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ABSTRACT With the help of the crystal struc-
ture of rhodopsin an ab initio method has been
developed to calculate the three-dimensional struc-
ture of the loops that connect the transmembrane
helices (TMHs). The goal of this procedure is to
calculate the loop structures in other G-protein
coupled receptors (GPCRs) for which only model
coordinates of the TMHs are available. To mimic
this situation a construct of rhodopsin was used
that only includes the experimental coordinates of
the TMHs while the rest of the structure, including
the terminal domains, has been removed. To calcu-
late the structure of the loops a method was de-
signed based on Monte Carlo (MC) simulations which
use a temperature annealing protocol, and a scaled
collective variables (SCV) technique with proper
structural constraints. Because only part of the
protein is used in the calculations the usual ap-
proach of modeling loops, which consists of finding
a single, lowest energy conformation of the system,
is abandoned because such a single structure may
not be a representative member of the native en-
semble. Instead, the method was designed to gener-
ate structural ensembles from which the single
lowest free energy ensemble is identified as repre-
sentative of the native folding of the loop. To find
the native ensemble a successive series of SCV-MC
simulations are carried out to allow the loops to
undergo structural changes in a controlled manner.
To increase the chances of finding the native funnel
for the loop, some of the SCV-MC simulations are
carried out at elevated temperatures. The native
ensemble can be identified by an MC search starting
from any conformation already in the native funnel.
The hypothesis is that native structures are trapped
in the conformational space because of the high-
energy barriers that surround the native funnel.
The existence of such ensembles is demonstrated by
generating multiple copies of the loops from their
crystal structures in rhodopsin and carrying out an
extended SCV-MC search. For the extracellular loops
e1 and e3, and the intracellular loop i1 that were
used in this work, the procedure resulted in dense
clusters of structures with C�-RMSD �0.5 Å. To test
the predictive power of the method the crystal
structure of each loop was replaced by its extended

conformations. For e1 and i1 the procedure identi-
fies native clusters with C�-RMSD �0.5 Å and good
structural overlap of the side chains; for e3, two
clusters were found with C�-RMSD �1.1 Å each, but
with poor overlap of the side chains. Further search-
ing led to a single cluster with lower C�-RMSD but
higher energy than the two previous clusters. This
discrepancy was found to be due to the missing
elements in the constructs available from experi-
ment for use in the calculations. Because this prob-
lem will likely appear whenever parts of the struc-
tural information are missing, possible solutions
are discussed. Proteins 2006;64:673–690.
© 2006 Wiley-Liss, Inc.
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INTRODUCTION

G-protein-coupled receptors (GPCRs) transduce signals
across the cellular plasma membrane in a large number of
physiological processes including vision, olfaction, taste,
and neurotransmission. Because of their diverse roles in
signal transduction, they comprise one of the most impor-
tant groups of targets for drug research (for reviews, see
Refs. 1–3). The mechanistic understanding of GPCR func-
tion, as well as the search for therapeutic agents that are
targeting GPCRs, is complicated by the difficulties in
obtaining crystallographically determined structures for
these membrane spanning proteins. Thus, to date, the
crystal structure of only one GPCR, rhodopsin, has been
reported, and only in the inactive state.4–7 This situation
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makes computational modeling of GPCRs an essential
investigative tool, often based on homology models using
the 3D structure of rhodopsin as a template1,8,9

Unlike the TM helices (TMHs) that bear significant
homology within receptor families and even within entire
classes (e.g., the rhodopsin-like class A GPCRs) the loops
connecting the helices are quite diverse in size and amino
acid composition, making homology modeling unreliable,
and other information-based methods impractical. Thus,
although other structural elements can frequently be
“mapped” from an unknown to a known protein by homol-
ogy modeling, the insertions/deletions in loops prohibit
direct transfer of coordinates from the known to the
unknown protein, even for short loops. This variability is a
major limitation for comparative modeling techniques.1,10–12

