For a uniform
liquid, p(r) = po = 1/v, wherev is the molecular volumeu(~
29.8 A3 for water, estimated at 2% and 1 atrf?), an equation
relatinge. ando is obtained,

ﬂ'[g — (600 - 1)(2600 + 1)
3V 9, + 2(e, — 1)

(1)
In the limit E — 0 (non-perturbed liquid, or — ), eqs 6 and
7 lead to the Onsager equatighP?58

— €.)(260 T €,)
€€ T 2)2

4J'[,u _(
9kT v

(8)

whereeg is the static dielectric permittivity of the liquid in the
bulk phase.

Equation 6 can be used to calculafe) onceE(r) andp(r)
are known. These quantitiek @nd p) are determined by the
geometry and the charge distribution of the solute. Theories of
liquid structuré®31 provide the proper framework to obtain an
expression forp(r) in the case of a general solutkquid
interaction potential energy(r). A particular approach to this
problem is based on a variational principle, where a free energy
functional . p'(r)] is defined and minimized with respect to
o'(r). The functionp'(r) that satisfied.9[p'(r)][/op'(r) = 0 is
the equilibrium, nonuniform spatial density distributio(r)
sought. This approach yields a formal expression for the liquid
density in the forrit

p(r) = n exp{ —pU(r) + c[p(r):r]} 9)

wheren depends on the temperature and the mass of the liquid
molecules. The functiona|p(r);r] in eq 9 is the single-particle
direct correlation function, which is related to the Orstein
Zernike two-particle direct correlation functiott? through
clp(r);r] Sp(r)c@(rr)dr'. In eq 9, the term

Introducing egs 4 and 5 into eq 1 and using eq 2 yields a closed—c[p(r);r]/# can be viewed as an effective potential which is

equation fore(r) in the form

[e(r) — 1][1 — af(r)] _ 3oe(r)
4sp(r) [2e(r) + 1]
LL{ 3Be(r)uE(r) } ©)
E(r) |[1 — af(r)][2€(r) + 1]

whereE(r) = |E(r)|, f = 1/kgT (T is the absolute temperature;
ks is the Boltzmann’s constant)(x) = 1/tanh&) — 1/x is the
Langevin function which arises in the calculafi®rof the
canonical averaggover the dipole orientations in eq 1.

In the Debye theory? E; andE4 were not distinguished from
one another. They were taken as equal to the Lorentz $eld,
EL, which is defined as the electric field inside an ideal cavity
surrounding the water molecule, and givenky(r) = [e(r) +
2]E(r)/3. The Debye theory was used earlier to derive an
expression similar to eq 6 for uniform liquids based on the
Lorentz-Debye-Sack (LDS) approximatioff:4551.58Reaction
field correction8 were introduced at a later stage in the
derivation. To deal with nonuniform liquids, however, it is

determined by the interactions between the liquid molecules.
Much of the theoretical work on the theory of liquid structure
has been aimed at finding approximate solutions of eq 9 or
simplified expressions foc@(r,r") for practical calculations.
The simplest approximation is to neglect pair correlations
altogether; therefore, the local spatial density is given by a
barometric lawg?-31

p(r) = po exXp{ = Ver(r)} (10)
This functional form will be used here. With this approximation,
Veri(r) is an effective soluteliquid interaction potential energy.
A Lennard-Jones (LJ) type function will be used here,

s ]

wherer; = |r — rj|, and the sum runs over tid¢atoms of the
solute. The distances mainly determine the positions of the

Ver(r) = (11

convenient to introduce the reaction field and its dependence density peaks around a molecule ¢ 1) or the first peak of

on p formally into Ej andEg, as in eqs 4 and 5. The LDS theory

the radial distribution functiong(r) = p(r)/po, of the liquid

has been used in the past and forms the basis of the continuunmaround a monovalent ionN(= 1). The energies; mainly

electrostatics mod# reviewed in section 1V.1.

determine the height of the density peaks. Comparison of eqs 9
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TABLE 1: Experimental and Calculated Properties? of 1 1 2
Alkali and Halide lons in Water P AAe=§f E(r)-D(r)dr _Qf |Eq(r)I°dr =
174 174
R —AG" -A] -Ac -Ad & k Re €Rs) 0 1
Li* 052 1265 129.7 1297 830 130 47 116 3.3 0.64 —éfP(r)-EO(r)dr (12)
Na* 1.12 101.3 1045 1042 652 120 7.7 150 7.1 0.38 7

K+ 132 841 873 87.1 502 6.00 86 181 311 0.49 ; P TSN
F- 124 1025 1057 1056 676 055 85 148 66 024 whereEq(r) is the electric field of the solute at positignin

c- 172 727 759 761 428 655 112 207 53.8 035 the absence of the dielectric medium (vacuum field), and the
integration is carried out over the entire spadé;) = e(r)E(r)

a Energies in kcal/mol; distances in AR;: experimental ionic radii ; ; ; ; — ;
in solution® AG?® experimental Gibbs free energy of hydratir® 15Et?8|dfngef$etgteflgg.alzifligoeqeé a:I.EZdz/ieI dESO(r)/e(r)’ with
0! - - )

AAL = AGP - AG, (AG, = 1.325; a standard conversion term of 1.9

was used:7276AA.: electrostatic contribution to the Helmholtz free Ry
energy of hydration calculated with eq 182 contribution of the AA = -1 im e(r)—1 " 13
first hydration shell tdAAg; &: ion—water interaction parameter Vax(r) Ae= 2 R,— .{ r2e (r) (13)

[cf.eq 11] in cal/mol;x: calculated coordination numbeRs: Born
radii (inclu.de .satura.tion eﬁegts of the glectric field; uniform liquid); wheree(r) is obtained from eq 6. The densipfr) in eq 6 is
Zﬁﬁé %ﬁ?g cielgict_ncR‘p'ermlttlwty at a distance= Rg from the center given by eq 10 Vyith the potential of eq 11; the valueuols
given by eq 8 withep = 78.39 ande, = 1.47 (the value®

corresponding to pure water at 1 atm and °Z5. Here, the
polarizability, ., is given by eq 7, wherg(r) < po, and by the
corresponding density-dependent expression (i.e., w{th
replacing 12) wherep(r) > po. This assumption is physically
reasonable since reaches its finite, gas-phase value as the
density decreases, leadingde— 1 ande — 1 asp — 0. On
the other hand, ag(r) increaseso decreases in a similar
proportion, keeping. approximately constart.

The value of§ in eq 11 for each ion is determined from the
standard Gibbs free energy of hydrati?G°. The work of

and 10 indicates tha¥e; contains information on the exact
solute-liquid potential energylJ, and on all of the intra-liquid
interactions that can possibly be captured into the LJ functional
form of eq 11 and its parameters. In particulslg; contains
the van der Waals solutdiquid interaction potential commonly
used in classical mechanics force fields. It also contains
information on the short-range electrostatics, particularly, that
associated with the direct solutevater hydrogen-bond interac-
tions in the hydration shells of polar and charged groups. In

this paper, the choice of a LJ-type function as an effective polarization AA., calculated from eq 12, corresponds to a

solute-liquid interaction potential is based solely on practical Helmholtz free energy of an isochoric thermodynamic process.
considerations. LJ potentials have been used extensively inTpa rejation between both quantitiedli&

simulations of liquid$}! and their mathematical properties are
well characterize@? The only requirements foves are (i) to AG’ = AA+ AG,, (14)

reproduce the short-range structure of the liquid surrounding a ) .
molecular solute and (ii) to provide for the short-range non- WhereAGnpis the nonpolar component of the free energy. This

pairwise additivity of the resulting forces. These forces will (€M can be decomposed&Gn, = AGcay+ AGs;, whereAGeay

operate in addition to the long-range electrostatic forces exerted@ccounts for the reversible work of cavity formation, which can
by the essentially structureless bulk liquid. The adequacy of P& described by scaled particle theofi#¥andAGsis a short-

egs 10 and 11 and the conditions to achieve these goals will be@19€ solute liquid interaction teorm..For charged speciagn,
assessed and discussed in detail in the following sections. makes a small contribution #G°. Since the interest here is in

the electrostatic component afG° the nonpolar term is

_ ) _ approximated aAGy, ~ 1.325 kcal/mol for all of the iong-72

IIl. Solvation of Alkali and Halide lons Partitioning the experimentaAG® of a neutral salt into
components assigned to the individual ions requires knowing