This situation must be remedied because loops are
important components of the functional domains of pro-
teins, and this is particularly true of the extracellular and
intracellular loops of GPCRs.2 Thus, over the last several
years an intense effort has been mounted for predicting
loop structures using approaches that do not depend on
homology modeling.13–18,19 Instead, an ab initio approach
is used in the context of a classical or molecular mechanics
(MM) approximation, requiring only the primary amino
acid sequence of the segment for which the structure is to
be determined. If the MM forcefield used in the calcula-
tions represents a realistic description of the system, this
approach may also provide information on the underlying
forces that determine the structure and physical proper-
ties of the loops, for example, their flexibility, which is
central to their function. However, this effort has been
beset by a number of difficulties arising primarily from (1)
the quality of the forcefield, and (2) the topology of the
energy surface that is characterized by high barriers and
multiple secondary minima. This topology prevents the
standard sampling techniques from properly exploring the
conformational space, thus reducing the probability of
sampling native structures. To overcome these high-
energy barriers that hinder rearrangements of the loop
from incorrect to correct conformations, simulated anneal-
ing (SA) has been used in both Monte Carlo (MC) and
Molecular Dynamics (MD) methods. Complementary tech-
niques that lead to improved sampling and convegence
include soft-core potentials16,20 (which may include com-
plete removal of the van der Waals interactions), locally
enhanced sampling,21 or replica exchange methods,22–25

as well as a combination of several approaches (e.g., see
Ref. 16).

Most of the methods for the ab initio calculation of loop
structure that have been reported in the literature deal
with isolated loops in globular proteins largely exposed to
the solvent.14,15,26–31 However, in transmembrane pro-
teins (TMP) such as GPCRs, the situation is more complex
because the loops can be partially buried inside the protein
and also interact with each other, as shown by the crystal
structures of rhodopsin and ion channels.4,32

In the classical, energy-based approaches the starting
point of ab initio loop prediction is one or more arbitrary
initial conformations of the loop for which an extensive

conformational search is carried out using MC or MD
simulation. The procedure may involve a number of itera-
tive steps, but ultimately a single, lowest “free energy”33

conformation is taken as representative of the experimen-
tal structure. This procedure, however, does not rigorously
follow the thermodynamic hypothesis of protein folding34

that the native state is at the absolute free energy mini-
mum, that is, the native state comprises an ensemble of
many similar conformations with similar energies. Conse-
quently, it has been suggested that ab initio structure
prediction should aim for this ensemble of conformations
and not for the lowest energy structure.33 This is the
approach followed here. Finding the native ensemble is
more appropriate for determining convergence and calcu-
lating thermodynamic properties than is any approach
based on finding a single conformation with lowest energy.
Notably, in many contexts this “lowest energy” is an
effective energy that includes a partial accounting of the
entropy of the solvent, but not the configurational entropy
of the protein. Approximations for partially including the
latter have been reported,35 but as detailed further below,
calculation of an ensemble will automatically account for
configurational entropy effects.

A loop structure algorithm such as the one we described
earlier12,18 has a general form that comprises (1) a way to
anchor the sequence to its attachment points at its N- and
C-termini, (2) an efficient method for searching the vast
conformation space of the sequence, and (3) a scoring
function that can identify the “correct” structure or cluster
of structures, where “correct” implies conformations close
to the native or experimental structure. The original
algorithm12,18 consisted of two steps that met these require-
ments. The approach was applied to several problem, and
various methods were used to validate the results. In one
case the validation of the calculated structures was tested
experimentally,36 while in another case the predicted
structures helped rationalize experimental observations.37

A slightly modified version of the approach was used to
study the effects of certain mutations in a switching
protein (SH-2) controlling the activation of a tyrosine
phophatase.38 The studied mutations cause an autosomal
dominant disorder, Noonan syndrome,39 and the calcula-
tions suggested that the mutations cause a shift in the
active/inactive equilibrium toward the active state as had
already been shown at some other mutation sites leading
to the same syndrome.

In the present work the crystal structure of rhodopsin,
and in particular the extracellular loops e1 and e3 and the
intracellular loop i1 were used to extend the original
protocol to transmembrane proteins. Moreover, the aim of
this work is to apply the method to molecular models of
other GPCRs where the loop structures are not available
and only model coordinates of the TM portions of these
proteins have been reported (for a review see Ref. 40). The
work reported in this article takes advantage of the known
structures of the loops in the crystal structure of rhodopsin
to (1) investigate the main problems posed by ab initio loop
modeling in transmembrane proteins, (2) design an algo-
rithm that would overcome these problems, and (3) use the
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resulting algorithm to find loop conformations in their
native region, which requires the development of criteria
that allow such conformations to be identified from the
calculated structures themselves. The set of criteria we
develop is essential because, in general, there will be no
three-dimensional structures of the loops to compare with,
and with only limited structural information available
there is no guarantee that the lowest energy structure
corresponds to the native conformation. The solution pre-
sented in this article circumvents this limitation in the
accuracy of the template structure by calculating a statisti-
cally representative number of samples of the native en-
semble, thus shifting the emphasis from the “energy” of a
single conformation to the statistical characteristics of an
ensemble of conformations at a given temperature.

In the next section the methodology is presented, includ-
ing a discussion of the loop closing algorithm and a brief
review of the continuum approximation used to character-
ize the aqueous environment. Then, based on the crystal
structures of the loops e1, e3, and i1 in rhodopsin, the
native ensembles of loops in the vicinity of their crystal
structures are explored, which suggests an extension of
the loop closing algorithm previously developed for globu-
lar proteins.18 Finally, the extended algorithm is applied
to the same loops in rhodopsin, but starting from extended
conformations, thus assessing the predictive power of the
proposed method.

METHODS

The original protocol18 was designed to obtain the
correct folding of segments that might include portions of
the known secondary structural motifs at the amino and
carboxy termini of the loops. In this context a segment is
defined as the loop plus one or more residues flanking both
termini of the loop that are part of the defined secondary
structure with known coordinates, but are nonetheless
included as part of the variable segment with unknown
coordinates.18 In this way, the method is designed to
reproduce the proper folding at the attachment points, as a
continuation of the protein fold. In the present applica-
tions an added practical reason for using extended seg-
ments to predict loop structure in GPCRs, is that in model
structures of TM helices the secondary structure assign-
ment of the terminal residues may be less certain than in a
crystal structure. Therefore, extending the segment helps
ensure that all the loop residues will be included in the
calculation, albeit at the expense of introducing additional
degrees of freedom. An atomistic force field was used in the
calculations, which contains terms that account for the
effects of the solvent using the screened Coulomb potential-
implicit solvent model (SCP-ISM). The performance of the
SCP-ISM has been reported elsewhere.19,41–43

The calculations carried out in the present work use the
crystal structure of the extracellular loops e1 and e3 and
the intracellular loop i1 in rhodopsin to design a protocol
that may be extended to integral membrane proteins
where the loop structures are not available. The protocol
aims to obtain and identify structures with conformations
in the low energy-low C�-RMSD (hereafter, LE-LR) region

of conformation space. The calculations are based on the
thermodynamic hypothesis of protein folding34 (see Intro-
duction) to identify structures that are members of an
ensemble occupying the LE-LR region, that is, the native
ensemble presumably at the absolute free energy mini-
mum.