The model introduced in section Il is now applied to single - A
ions and ion pairs. For these simple solutes, the free energiesthe absolute value of the Gibbs free energy of hydration of a

o >~ ““proton, AGy, which is used as a referen&’? Cluster-ion
and forces can be calculated exactly by numerical integration. solvation data have recently been (4ed determineAGy; these

II.1.Single lons. For a monovalent ion, the parametem provide a more reliable estimate than traditional methods. This
eq 11 is separated into two paris= R + Ry, whereR isthe y51e has been used to calculate the hydration energies of alkall
radius of the ion in the liquid phase at infinite dilution, aRg and halide iong475 and their values are given in Table 1 (a

is an extension identified with the radius of a water molecule gtandard conversion teffnof ~1.9 kcal/mol has been added
(~1.38 A). This definition is consistent with the way the ionic {5 the work of polarizatiomAAe in eq 14 to relate it to the
radii are calculated from experimental d&t&* The radiusR experimental quantitAG® = AG® — AGyy).

can be determined experimentally using X-ray or neutron  jith the above specifications, the integral of eq 13 can be
scattering, or through computer simulations. Simulations permit carried out numerically, anglis chosen for each ion as to satisfy
a straightforward representation of the ideal infinite dilution, eq 14. The results are presented in Table 1. This procedure is
but their reliability is limited by the quality of the force field.  similar to that used in the context of classical force fields to
On the other hand, experiments may produce better estimatesyarametrize iorrwater van der Waals interactiofisFigure 1

of ionic radii, but the salt concentrations used may corrupt the shows the permittivity profiles for Naand CI as a function
interpretation of the results due to the proximity of the ions in  of the distance to the center of the ion. The figure illustrates
the solution. As a compromise, the ionic radii used here were the saturation effect of the electric field in the spatially uniform
determined by neutron scattering experiments at relatively low liquid [p(r) = po] (dotted line) and the additional modulation
salt concentrations. To illustrate, three alkali metal and two of «(r) due to a nonuniform liquid density (solid lines). A
halide ions are considered: "LiNa", K*, CI7, and F, with discussion on the treatment of the ion/liquid interface and the
ionic radif557 given in Table 1. The reversible work of sensitivity of the results to the form ef{r) is given in section
polarization of the dielectric medium is given®y V. If correlations were introduced, the effectivér) would
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0.0+ A

Figure 1. Permittivity profiles for a monovalent ion in water as a
function of the distance to the center of the ion (eq 6):" Mad CI

in a uniform (r) = po) medium (dashed line); and N4thin solid)
and CI (thick solid) in a nonuniform mediump(r) given by eq 10).
Inset: electrostatic contribution to the free energy of hydration of alkali
and halide ions as a function of the upper limit of integration in eq 13
in a nonuniform medium (the asymptotes correspond to the valies

in Table 1; in units of 1®kcal/mol).

display an oscillatory behavior with the distartéé8 instead

of the monotonic increase displayed in Figure 1. In the absence -1.1]
of correlation, the first peak of the radial distribution function 0 1 2 3 4, 5 6
g(r) is shallow (not shown), and neither a second peak nor a r[A]

first minimum is observed. Therefore, the coordination number Figure 2. (A) Electrostatic contribution of the free energy of hydration
K« is calculated ag = po JSr2g(r)dr, where the upper limit of of ion pairs as a function of the interionic distance (eq 13):*-N@l~
integration is taken aBn = R + 2R,, which defines the first ~ (solid line); Na'—Na" (thin dashed); and CHCI" (thick dashed). (B)
hydration shell around the ion. This upper limit would cor- iﬁg'g?e{t%]¥cckogé::g;lﬁ'r?Tﬁetothe gﬁepeari]re-rg:yr(ﬁ]qtrlé)ggmgl fﬂgz
respond to the position of the flrSt.mlnllmum ofr), which IS (thick dotted); Na in the Na—Na* pair (thin dotted). Energies in units
usually smaller tharRy. The coordination numbers obtained ¢ 1 kcalmol. The distances,= o, + o5, of contact of the solvation
with the values of calculated above are presented in Table 1, gpheres are labeled-a.

showing reasonable agreement with experimental and theoretical

estimate$? The inset of Figure 1 showAA. as a function of  yajues ofé ando of an ion are retained when its charge is set
the integration limitR, in eq 13, showing that convergence is tg zero, which is an assumption. ThuSAser measures the
achieved Only aRu > ~30 A The contribution of the first Change in the hydration energy of an ion a distandem a
hydration shell toAA. (denoted byAA¢' in Table 1) is similar  solvent-excluding cavity. The numerical solution of eq 12, for
in magnitude to the bulk contribution. each value of, is plotted in Figure 2A and 2B. The proximity
I11.2. lon Pairs. IIl.2.1. Electrostatic ModulationFor an of a solvent-excluding cavity causeéaAse(r)| of an ion to
arbitrary static charge distribution, the relationship between the decrease, as expected, because of the removal of polarizable
macroscopic and vacuum fields is giverPbf(r) = Eo(r) — medium near the charged particle. The texf.(r) is calculated
V JP(r')-V'|[r — r'|7*dr’, for |r| > 0. Solving this equation for  from eq 13 as the difference between the tatal(r) and the
E(r) (or the corresponding expression for time-dependent sym of the self-energies. Figure 2B shows that the self-energy
fields™) is the basic goal of a dielectric theory, but it is a difficult  terms decay sharply with the interionic distance and are
task, in general® 798 Only for a point charge ar&(r) and practically constant for > g1 + g». In contrast, the slow decay
Eo(r) linearly related througlE(r) = Eo(r)/e(r). In the general  of AA(r) with the distance (Figure 2A) is related to the
case, however, an effective local dielect({c) can be defined interaction termAA(r). The behavior ofAA(r) at small
such that the fields Satisfy the same linear relation. The interionic distancesl or its limit as— 0, is of no physica| or
approximation introduced here and used edfii€ris that the  practical interest, unless the size of the particle resulting from
effective local permittivity also satisfies eq 6. In this case, eq 6 the limiting process is also specified. This is so because the
can be solved for two interacting ions at infinite dilution, and Charge alone does not determine the partide’s hydration energy;
the electrostatic component of the hydration energi(r), of information on its size is also needed, which is determined by
the pair can be obtained by numerical integration of eq 12, where the electron structuré. The electrostatic component of the
now r is the distance separating the ions. For the purpose of gglvent force on ioni is then Fej = —dAAJ(r)/dr;. The total
discussion, the pairs Na-Cl~, Na"—Na*, and Cr—CI~ will electrostatic energy of the system is givenmir) = AAJ(r)
be considered. The values §fand o found above for single + AEq(r), where AEy(r) = 1/r is the Coulomb energy in the
ions are transferred to the corresponding ions in the pair, yvacyum.
regardless of the interionic distance, which is a simplification.  1he inhomogeneity of the system discussed above arises from
The hydration energy of each pair can be divided into three {he saturation effects of the field and the nonuniform density
components, distribution. Saturation effects are manifested in smaller values
of the local dielectric permittivity(r) in the vicinity of charges.
AA(r) = AAL(r) + AAgs (1) + AAser A1) (15) The density distributiorp(r) of the liquid further modulates
e(r). If the liquid is assumed to be spatially uniform but
The last two terms are self-energiesAseira(r) results from saturation effects are still retained, the density modulation of
zeroing the charge on ion 2 (i.e., Cin the Na —ClI~ pair), the polarization field is removed, and the integral of eq 12
while AAseir Ar) results from zeroing the charge on ion 1. The diverges for solutes containing point charges. To avoid this
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divergence, a region containing the charges can be excluded

from the integration domain. For a single ion, a spherical region
of radius Rg is used; thusRs defines the lower limit of
integration in eq 13Rg is closely related to the Born radfids
commonly used in macroscopic electrostatics but with saturation
effects explicitly included*5181.8384Taple 1 shows the Born
radii and the values of the permittivig(Rg) for the five ions
considered here. Following precedenRe can be decomposed
into two termg*81.8586n the formRg = R, + ¢, whered is an
extension of the ionic radius. ThuRg is viewed as the size of

a cavity formed by the ion in the dielectric medium. Table 1
shows thab is positive and larger for cations than for anions;
its value depends on the ion type and not only on its charge.
This result has been discussed previot{sly8>8%nd interpreted

as a manifestation of the different orientations of water
molecules in the hydration shells of ions.