The original protocol consisted of the first two steps
shown in part A of the flow chart (Fig. 1) (note that Part B
of Fig. 1 gives a cartoon representation of the protocol). To
understand the need for extending the loop-closing proto-
col developed in the original formulation,18 it was applied
to loop e3, yielding the distribution shown in Figure 2. This
distribution is typical: The bulk of the conformations are
located in a region of about 3–8 Å C�-RMSD from the
crystal structure (there are also several conformations at
much higher energy with larger C�-RMSD that have been
omitted; see below for method of evaluating the RMSD),
and no conformations are found C�-RMSD below 3 Å. If
step 2 in the flow chart is repeated on a set of replicas
obtained from one of the low-energy structures shown in
Figure 2, the new distribution will be similar in that no
conformations will be found in the low C�-RMSD region.
This result illustrates the difficulties reported in the
literature to find members of the native ensemble, even in
short peptides, without introducing more sophisticated
approaches to explore the conformational space.16,20–25 It
suggests that the free energy landscape around the native
funnel is characterized by an extended region of crags and
pits, making it difficult for the MC method to find conforma-
tions in the LE-LR region. Moreover, the ruggedness of the
energy landscape provides secondary minima or metasta-
ble states where the structure can become trapped. Be-
cause of the extent of this region, standard sampling
methods (e.g., plain MC simulations) are unlikely, in
practice, to find the low-entropy funnel that characterizes
the LE-LR region where the native structures are located.
This issue is explored in this article and a method is
developed in the context of the loop-closing algorithm to
overcome this problem and reach near native conforma-
tions. At the same time, the nature of the energy landscape
also suggests that once a structure is in the funnel, the
broad barriers (which prevented the segment from reaching
the native state in the first place) will now prevent it from
getting out (at physiological or ambient temperature), thus
the clustering of many, closely related conformations. This
hypothesis is explored in detail in the subsequent sections.

Protein Segment Calculations

The protocol reported here to calculate the 3D conforma-
tions of segments in transmembrane proteins was de-
signed with the ultimate goal of generating only a small
set of structures (e.g., �100), but with the expectation of
maximizing the probability of obtaining from them an
ensemble of near-native conformations of the segment in
the protein18 (e.g., C�-RMSD � �1 Å from the experimen-
tal structure). This goal is especially important when
considering the eventual extension of the method to longer
loops, because of the dramatic increase in the number of
possible conformations this entails.
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The method is designed as a fully ab initio MM
approach where only the amino acid sequence is intro-
duced. Moreover, because the method assumes that the
native conformation (of the loops) is, in general, un-
known and only partial knowledge of the protein struc-
ture is available, the usual “Energy versus RMSD”

criterion of success is (must be) abandoned. Therefore,
the decision of whether or not the predicted ensemble of
conformations is (or belongs to) the native cluster is
attempted on the basis of intrinsic properties of the
ensemble itself, according to the LE-LR criterion of
convegence described above and detailed further below.

Fig. 1. (A) Flow chart of the loop closing algorithm (see text for discussion of notation). Note that step 1 (ii)
can be skipped, but is convenient for avoiding severe steric clashes when the variable segment is placed in the
protein for the subsequent open–close calculations. (B) schematic representation of the loop closure
algorithm: 1, Arbitrary starting structure; 2, set of structures obtained from simulated annealing step; 3, set of
closed structures obtained from SCV-MC with harmonic constraint (see text).
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The MC sampling techniques were designed to closely
represent the following working hypotheses: (1) in aqueous
solution the amino acid sequence of the isolated segment
determines an intrinsic collection of structures that may
comprise several families with distinct secondary struc-
tural features (these conformational families may be rela-
tively unstructured for short segments, but may become
more structured as the length of the sequence increases);
(2) the final conformations of the segment in the context of
the protein (i.e., the native ensemble) reflect a compromise
between this tendency of the segment to adopt one of such
intrinsic structures, and the strong constraints imposed by
the rest of the system (of known coordinates) that forces
the segment to partially refold and optimally adapt to the
protein secondary and tertiary structure. Therefore, the
method required (1) the prediction of the intrinsic fold-
ing(s) of the segment (step 1i in the flow chart), and (2) the
relaxation of the segment from this intrinsic conformation
to fit the protein structural constraints (step 2 in the flow
chart). Part (1) requires the production of a statistically
representative sample of the structures of the segment
and, therefore, a simulated annealing MC technique is
used, which guarantees that detailed balance is satisfied
and convergence to a Boltzmann distribution is achieved.
Part (2) involves an external driving force to effectuate the
“refolding” of the segment out of its intrinsic structure
found in (1), and the subsequent selection of the structures
that are members of the native ensemble at the absolute
free energy minimum. Here, a physically correct (Boltz-
mann) statistical distribution, although desirable, is not
required; thus, a stochastic sampling technique based on
the Scaled Collective Variables-MC44 (SCV-MC) method
with minimization is used (see below).