An additional approximation to the uniform liquid is the
neglect of saturation effects. This leads to the usual Born
approximation in macroscopic electrostatics, thati&e ~ (1/
€0 — 1)/Rg for a monovalent ion, witlRg now being the standard
Born radius®? The practical and conceptual problems of
introducing a solute/liquid dielectric discontinuity when dealing
with microscopic solutes have been recognized and discus-
seds38487-89 The model presented here provides a simple recipe
to avoid such discontinuities in a physically meaningful way.

111.2.2. Liquid-Structure ForcesThe structure of the liquid
is represented by the spatial variations of the liquid density [cf.
eqg 9]. In addition to bulk electrostatics, the liquid structure
generates forces that further modulate interactions. The dif-
ferential force &(r, r') on atom i of the solute at position
exerted by the liquid molecules within a volumée dt position
r'is given by%.22:27

dr(r, r') ==V, U(r, r")p(r")do' (16)
whereU(r, r') is the interaction potential energy between the
atom and a liquid molecule, anah@’) = p(r")dv’ is the number
of liquid molecules at'. Here, the potential energy is given by
U(r, r') = Ve(lr — r'|) [cf. eq 11], and the density at is
given by eq 10. The total liquid-structure forEgi(r) on atom
i is then calculated by integrating=¢t, r') overr’,

Foi(r) = [dF(r,r) == [VVeu(Ir = r'p(r')dv  (17)

The integration is carried out over the space occupied by the
liquid, or it can be extended to the entire space provided that
p(r) formally accounts for the region inaccessible to the liquid,
for example, another molecule, a lipid bilayer, or an idealized
confining boundary, such as a container or solid surface.

The liquid-structure forces on a pair of interacting ions will
be analyzed first. In the discussion below, ion 1 is located at
the origin of a cylindrical coordinate system, @, z), and ion
2 is at a distance from ion 1 in the+z direction. For a given
value ofr, dr(r, r') is calculated at each poimt and then
integrated in space to yield the total fordeg(r) = Fsj(r)z on
ioni. From eq 17, the forc&s Ar) on ion 2 is given by

=9
[7*+ (=27
0'26

[7*+ (r = 27

Fodr) = 2415,0,° [ [ p(n,Z7)
—c 0

|

after integrating over the azimuthal anghe The function
p(n, z r) denotes therf, 2)-dependent density for an interionic

- 1] dydz (18)

Hassan
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Figure 3. Liquid-structure force (eq 18) (thick line; in kcal/mol/A)
and associated potential (eq 19) (thin; in kcal/mol) for the - Nal~

pair as a function of the interionic distance. The relative positions of
the solvation spheres of the ions are shown schematically to scale.

separationr (a similar equation can be obtained B¢ (r);
FsAr) = —Fsa(r) in equilibrium). In eq 18Fs2 < 0 implies

that the solvent induces an attractive force between the charges,
while Fs > > 0 implies a repulsive force. The potential associated
with Fs Ar), that is, a potential of mean liquid-structure force
type, is given b§P

ps A1) = — [ FoAr)dr (19)

To solve eqgs 18 and 19, the valuesief oz, &1, and&, must be
specified. The values reported in Table 1 were obtained from
the requirement that the dipole density of the liquid around
single ions produce the correct polarization field, hence, the
correct values of the hydration energies. Because the same
functional form of Ve is also used to represent the liquid-
structure forces on interacting ions, the values in Table 1 are
revisited. To this end, eq 18 was solved numerically for generic
values ofg’s and&’s, as to cover all possible cases of relative
ion sizes and ionliquid interaction strengths. Typical results
for Fs Ar) and¢s Ar) are shown in Figure 3 for Na-Cl~; the
valuesés, &, 01, andos are taken directly from Table 1, but
the energies are rescaled as to preserve the relative tigpnid
interaction strengthsi/&,. The values used in Figure 3 ate

= 0.3 and5, = 1.5 kcal/mol (ion 2 is Ct). At a large interionic
separation, the force is attractive. As the distance decreases,
the force reaches a minimumum@t rp, > 01 + 02. It vanishes

atr ~ 01 + 07 (point of contact of the solvation spheres) and
becomes repulsive. It then reaches a maximum=atry < o1

+ 0, and starts decreasing again as the ions move closer to
each other. In general, the force displays a second (positive or
negative) minimum at shorter distances. Depending on the
parameters, the force might show a second maximum as the
distance decreases even further. The force vanistres & as
expected. For small values @f and &, the liquid becomes
more uniform, although the minimum g} and the maximum

at ry can still be identified. These observations suggest that
the forces associated with the desolvation barriers and the
solvent-separated minima of interionic potentials of mean force
(PMF)1~%8 can be reproduced with a suitable choicestsf and

&’s. However, a complete representation of the effects of the
liquid structure on the PMF would require one to account
explicitly for the interactions between liquid molecules. The
approach developed here captures the effects that can be
embedded in an effective liquicsolute potential [cf. eq 11].

In section IV.2, an analysis of the liquid density as a function
of the interionic distance and the induced effects leading
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to the modulation of the liquid-structure force shown in Figure A1 that controls the rate of increase D{r) with the distance to

3 will be presented. the chargé® In the SCP model, the single parametezmbeds
the physical quantities of the system contained in the uniform
IV. Molecular Solutes version of eq 6:¢p, €, T, @, 1, v, andQ. The assignment of

The model presented in section I and solved numerically in Re follows the same idea discussed in section Il for ionic
section IIl for the specific case of ions and ion pairs can be SOUTces, thatis, a charge radRg plus an extension (Rg =
applied to molecular solutes as well. Computationally efficient Ro + 0). .
grid-based methods can be used to integrate egs 6, 12, and 17 V-1.2. Two Interacting Charges,@nd Q. For two charges
in arbitrary geometries. However, simplifications are still needed " & Polar/polarizable liquid, the expressions for the interaction
because the computational task may be too demanding in€N€rgy and the self-energy terms of eq 15 are
simulations of macromolecules or other biological applications.

Such simplifications are presented in this section. AA (1) = Ql_Q2 1 1 (22a)

The total noncovalent force;;, on an atom i of a molecule nt r|D(r)
is divided into four terms P

1 Q 1 ]

Fi=Fc+ Fawi T Fe; T Fy (20) Asan(l) = 2 Rg;i(r) m o

(22b)

whereF¢; andFyaw, are the total bare Coulomb and van der wherei = 1 or 2, andD(r) in eq 22a differs quantitatively from
Waals forces on atomdue to all other atoms of the solute, those in eq 22b but has the same sigmoidal behavior discussed
respectively Fe; is the total electrostatic force exerted by the above for a single charg& The screening functions in the self-
essentially structureless liquid of the bulk phase, Byds the energies are the same as those in eq 21, so the hydration energy
total force exerted by the structured liquid surrounding the of each charge is recoveredras- . The dependence dfAsqry;
molecule. A simplified, pairwise model foFe; has been  withr is introduced through the effective Born radiRs;(r) as
reported? and a summary is given below for completeness; g3 linear combination of two Born radfo

the connection with the electrostatic model introduced in section

Il will be discussed. A simplified, non-pairwise model Bf; Rg 1(r) = Rig&ir) + Ry [1 — &,,(n)] (23a)
will be derived and discussed in detail in the following sections. '
IV.1. Bulk Electrostatic Forces. A continuum model of Rp2(r) = Ryp&sy(r) + Ryg[1 — £54(r)] (23b)

solvent electrostatic effects based on a uniform version of eq 6

has been reporteld:*> The model is based on a superposition whereR;g and Ry are the Born radiRs of eq 21 for each

of screened Coulomb potentials (SCP) and describes thecharge;&i2 and&2; are the fractions of the solvent-accessible

interaction AAi) and the self-energyANAser) terms of the surface area of Qand Q, respectively. The factors + &,

hydration energy of a molecule. To obtain expressions for theseand 1— &»; are the fractions of the solvent-excluded surface

terms in molecular solutes, the hydration energies of one chargearea of each charge. The quantiy: accounts for the effects

and of two interacting charges were first analyzed. The insight on Q. of the absence of polarizable medium in the region

from these studies provided the basis to derive an expressionoccupied by @ R»; accounts for the same effect on Que to

for the hydration energy dfl interacting charges. These steps the presence of QThe linear combination of eq 23a,b is the

have been discussed in previous publicatitff§83 and a simplest way to account for the dependencéAfers;(r) versus

summary is given below. r [cf. eq 22b] observed in the exact numerical solutions plotted
IV.1.1. Single Charge Qn this case, the electric potential in Figure 2B. The radiR;> andR»; control the hydration energy

in a polar/polarizable liquid is given by(r) = ¢o(r)/D(r) where of the pair at short interparticle distances, and Figure 2B suggests

¢o(r) is the potential in the vacuum at a distarcérom the thatRi> > Ry andRz1 > Row. Therefore, in analogy withis
charge. The scalar functidd(r) is the screening function, which  andRyg, these Born radii are given B> = Ry + 612 andRy;
is related tce(r) through the definition of electric potentid(r) = Row + 021 (with 6 > 0 in both case¥). This model reproduces

= —Ve¢(r). For a point charge, the relationship between both the qualitative behavior of the self-energies [cf. Figure 2B] and
quantities i8 ¢ = D/[1 + (r/D)dD/dr]. This equation can be the interaction term [cf. Figure 2A]. Quantitative agreement is

solved forD(r) once the dielectric permittivity(r) is known attained with a suitable choice of paramet&ss d12, anddzy;
from experimental data or from theoretical consideratidrs. the fractionsZ;, and &»; can be calculated analyticat:94
In the existing SCP moded(r) is given by eq 6 in ref 44, which IV.1.3. N Interacting Charge$Qi}i = 1. For a molecular

is based on the LDS theory. If the liquid density is not uniform, solute composed dfl atoms, eq 22a,b can be generalizetf as
eq 6 should be used instead (this case will not be addressed

here). The hydration energy of the charge is given by eq 13, 1NMNQQT 1
AAint = — — ; (243.)
5 Ry ) 2 1y [D(ry) D(ry)
AA - lim fl i_ldrzi L_l
M2 Ry r?[en) 2R; [ D(Ry) AAgei =
(21) 13 1] 1 1
- 3 ol il § B — 1|} (24b)
whereRg is the Born radius discussed in section 111.2.1, which  2i<1 | Rs; |D(Rg;) Rei' |[D'(Rs;")

includes the saturation effect of the field. In this forAses

can be evaluated with little computational cost provided that whereD is the screening functions of the fully hydrated solute
the functional form ofD(r) is known and a prescription to  [the same as in eq 22], afdl is the screening functions of the
determineRg is given. A sigmoidal function ofD(r) that gas-phase solute. In geneial,> 1 since a molecule in vacuum
reproduces(r) in polar/polarizable liquids has been repopfed is itself a dielectric medium (iD' = 1, eq 24 is a trivial
and discusse®*>This function depends on a single parameter generalization of eq 22). Models have been proposed that
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represent a molecule in vacuum as a dielectric composed of
charges and polar/polarizable dipof82 These models are
based on the theory of dielectric media discussed in section Il
and, thus, have a direct relation with the model introduced in
this paper. A connection between the electron structure of a
molecule and the screening functions in solution has also bee
discussed® In the SCP continuum modeRs; is given by a
generalizatioff of eq 23, which accounts for tié — 1 atoms
surrounding atom iRg;’ is obtained as a particular ca%e-or

Figure 4. Gray-scale representation of the liquid-structure force density
function Ay, z r) (integrand of eq 18) for Na-ClI~, as a function of

: : the interionic distance. Black: regions of the liquid inducing a repulsive
molecular solutes, the equivalent B or Rq is the covalent force between the ions. White: regions inducing an attractive force

rad'us’RCj of the atom in the molgcul@.The total free energy between the ions. (A) Attraction is favored at large interionic distances
of hydration of the molecule is given by eq 14. The nonpolar que to a high density being developed in the attractive region between
term scales roughly as the solvent-accessible surface areane ions (vertical arrow). (B) Density in the attractive region between
(SASA) of the molecule (i.e AGn, = a + b SASA, wherea the ions is increasingly removed as the solvation spheres begin to
andb are constants). overlap (arrows); thus, an unbalanced repulsive force results. (C)
From eq 24, the total electrostatic enefgyof the hydrated ~ Density in both the attractive and the repulsive regions between the
| lei N b ions is largely removed at small interionic separation, but higher density
molecule Is given starts developing in the attractive region at the left of"Narrow);
) thus, attraction is favored. For NaCl-, o1 + 0, = 5.6 A. This
1N QQ 1 NG behavior explains the modulation of the force plotted in Figure 3. lonic
Er=- — —_— radii are shown in scale as dashed circles.
2i51D(ry)  2i<1Rg;

D(Rs;)

As defined in eq 20, the electrostatic component of the solvent
force on an atom of the solute is then calculated &s; =
—VEr — F¢;. A general expression has been derived in ref 94
and is given by

1] (25)

N o1 23Ei1'[]t
“—+
=i\ o

IES®
&
E.=_—

el

r. — F

ij c,i

(26)

or .
! Figure 5. (A) Schematic representation of the regions defining the
double-shell model of liquid-structure forces for ion pairs at o1 +

0. (B) Gray-scale representation of the liquid-structure force density

function, A, 2), for an isolated ion; white/black: regions of the liquid

with the interaction and self-energy components given by

9EM 1 QQ ’1 L1 db(ry) (27a) inducing forces in the-z/+z direction on the central ion.
ar.  2D(r)r |re Ny drg
I D)y {1y D(ry) I molecule located at a distance< ¢ from the center of the ion
HEsef 2 . dD(R. )] 9R. . repels the ion, while a molecule Ht> o attracts the ion. As
T :Z_LQ_|2 1 + ZRB" (Re) R, the distance between the two ions decreases, the balance of
arij 2 RB,i D(RB,i) D (RB,i) dRB,i 8rij forces on the ions breaks down due to the spatial distortion of

o(r) (along thez-axis): Atr =7 A (Figure 4A), the distortion

of the density in the attractive and repulsive regions is such
that overall attraction is favored (a in Figure 3). This net at-
tractive force originates mainly in a higher liquid density de-
veloped in the attractive region between the ions, relative to

(same withi < j) (27b)

wherer;; = r;y — r; andrj = |rjj]. Equations 2527 have been
implemented into the CHARMM molecular dynamics pro-
gram?? In combination with an empirical correction for H-bond
interactions in solutiol? (see section 1V.2.4), these equations that in the repulsive region. It can be shown thatifer o1 +
define the SCP-based implicit solvent model (ST&M). The 02, there are two peaks ofr) on thez-axis and in the attractive
model has been parametrized for peptides and proteins and usedegion between the ions. The positions of the peaks and their
in previous studies, including structure calculations and dynamic densities depend on the value of this and &’s assigned to
simulations?3.94.101,102 both ions. As the ions approach each other so do the density
IV.2. Liquid-Structure Forces. To derive a computationally ~ peaks, and they finally coalesce when the solvation spheres start
efficient model forFs;, a strategy similar to the one summarized overlapping at ~ o1 + 0> (5.6 A in this case; b in Figure 3).
above forFe; is followed. These density peaks will play a central role in the model of