In part (1) the segment is tethered to a structured
portion of the protein consisting of a stem of one to three
residues at one terminus, which restricts the space of

conformations available to the segment at the attachment
point because of the local structural bias. This implies that
only those conformations will be obtained and passed to
the second part of the algorithm, that better fit the folding
of the protein at this point and in the region of the open
stem (see step 1i).

The implementation of part (2) of the protocol requires
bringing the free terminus of the segment towards its final
position in the native structure. This is done by progres-
sively destabilizing the energy surface of the segment in
the vicinity of the (current) local minimum at the same
time that nearby minima, presumably closer to the global
minimum that characterizes the native fold, are further
stabilized.18 To this end, an increasingly larger harmonic
force is applied to the atoms of a dummy residue at the end
of the segment. The total potential energy has the form:

Useg � U � �ik�ri � ri0�
2 (1)

where U is the internal potential energy provided by the
protein forcefield (see below) and k is the force constant to
be increased in successive steps (from k � 0 to a maximum
value that ensures complete closure). The sum runs over a
subset of atoms i (with coordinates ri) in the dummy
residue that is attached to the free end of the segment and
is identical to the target residue with known coordinates,
ri0. The dummy residue does not contribute to U, but
enters Useg only through the constraining term. Atoms N,
H, C�, C, and O of the backbone and the C� of the side
chain are included in the sum; these atoms are chosen to
ensure a smooth closure of the segment by inducing the
proper folding at the attachment point with the protein.
For each value of k an exhaustive exploration of the
conformational space is carried out to find a new minimum
in the energy surface and to relax the structure around
this new-found local minimum. This full exploration using
the SCV44 in MC is intended for the segment to fully
equilibrate at the current value of k before updating it and
bringing the segment to a new local minimum. The SCV is
a history-dependent stochastic technique that retains
memory of previous conformations of the segment ob-
tained at earlier values of k, in particular for k � 0, that is,
the intrinsic folding of the segment.18 Note that the SCV
allows for transitions between different neighboring local
minima that may coexist at a given value of k. Therefore,
the SCV technique suitably fits the two basic rationales
[parts (1) and (2) above] on which our method is based.

The force constant-dependent closure is a critical stage
in the methodology. In effect, the harmonic force constant
should increase slowly to avoid sudden structural jumps
leading to artificial distortions of the segments that would
break the memory-dependent movement sought in part (2)
(ideally, the update of the force constant should not
generate perturbations larger than KBT to ensure a smooth
destabilization of the local energy landscape; however,
current computational capability makes this requirement
too demanding (see below). Another reason to avoid large
deviations of the segment when increasing the force con-
stant is related to the efficiency of the SCV method, that is,
large conformational changes would render obsolete the

Fig. 2. Distribution of 	E versus RMSD obtained from the first
open–close cycle of loop e3 at 310 K after completing the MC-SA step on
the isolated variable segment. The loop is immersed in the protein
construct and solvent environment. Note that all RMSD are evaluated by
first superimposing the nonvariable portion of the structure with the
calculated loop on the structure with the crystal coordinates of the loop
and then calculating the RMSD of the loop without further orientation of
the structure (see text).
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set of preferred directions selected by the method at the
current local minimum, leading to fast deterioration of the
sampling (see Anharmonic Effects below). It is also impor-
tant to note that the closure process can be reversed. Thus,
by decreasing k in successive steps, the segment can be
reopened to k � 0, although the local minimum of the
energy surface at this point will not necessarily be the
same as that at the previous value of k � 0 before closure.
Because of the history-dependent nature of the procedure,
a successive series of such “open-close” cycles can be
carried out to find the native ensemble around the abso-
lute energy minimum.