IV.2.1. Two Interacting Charges;@nd Q. To gain insight
into the dependence dfsAr) on r shown in Figure 3, the

integrand of eq 17 is analyzed. A force density function

F(n, z r) for a fixedr can be defined from eq 17 & Ar) =

Jf7(n, z r)dydz. Figure 4 shows a gray-scale plot of

F(n, z r) on a plane containing the pair of ions NaCl~ at

liquid-structure forces in molecular solutes developed in section
IV.2.2.2. Forr < g1 + 0, the local maxima of the density be-
tween the ions disappear, becoming a continuum of saddle points
corresponding to the intersection line of the solvation spheres.
At r =5 A (Figure 4B), the density in the attractive region be-
tween the ions has been removed away fronethgis, leaving

three representative interionic distances, 2, 5, and 7 A; the blackan unbalanced repulsive force (c in Figure 3)r At 2 A (Figure
represents regions of the liquid eliciting repulsive interionic 4C), high liquid density begins to develop in the attractive region
forces Es2 > 0), while the white shows the regions of attractive at the left of ion 1, while the density in the repulsive region

forces. An isolated ionr(— oo; left panel in Figure 5) is

between the ions has been completely removed; thus, an

surrounded by four distinct regions, generating forces that attractive net force results (d in Figure 3). Spherical symmetry

exactly cancel each other in equilibriufs, = 0). This follows
from the functional form ol after recognizing that a liquid

is regained at = 0 (Fs 2= 0), but with the density distribution
controlled by both ions.
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The main characteristics & Ar) versusr, plotted in Figure 4
3, are preserved if the domain of the integral in eq 17 is restricted 2] A I @
to regions whereo > pp, With pr, > 1 being an arbitrary M
threshold. Aspy, increases|Fs Ar)| becomes smaller for afl, —~ 0
as expected, but both the minimumratand the maximum at ) o) T r,
ry remain well defined. This suggests that the modulation of o )
FsAr) versusr originates mainly in regions of high liquid [, -4 Ar
density. Because of the functional form\af; [cf. eq 11], these "

. . -6

regions are located near the solute and provide the short-range
character of the liquid-structure forces. If the regions of high -81
density are identified, the integration domain in eq 17 shrinks, 6 p ) T 3
and the calculation of the force becomes computationally T [A]

tractable, even in complex solutes. These observations and theF_ Liquid ¢ b ) _
analysis of the force densityZ(y, z r), discussed above suggest '~ 9ure 6. Liquid-structure force between two ions @t< o1 + o2,

imol del for liquid-structure . t d calculated with the double-shell model (eq 29) as a function of the
a simpie modelior iquid-structure forces In a system COMPOSEQ e rionjc distance (force in kcal/mol/A). The parameters of the model

of two charges. In this model, the total forEe; on an ion will control the height4Fw), width (Ary), and location of the maximum
be associated only with the peaks (for o1 + o02) and to the (rm) of the repulsive force (the two plots are for different sets of
continuous region of stationary points around the ionsr(fer parameters).

o1+ 0,). The forces exerted by the peaks will be discussed in gphere defined by the innermost surface of the internal shell

the more general case of molecular solutes (section IV.2.2 3round jon 2 (of radius, — d). These volumes can then be
below); so, the focus here is only on the forces exerted by the \yyitten as

high-density regions at < o1 + o,. These regions are unique .

to the cylindrical symmetry of an ion pair and are generally Vy(r) = Vy(no(xy)o(yy) + V,0(=yy) (30)
not present in molecules. For completeness, however, a model ] ) ) ) )

is derived here to account for such effects. This model will play Where the index is e, 2, or i,Vi = 4z0/3, and0(x) is the
a central role when explicit ions are included as part of the Heaviside function defining the values ofor which overlap
molecular solute (e.g., as counterions) in dynamic simulations Petween the spheres exist. The functiegsandyy are given

using a continuum solvent model (to be reported). by Xy = (r1 +rz) — randyy =r — (r2 — ry), with r; = o and
To derive a model ofFs; for r < g1 + o2, the solvent ~ 2= 02 F de(for 1 =¢€),ro =0z (I = 2), andr, = 0> — d
surrounding ion 2 is divided into the regions shown in Figure (I = 0). The volumesVy of the overlapping spheres are

5A. This partition is suggested by the force density distribution, continuous functions of given by 3/y(r) = 7a?(3r, — @) +
T, 2), on an isolated ion shown in Figure 5B and by the 70%(3r1 — b) [i.e., the overlapping volume of two spheres of
behavior of Ay, z r) discussed in section 111.2.4 and illustrated ~ adiir1andr, with center-to-center distancgsee inset of legure

in Figure 4, on ion pairs. An external shell of thickneksis 5)]; the distances andb are given bya =r; — (r* + r; —
formed by two hemispherical shells" exerts a repulsive force,  r)/2r andb = ry — (r2+ r{ — r3)/2r, with r; andr defined as
andV,~ exerts an attractive force. Similarly, the internal shell in xy andys. Introducing these expressions into eq 29 yields

of thicknessd; is formed by the hemispherical shels"™ and FsAr) as a continuous function ofthat can be evaluated rapidly.
Vi~ (the index efi indicates external/internal shell, while the signs The precise form oFs Ar) depends on the values of the force
+/— indicate the direction of the induced force on thaxis, density parameterk and/;, and the thicknessed, andd;, of
that is, repulsive/attractive). In the discussion beldyl, Ve, the outer and inner shells, respectively. Figure 6 shByur)

Vi*, and V;~ will denote not only the corresponding regions for two arbitrary sets of parameters (with < 4; andde > dy),

but also their volumes. If ion 1 is centeredrat 0 and the ~ Wwhich can be compared to the plot in Figure 3. The minimum
center of ion 2 is moved from = 0 in the +z direction, the  atrm is due to the forces exerted by the peaks atoy + o,
volumesVe~ andV;* change according to the extent of overlap Which are not discussed in this section (see section IV.2.4). The
of the solvation spheres (of radii ando»). These overlapping ~ overall shape of the curve is reproduced but with 4 orders of

regions are labeled y/and V. If 1o > 0 and4; > O are magnitude faster computation than the numerical integration of
parameters representing the force per unit volume exerted byeq 17. These practical considerations justify introducing the set
each shell, then of four parametersi¢, i, de, and d) in the model. These

parameters control the locatiorg), the height AFg), and the
F A1) = ieVe+ — AV, + AV, + (N —AVs () (28) width (Arg) of the repulsive force (the precise formfef, at a
' short interionic distance is of no practical interest because of

where the explicit dependence pwas indicated in/e=(r) and the interionic core repulsion). The basis of this model is the
Vit (r). Since the volumes of the hemispherical shells\are competition of forces exerted by the four hemispherical shells
= Ve + Vo~ andV,~ =V, + V;*, the force is given by around the ions. The strengths of the forces exerted by each
shell and the regions where each shell operates are controlled
FsAr) = A V(r) — A Vi(r) (29) by 4 andd, respectively.

IV.2.2. N Interacting ChargegQ;}i=1,n. In @analogy with the
where the volumed/g(r) and Vi(r) can be calculated as the case of ions, two kinds of systems will be considered, (1) single
difference of two volumesye(r) = Vidr) — Vi(r) andVi(r) = amino acids and (2) amino acid dimers. Single amino acids are
V1a(r) — Vii(r), whereVi(r) is the volume of the region defined  used to gain insight into the structure of the surrounding liquid;
by the intersection of the solvation sphere of ion 1 and the sphereamino acid dimers are used to investigate the restructuring of
defined by the outermost surface of the external shell aroundthe liquid upon dimer dissociation and its effects on the
ion 2 (of radiusoz + de). Via(r) is the overlapping volume of  intermolecular forces.
the solvation spheres of ion 1 and ion 2, avid(r) is the IV.2.2.1. Single Amino Acid3he focus of this section is on
overlapping volume of the solvation sphere of ion 1 and the the forces induced by the structure of the liquid surrounding
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polar and charged groups. For these groups, the barometric law
of eq 10 is expected to be a better approximation than for groups
interacting more weakly with the solvent. In the case of nonpolar
solutes, a more explicit treatment of) in eq 9 is needed
because the effects related to ligtiduid interactions may

not be properly captured in an effective liquidolute potential.
Formally, however, the treatment of liquid-structure forces
described in this paper is general and can be applied to polar
and nonpolar solutes, provided that a suitable density function
o(r) is available.

Experimental information on the structure of liquids can be
obtained from radial distribution functions, for which X-ray or
neutron scattering methods are commonly used. Because of the
practical difficulties, however, experimental studies have been
limited mainly to pure liquids or relatively small solutes (e.qg.,
ions). Computer simulations can overcome these difficulties and
provide a great deal of information on the physics of hydration.
Despite their obvious limitations, computational methods have
a unigue advantage over experimental techniques in that the
microscopic structure of the liquid around the solutes, its spatial
restructuring upon changes of a solute conformation, and the
forces elicited by the liquid can be studied in atomistic detail.
Molecular dynamics (MD) simulations are used here to elucidate
the structure of water surrounding single polar/charged amino
acid side chains. The computational setup of the simulations is
the same as described in ref 90. A classical, nonpolarizable,
rigid three-point water model has been used to represent the
liquid. The MD simulations were carried out at a temperature
of 25 °C; the volume and number of water molecules in
the simulation box were kept constant, with a density
po ~ 0.03325 A3 (corresponding to~0.993 g/cm). Four
charged (Ard, Lys", His", and Asp) and four polar, net-
neutral (His, Asn, Tyr, Ser) amino acids were modeled as

described®® Spatial distribution functiong)(r) = pg p(r) =

“1sN 5V—1p lculated f h Eg(l )t /;1061% ) . Figure 7. Peaks of liquid density surrounding charged and net-neutral
Po (r) were caiculated for each so u_e,_w (r) is polar amino acids. Red dots: first peaks calculated from a time average
the average number of water molecules within an element of ot \water dynamics in an atomistic simulation of the liquid. White

volume oV located at positionr, given by ON(r) = dots: peaks calculated numerically from the liquid densits) (eq
T L/N(r, t)dt, with N(r, t) = 3 6(r — ri(t)), and the sum runs  10) with an optimized effective solutdiquid interaction potentiaV/es
over all of the water moleculesyx) is 1 forx = 0 (i.e., if the (eq 11).

oxygen atom of water iis withiV at timet) and O otherwise;  giher peaks are observed near the protons in the direction of

7 is the total simulation time, which is long enough to ensure gach N-H bonds (1.7< g < 2.6). The removal of a proton in

convergence of the distribution functions. The positions of the s+ causes one of the peaks to split into two of lower densities,

peaks ofo(r) around each molecule were calculated as described gne at each side of the Hi¢G) ring (1.8 < g < 2.5). The

in ref 19. The focus here is only on the first peaks, defined as hqsitions of the peaks in Tyr (F) and Ser (E) are similar, as

the set of points{ri}r-in, consistent with direct H-bond  expected from the geometry of their functional groups (the

interactions with polar protons or acceptor atoms of the solute’s goyple bond character of theCO— bond in Tyr has no direct

functional group'® The set of values af(r) at the positions of  effect on the results of the classical simulations). In both cases,

the peaks are denoted By} =1, with gr = g(rr). two peaks are observed close to the oxygen atom, and a third
The positions of the peaks around each molecule are shownpeak is bonded to the polar proton in the direction of thetD

in Figure 7 (red dots). The peaks distributions can be understoodbond. For both molecules, 1.8 gi < 3.6, where the larger

in terms of the spatial symmetry of the functional groups. For value corresponds to the peak close to the proton. The peak

Arg* (A), they appear in the plane of the ring, near the hydrogen distributions are elicited by the geometry of the side chains only

atoms, in the direction of the \NH bonds (2.8< g < 3.4). In and contain no information on the quantum mechanical nature
Lys™ (B), the peaks are in a tetrahedral arrangement with respectof the solute or water molecules.
to the central nitrogen (2.8 gr < 3.3). In His™ (C), the peaks Parametrization. The densities and positions of the peaks

are in the plane of the ringg( of 2.8 and 3.7); in both cases, identified above are used to optimize the sottltquid potential

the peaks appear in the direction of the-N bonds. In Veri(r) of eq 11. In principle, each atomof the solute can be
Asp™ (D), three peaks are located in a tetrahedral arrangementassigned a paramete¥;, and o, to be optimized. Here, this
around each of the oxygen atom in thReCOO™ group; an general optimization is simplified by defining a subset of atom
additional peak is shared by both oxygen atoms &.8 < types: polar hydrogen(; and oy) and acceptorgs andoa)

3.4). For the polar amino acids, the valuegoére, in general, atoms in neutral functional groups, polar hydrogémn éndoy)
smaller than those for charged molecules. In Asn (H) three peaksand acceptorgx andoa’) atoms in charged functional groups,
are located around the oxygen atom, with a tetrahedral arrange-and all other atoms&f andoo). With this definition, there are
ment similar to those around the oxygen atoms in Aspvo four or six parameters per molecule, depending on the amino
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acid type. The optimization then consists of finding the values
of the&’s ando’s that reproduced the positiofis} and densities
{gr} of the peaks obtained from the MD simulation. The sotute
liquid interaction potential is optimized for each molecule
separately. The optimization is carried out using simulated
annealing Monte Carlo in the space of the paraméf8ra
function Sis defined as

Se o) =A75 Iry—rl’+ > lg,— o (1)
=1 f=1

wherer, andg, are the position and density of a peakogf)
calculated from eq 13, using the poten¥iak(r) of eq 16, which
contains the sdt&, o} to be optimized. The peaks are formally
defined as the set ah points{rp}p=1m Wherep(r) has local

maxima. The basic assumption is that the static number density

o(r) defined in eq 11 can be equated to the number density
ON(r)/oV obtained as a time average from the liquid dynamics.
The functionS is minimized using a Boltzmann-like factor,
exp(—9T), with the dimensionless variable decreasing in a
logarithmic schedule. Trial moves are accepted or rejected
according to a Metropolis criteriol* For arbitrary values of
{&, o}, the numberm, of peaks ofp(r) is, in general, different
thann, so the following criterion is used. ih > n in a trial
move, the subset oh peaks used in eq 31 is that which
minimizes the distance defined by the square root of the first
sum in eq 31; ifm < n, then the trial move is rejected. To
identify a peak of(r), a two-step focusing protocol is used for
computational efficiency. Thus, spherical grids of ragiand

cell size Ar, AB, Ag) (in spherical coordinates) centered at
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over the eight molecules, is 0.8 A. The valueq gf} are also
well reproduced, yielding an average rmsd with respe¢gtp

of 0.4. These results show that a barometric law with an
optimized Lennard-Jones-type potentMlg(r), yields satisfac-
tory results despite the relatively small set of parameters used.

IV.2.2.2. Amino Acid PairsA systematic study of the
intermolecular H-bond interactions between polar/charged amino
acid side chain dimers in pure water has been repdftétose
simulations were aimed at (i) quantifying the strength of the
interactions in solution and obtaining information on the minima
and barriers of the intermolecular potentials of mean force
(PMF), ¢(r), and (ii) understanding the structural and dynamical
properties of the liquid surrounding the solutes and the molecular
origin of the forces exerted by the liquid. Point (i) was reported
in ref 90 where detailed information on the PMF, a quantity
which is not accessible experimentally, was obtained. Tech-
nigues are currently being developed to experimentally explore
the energy landscapes of molecules in solution and provide more
direct information on the PME5>-197 Point (ii) was partially
addressed in ref 19, a study that provided insight into the liquid
structure and its effects on the intermolecular interactions. The
theoretical model presented in this paper is based on the
observations reported in refs 19 and 90, which can be viewed
as the experimental component of this work.