The SCV-MC search is performed on a set of structures.
In most cases the search starts from a set of closed
structures, opens and then closes them, that is, the
open–close cycle described above. Each step starts with N
structures and ends with N structures, and the set of
initial structures at any step, a, is denoted by {SI

a} while
the final set is denoted by {SF

a}. The opening and closing of
the structures is controlled by the value of the force
constant k, which is increased or decreased according to a
predetermined schedule. A starting set {SI

a} in step a, is
constructed from a subset, 
, of structures, which consists
of one or more members obtained from the previous step,
a � 1, of the protocol, that is, from the set {SF

a�1} (which
contains closed structures); each structure in the subset 

� {SF

a�1} is replicated N times to construct the sets {SI
a}. A

closed structure is represented by a large value of k (e.g.,
103–104 kcal/mol/Å2) so that the first search of the open–
close cycle is run with a large value of k, and the schedul-
ing to open the structure is ki � ki�1/100 until k � 0.00001
kcal/mol/Å2; the schedule to close the structure is ki �
10ki�1. As discussed above, it is essential that the opening/
closing schedule be as slow as possible within the con-
straints posed by the available computer resources, and
this schedule has been found to be sufficient for the loops
considered in the present study, but it should be reconsid-
ered when modeling longer loops.

Potential Energy Function and Representation of
the Solvent

The force field most commonly used in MM algorithms
has the general form

U � Ubond � UES � UvdW (2)

where Ubond, UES, and UvdW are the bonded, electrostatic
and van der Waals contributions to the potential energy of
the system, respectively. The term UES in Equation (2) has
the form valid for a system of point charges in the vacuum,
that is, UES � �qiqi/rij, which is used when all the atoms of
the system under study, that is, protein plus solvent, are
accounted for explicitly. A crucial element for reliable ab
initio MM calculations in general, and of loop structure in
particular, is the representation of the solvent environ-
ment. Because the present approach is based on MC
techniques, an explicit representation of the solvent is not
practical. Instead, a continuum approach must be used so
that the acceptance ratio is high enough to allow a fairly

extensive search of the conformation space to be carried
out in reasonable computer time.

The solvent model that has been developed previously
and incorporated in the current protocols, is based on the
microscopic description of matter and uses appropriate
Boltzmann averaging techniques to derive the continuum
description.45 In this model the electrostatic term, UES, of
Equation (2) is replaced by a new term, USCP, which
describes the effects of the solvent on the electrostatic
interactions and on the self-energy, and a term, UNP,
which represents the contributions from some of the
nonelectrostatic effects such as hydrophobic interactions
and the work of cavity formation.46,47 Therefore, the
definition of U given in Equation (2) is replaced by

U � USCP � UNP � Ubond � UvdW (3)

where USCP is given by

USCP �
1
2�

i 
 j

N qiqj

D�rij�rij
�

1
2 �

i � 1

N qi
2

Ri,Bs
� 1
D�Ri,Bs�

� 1� (4)

The charge on atom i is qi, separated by a distance rij

from atom j, and N denotes the number of atoms in the
system. The first sum on the right-hand side of Equation
(4) is the interaction energy, and the second sum is the
self-energy. The function D(r) is a nonlinear, distance-
dependent screening function that accounts for all the
screening mechanisms in the system, and Ri,Bs is the
effective Born radius of atom i in the solvated macromol-
ecule. It is noted that the potential energy defined by
Equation (3) combines the internal potential energy of the
protein and the free energy of the solvent, that is, it is an
approximation to the potential of mean force obtained by
integrating the solvent degrees of freedom. It therefore is
an “effective” energy in the sense that has been discussed
elsewhere.48,49 Because this formulation of the continuum
is derived from a microscopic model there are no internal
or external dielectric constants defined for the system, and
there is no boundary between the solvent and the solute.
This is particularly advantageous when studying proper-
ties or processes on the surface of proteins because the
assumption of a boundary and a sharp transition in the
dielectric properties of the medium is neither justified nor
appropriate.50

Besides electrostatics, hydrophobic and other solvent-
induced forces play a central role both in structure and in
the dynamic properties of biomolecules.51–54 Hydrophobic
interactions55,56 have been traditionally described in sim-
plified ways, usually as a term proportional to the solvent
accessible surface area (SASA) with atom-dependent pro-
portionality coefficients ai. In the approach reported here
the simplest possible formulation is used, which consists of
a unique, constant coefficient a, times the total SASA of
the system, that is, a cavity term of the form UNP � �ai

SASAi � a SASA, where SASAi is the SASA of atom i; note
that UNP is, at least in principle, also a free energy.

Other solvent-induced forces lead to a modulation of
H-bond interactions. The treatment of hydrogen bonding
(HB) strength in the classical force field is usually incorpo-
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rated into the nonbonded parameters in the terms UES and
UvdW in Equation (2). This description of HB strength is no
longer valid when the force field is radically modified by
the incorporation of the new functional form, USCP [cf. Eq.
(3)], to represent the solvent. The approach that was
developed in the context of the SCP-ISM incorporates the
hydrogen bond interactions into the self-energy term by
modifying the definition of the Born radius of the proton.57

Therefore, in the SCP-ISM the short-range donor–acceptor
interactions are stabilized independently of the strength of
the rest of the long-range electrostatic interactions. More-
over, for MC simulations the algorithm was extended to
account for the directionality in HB geometry based on the
hybridization states of both donor and acceptor atoms.57 In
this way it is possible to avoid unphysical multiple-
branched HB patterns that naturally would be explored in
an MC search with simplified (distance-dependent) MM
force fields. The geometry of H-bonds in the gas phase is
primarily regulated by the electronic structure of the PA,
and in particular, of its lone pair electrons.58,59 However,
in proteins the geometry is further modulated by explicit
water–residue interactions depending on the degree of
solvent accessibility to the groups. In continuum solvent
models these latter interactions are absent (except in more
sophisticated theoretical treatments of liquids60), and
must be accounted for by further modifications of the
forcefield.57,61,62

MC Simulations with the SCV Method

The energy landscape of peptides and proteins is very
anisotropic: in the majority of the directions in the confor-
mational space the energy changes rapidly, with large
variations mainly due to steric clashes; in contrast, only a
small number of directions present a favorable, relatively
smooth energy surface. Standard MC sampling using, for
example, the Metropolis criterion of acceptance, will reject
most of the trial moves if the system is in the vicinity of a
local minimum, unless the amplitude of the motions is
small enough to yield a reasonable acceptance rate. Unfor-
tunately, limiting the system to small movements drasti-
cally hampers the full exploration of the space and limits
convergence of the simulation. In principle, the sampling
should be improved if the trial moves are chosen in such a
way that the conformations of the system change along the
soft directions of the energy surface, avoiding movements
that produce large steric clashes. The SCV-MC technique
allows for this favorable selection of trial moves, which
necessarily involves a cooperative change of all the inter-
nal coordinates, similar to the case of normal mode analy-
sis in classical dynamics.44

If the conformational space of a system is characterized
by coordinates �1, �2, . . ., �m, for example, the set of
dihedral angles in a protein, the energy U near a local
minimum can be expressed as