The PMF of a dimer is characterized by the positions of the
contact minimumy¢m, the desolvation barrier or transition state,
rs, and the solvent-separated minimungs along with the
corresponding values of the potentials, thatdigys = ¢(rcm),
drs = @(I's), andeoss= P(rs9. A simplified yet complete solvent
model requires these minima and barriers to be accounted for.

each of the polar hydrogen and acceptor atoms of the soluteThe minima and the desolvation barriers are determined not

are defined. Local maxima af(r) are found within each grid
by directly comparing the value @jrix) at a point {, j, k)=

(ri, 6j, ¢i) of the grid with the values af(rij «) at each of the
26 neighboring pointsi'( j’, K) = (i £ a,j + b, k + ¢), with

a, b, c equal to—1, 0,+1 (not all 0). A local maximum ati(

i, K) is defined by the condition(rii) > g(ri k) for all (i'j'k).
Once a maximum of(r) is found atri in this grid, a new
fine-grained homogeneous grid of cells sizg'( A0', A¢') is
built aroundriy, with ri—1 < r < riy1, 6j-1 < 0 < 6;+1, and
k-1 < ¢ < ¢x+1. A search of a local maximum at each point
(@i, j, K) in this new grid is repeated as before. Once a new
maximum is found at a pointj in the finer grid, the peak is
defined by its coordinates, = rix and its densityy, = 9(rix);

these are the values used in eq 31. The uncertainty in the

locations of the peaks calculated from the MD simulations is
0.65 A (see ref 19 for details), while the partitions of the
spherical grids are chosen such that the uncertainty in the
location of a peak is 0.05 A or less. If two peaks at positions
re andry are separated by a distangg — ry| < 1.38 A,
then they are replaced by a single peak located, at (g p

+ gprp)/(gy + Qp), with densityg, = (gy + gp7)/2.

Figure 7 shows the location of the peaks after optimization
of the potentiaMett (White dots). In all cases, the distributions
of {rp} closely follow those ofrs}, although some deviations
are observed in Asp(in particular, the distances §f} to the
oxygen atoms in the-COO~ group tend to be shorter than those
for {rs}). These deviations are not surprising since, for Asp
28 scalar quantities are optimized with only 4 parameters.
Additional peaks may also appear in some cases. I, g

only by the electrostatic forces exerted by the bulk liquid but
also by the SIF originating in the microscopic nature of the
solvent. The SCPISM, which is based on the SCP continuum
electrostatics model reviewed in section V.1, empiric&fly
accounts for the values @f;m obtained in atomistic dynamic
simulations of the liquid® This empiricism is needed because,

if the correct value ofpcm is sought and only an electrostatic
model is used, the correction for the missing SIF effects on
¢em Must be incorporated in some way. Some of the problems
observed in macromolecular simulations seem to stem from a
failure to appreciate this. Barriers and minima of intermolecular
potentials have been observed with a macroscopic electrostatic
model and a suitable choice of the solute/solvent dielectric
interfacel® In the SCP-ISM, the correction is made by
adjusting the Born radii [cf. eq 23] of protons shared by the
donor and the acceptor atoms in hydrogen bonds. This empirical
correction also reproduces barriers and additional minima that
are qualitatively similar to the desolvation barriers and solvent-
separated minima of the PMF (not shown). However, such
additional modulation is a byproduct of the approach employed
to control the values apcm atrem. A physically complete solvent
model should account explicitly for the SIF responsible for the
form of the PMF; in such a case, the empiricism discussed above
can be removed.

In analogy with the case of ion pairs, the liquid-structure
forces are here assumed to originate mainly in regions of high
liquid density. In molecular solutes of arbitrary shape, such
regions correspond to peaks located in the vicinity of the

more peaks are observed at each side of the ring’s plane on anolecule. In this case, the liquid-structure forEg;, associated

line passing through the ring’s geometric center; a similar peak
is observed at one side of the ring in ArgThe root-mean-
square deviation (rmsd) §irp} with respect to{rs}, averaged

with the peaks is responsible for the non-pairwise additivity of
the liquid forces and is discussed in detail in this section. From
eq 17,Fs; can be written as
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Fo() == 3 ViVerlIr = rjIN(r)) (32)

=1

wherer is the position of atom i in the solute, is the total
number of peaks in the liquid, a(r;) is the number of water
molecules at the position, of the j-th peak. The number of
water molecules at;j is N(rj) = 7(r;)p(rj), wherep(r;) is the
density at the peak [cf. eq 10], andr;) is a local volume which
accounts for the spatial extent of the peak in the three-
dimensional space. Accounting fdi(r;) is conceptually neces-
sary because the value of the density at a peak carries no
information on the density distribution around the peak; two
points of equal density might be surrounded by a different
amount of liquid, owing to different packing of the solute atoms
around each point. This information is automatically captured
when the integral in eq 17 is carried out over the space but is
removed when the integral is replaced by the sum over peaks
in eq 32. To account for molecular packing in a computationally
efficient way, a contact model, akin to that used in ref 94, may
prove useful. For simplicity, the position dependence of the
volume will be ignored, and7(rj) = ¢’ for all peaks. A
correction, 0Fs;, will be added later [cf. eq 34] to partially
compensate for this approximation. Regardless of the functional
form of 7(r;), the total forceFs = y Fs; and torquer = 31 x
Fsj exerted by each peak is zero in equilibrium because the
gradient of the potential at the position of the peaks is zero by
definition.

Introducing eq 11 into eq 32, the total force exerted by the
peaks on atom i of the solute is given by

n c-r)| o°
Fo(r) = 127807 5 p(r) ——

= Ir—=r\Ir —r°

—1| (33)

There is no conceptual need to restrict the summation in eq 33
to peaks located around polar and charged groups because eq
17 is general. However, as discussed in section IV.2.3, possible
limitations arise from the barometric law and the effective
potential Vesr. For nonpolar solutes, the forcEs;, calculated

from eq 32 is strictly zero, but it is different than zero if eq 17

is integrated numerically. Therefore, a nonpolar fof€g, = Figure 8. Restructuring of the liquid as the AspArg® dimer
—VAGh, is added toFs; of eq 32 as a correction term [cf. dissociates from close contact. The density peaks’ redistribution is
section 1V.1] to represent the forces in the limit of nonpolar shown for representative proton-acceptor distances (in A): r(A)

o N 1.8; (B)r = 3.2; (C)r = 4.6; the arrow indicates a peak H-bonded to
solutes. For nonpolar soluteS,p; is the only contribution to the proton and acceptor atom simultaneously; (B} 7; the shared

the total SIF (the simplest approximation to hydrophobic forces peak in (C) splits into two peaks marked with arrows. The peaks are

commonly used in molecular simulations). For polar and charged calculated numerically as the set of local maximap(f) (eq 10)

solutes, bottFnp; andFs; contribute to the total SIF. The force  surrounding polar protons and acceptor atoms. This is to be compared

given by eq 32 can be viewed as originating in the structure of Wwith the peaks’ redistribution calculated from the dynamics simulations

the liquid, induced in the presence of polar and charged groups.réported in ref 19.

If a more sophisticated treatment @® in eq 9 was available,

eq 32 could be extended to include all of the peaks surrounding a5 describe¥ (except for the distance step, which is set here

the solute. Then, the forde,p; would be included in the total to Ar = 0.02 A)

SIF, and there would be no need to resort to the empirical term ' '

AGy,, to represent such forces. The restructuring of the liquid as the dimer dissociates from
The intermolecular force and associated potential can now close contact is illustrated in Figure 8. The peako@) are

be calculated for the amino acid dimers studied in ref 90. The shown for representative intermolecular distances. The redis-

values of thef's and¢g’s obtained for single amino acids are  tribution of peaks closely follows the changes observed in the

tr?ﬂsfe’g\rsed to the case of the dimers. For illustration purpose, gynamics simulation® Figure 9A shows the componeR(r)

[ 2 DUt In general, ft should be considered a parameter )R (thin line) and the associated potentalr) (thick

of the model, as dIScussed DEIOW. FOr the purpose o ISCUSSIOn1ine) for the dimer.R is a unit vector in the direction of the

only one representative dimer (AspArg™) is considered here; . .
Y P (AspArg™) . line connecting the centers-of-mass of the two monomers. The

a detailed analysis of all of the dimers studied in ref 90 will be X . )
reported elsewhere. The initial setup of the dimer conformation ValUer is the proton-acceptor distance, and the intermolecular

and the protocol for the calculation of forces and potentials are force is calculated as in ref 9B(r) = [Fsa(r) — Fso(n))/2,
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Figure 9. Forces and potentials for the AspArg* dimer. (A) Total,
non-pairwise intermolecular ford&(r) (thick line) exerted by the peaks

of liquid density (eq 33) and associated potenthgr) (thin, as a
function of the proton-acceptor distance). The maximum repulsive and
attractive forces occur at= ry andr = ry, respectively. The labels
A—D on the axis correspond to the distances in panet®f Figure

8. (B) Pairwise intermolecular correction foré&(r) (thick) (eq 34)
and potentialdgy(r) (thin). (C) Total intermolecular potentiag(r),
calculated with the model developed in this paper (thick) and the total
PMF calculated from the molecular dynamics simulation reported in
ref 19 (thin). Error estimates from the simulations are shown at the
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o, are replaced by a continuum of saddle points at o1 +

2. A molecular solute lacks the symmetry of the ion pair;
therefore, the peaks that existrat oy + oa in the dimer do

not completely disappear at< oy + oa. However, the spatial
extent of the peaks at< oy + oa still generates a repulsive
force that complements the repulsive force calculated from the
peaks densities. A formal way of taking these effects into
account is through a suitable treatment of the local voluirg).

This problem is simplified here, and a correctiofs;, to Fs;

is introduced, which enhances the repulsive forces around

rm in a computationally efficient way. This correction is based
on eq 29 and applies only to acceptor atoms entering the
solvation sphere of a polar proton. Therefore, the liquid-structure
force on atom is composed of non-pairwise contributiofg;,
generated by the density peaks and given by eq 33 and of proton-
acceptor pairwise contribution8Fs;, given by eq 29. If is an
acceptor ang is a polar proton, eq 29 yields

Ny r
OFg; = Z [AeVe(ry) — A4Vi(ry] r_ (34)
i= i
whererj; = ri — rj andry =| rij|; e 4i, de, @and d; are the

parameters for; Ny is the total number of polar protons in the
solute; and the force on a protgnis given by eq 34 after
changingrjj to —rj and Ny to Na (total number of acceptor
atoms). Figure 9B shows the correcti®dfy(r) = 0F«(r)-R (thin

line) and the associated potenialy(r) (thick line) of the dimer.

As in Figure 9A,0F«(r) = [0Fsa(r) — oFsp(r))/2, wheredFs o

and oFsp are the total forcegFs, on the acceptor and donor
monomer, respectively, evaluated at their centers-of-mass. The
most important feature displayed in Figure 9B is the added
repulsive force around= ry (parameters not optimized). This

contact and solvent-separated minima and at the transition state. Allforce complements the repulsive force of the peaks in Figure

forces are in kcal/mol/A; potentials in kcal/mol.
whereF; A andFs p are the total force on the acceptor and donor

monomer, respectively, evaluated at their centers-of-mass. The

4A; the form of OF(r) at small values of is of no practical
interest.
The total intermolecular force and associated potential can

total force on a monomer is obtained from the summation of NOW be calculated. The resulting fordg, on atomi is given

Fs; of eq 33 over all atoms i of the monomé&i(r) < 0 implies
attraction between the monomers. The peaks associated wit
the long-range attractive force are marked with arrows in Figure
8D. These peaks mergerat rm, yielding only one peak located

between the proton and the acceptor, which is marked with an

arrow in Figure 8C. The location of this peak is consistent with

water molecules bridging the proton and the acceptor atom

through H-bonds, as discuss¥dand is responsible for the
minimum of F(r) atr = ry,. The effect of these peaks is identical
to the effects of those discussed qualitatively in section Il for
the case of ion pairs at> o1 + o2 [cf. Figure 3]. In that case,

by eq 20.F¢; and Fygw; are calculated with the all-atom
epresentatiol§® of the CHARMM force field? Fe; is given

y eq 26.Fs; is given by eq 33; a nonpolar force correction,
Fnpj, is addedoFs; is given by eq 34. Figure 9C shows the
intermolecular potential calculated from the total foFdg) =
Fo(r) + Fuaw(r) + Fe(r) + Fg(r) (thick line) and the PMF
obtained from the MD simulations reported in ref 90 (thin).
The main features of the PMF can be reproduced within the
statistical errors, althoughsis slightly shorter 4.1 vs~4.6
A). This is due to the small number of parameters used to
optimize Ve(r) for Asp~, which results in small deviations of

these peaks produce the long-range attraction between the iondhe positions of the peaks with respect to the results from the

and are associated with the minimumkafr) atrm in Figure 3.
Dynamics simulations show that new peaks appear between th

monomers as they dissociate beyond the solvent-separate

minimum distance, which further modulates the intermolecular
potential®® The model developed here does not account for
liguid—liquid interactions, and thus, no new maxima and minima
exist forr > rp, associated with the interactions between peaks.
Figure 9A also shows a maximum B&f(r) atr = ry. This
maximum is similar to that in Figure 3 for the case of ion pairs.
As discussed abové&g(r) atry contains only the information

simulation [cf.Figure 7].

. Discussion and Conclusions

Molecular interactions in solution are controlled by bulk
electrostatic forces and by solvent-induced forces. A complete
description of solvent effects requires both to be accounted for.
Efforts in developing models for use in computer simulations
of macromolecules have focused almost exclusively on elec-
trostatic forces. In contrast, the forces exerted by the microscopic
nature of the structured solvent at the solute/liquid interface have

embedded in the density at the positions of the peaks, not inbeen traditionally neglected. In this paper, a model has been

the amount of liquid surrounding the peaks. When the polar

developed to account for both effects, thus improving upon

proton and the acceptor atom of the dimer separate from eachcontinuum representations.

other, it creates a situation qualitatively similar to that in Figure
4 for two ions. In an ion pair, the peaks that exist & o, +

The model of electrostatics developed here was based on the
dielectric theory of polar and polarizable fluids. Both the
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polarizability and the permanent dipole moment of the water problem of molecular electrostatics, namely, the sensitivity of
molecules were accounted for. The reaction field was explicitly the results to the treatment of the solute/liquid interface. Reaction
introduced into the internal and directing electric fields. The field effects and electrostriction tend to increase the values of
model captures the saturation effects of the field and the spatialthe dielectric permittivity close to the solut&#>51:11%ut bulk
dependence of the liquid density. The density was representeddipole—dipole correlation tends to decreasé'ftyvhile correla-
by a barometric law with an effective Lennard-Jones-type tions closer to the source may decrease it further. The effect of
solute-liquid interaction potentiaVes. A closed equation for  the liquid density is yet another factor to be considered, as
the effective, position-dependent static dielectric permittivity, discussed here and elsewheteThe coexistence of these
e, was derived for arbitrary solutes and solved numerically for competing effects makes it difficult to predict the correct
ions and ion pairs. Experimental free energies of hydration were behavior ofe near a solute, and the distance at which bulk liquid
used to calibrate the iediquid interaction potential. The  dielectric properties are recovered. This topic can be studied
potential thus derived was then used to calculate the free energywith atomistic dynamics simulations of the liquid in the
of hydration of ion pairs as a function of the interionic distance. proximity of a solute!’® To compare the results with the
The forces exerted by the structure of the liquid on ion pairs prediction of the model developed here, a polarizable force field
were then calculated. The results showed that the forceswould be required!”180n the other hand, experimental data
associated with the desolvation barriers and the solvent-separategrovide some insight into the local electric field in proteins and
minima observed in interionic potentials of mean force can be protein-liquid interfaces!!®2° In particular, K shifts of
reproduced with a suitable choice of the effective potential ionizable groups are sensitive to local protein electrostatics and
parameters. can be used as benchmarks to validate and optimize solvent
The results summarized above were obtained by numerical M0dels:2: Data on X shifts have been us¢t®to guide the
integration of egs 6, 12, and 17. However, the numerical solution OPtimization of the screening functions of the SGBM
of the forces may be too demanding in biological applications "€viewed in section IV.1.
of macromolecular simulations, and thus a simplified model for

bulk electrostatic and liquid-structure forces was proposed. The Ac_knowledgment._The author thanks Eeter _Stemba(_:h for
electrostatic model has been developed previously, and its mainre"leIIng the manuscript and for valuable discussions. This study

features were reviewed. The model for solvent-induced forces W& supported by the Intramural Research Program of the NIH,

was introduced here and analyzed in detail. The mostimportantU'S' Department of Health and Human Services, Bethesda,
characteristic of the model is its non-pairwise nature, typical Maryland.

of the short-range liquid structure forces. The non-pairwise
additivity of the liquid forces arises from pairwise forces
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