U � U0 �
1
2 �

i,j � 1

m

fij	�i	�j � o(�2) (5)

where 	�1 � (�1 � �i0), �i0 and U0 are the coordinates and
the energy at the minimum, respectively, o(�2) denotes
higher order (�2) contributions to the energy (anharmonic
component of the energy around the local minimum), and
fij � �2U/��i��j are the elements of the Hessian of the
system evaluated at the local minimum. The Hessian is a
positive definite, real, symmetric matrix F � (fij)i,j

n
� 1 with

m positive eigenvalues {�i}i
m

� 1. Let � � (�i � �10)i
m

� 1 be
a column vector and �T its transpose. If matrix A diagonal-
izes F (A is the matrix of orthogonal and normalized
eigenvectors of F) and � is the diagonal matrix of eigenval-
ues {�i}i�1

m , then ATFA � �, and defining the collective
variables � � ATF Equation (5) is written as

U � U0 �
1
2 �TF� �

1
2 �T�� (6)

The anisotropy of the energy surface is manifested in the
magnitude of the eigenvalues. In practice, differences of
several orders of magnitude are observed. On the other
hand, the amplitudes of the thermal fluctuations of the
new variables �s are proportional to ��1/2. The eigenval-
ues characterizing soft directions can be more than three
to four orders of magnitude smaller than those in the hard
directions. Therefore, multiplying the collective variables
by the square root of the eigenvalues defines the so-called
scaled collective variables in the vector form � � �1/2� and
the energy is given by U � U0 � 1/2 �i�1

m �2. The
relationship between the SCVs � and the original vari-
ables is � � A��1/2 �. With this transformation, the
conformational space described by the SCV is isotropic,
and hard and soft directions are mixed in the m equivalent
directions. Therefore, an isotropic sampling in the space of
the scaled collective variables � corresponds to an anisotro-
pic sampling in the space of the original variables �, which
favors the selection of trial moves that are most likely to be
accepted in the simulation.18,63 The method reported here
samples the space of the SCV by choosing two randomly
selected variables and moving them a certain amount as
determined from a Gaussian probability distribution (the
Box–Muller method is used). The width of the bell-shaped
probability distribution is set to a value such that the
acceptance rate is maintained in the range 0.3–0.5 through-
out the simulation.

Anharmonic Effects

The anharmonic terms in Equation (5) [the corrections
(�2)] mix all the eigenvectors, with the resulting effect that
the acceptance rate usually decreases as the simulation
proceeds. If the conformation of the system is shifted
substantially as the simulation progresses, then the m-
dimensional parabola defined by the Hessian at that local
minimum is no longer a good approximation. But if this is
the case, and assuming that the structure shifted towards
the neighborhood of a new local minimum, the Hessian can
be reevaluated and new scaled collective variables defined
that characterize new soft and hard directions around the
new minimum. In practice, this update can be done when
the acceptance rate deteriorates below a certain fixed
value. However, two practical problems arise: (1) when the
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eigenvalues are reevaluated, the system is not necessarily
in a local minimum, so the Hessian is no longer positive
definite and some eigenvalues can adopt negative values;
and (2) when the Hessian is updated the space, on which
the trial moves will be performed changes, and then the
requirement of detailed balance that ensures proper MC
sampling is violated, so that a non-Boltzmann distribution
is obtained. The first problem is circumvented by defining
a small cutoff63 value �o such that if �i � �o, for any
eigenvalue �i, then its value is redefined as �i � �o (where
�o � 10 kcal/mol rad2). The second problem is alleviated by
updating the Hessian infrequently44 thus reducing to a
minimum the instances in which detailed balance is
violated. But an infrequent update of the Hessian allows
the system to move further away from the local minimum
where it was last updated, thus worsening the first prob-
lem. However, for the methodology reported here, proper
Boltzmann distribution is not sought in part (2) of the
protocol, so this problem is less serious and an ad hoc
compromise can be sought (see below).

Details of the Calculations

All calculations are based on the crystal structure of
rhodopsin5 (PDB access code 1l9h), except when the start-
ing structure of the loop in step 1i (Fig. 1) is arbitrary.
Here the torsion angles are set to 180° and bond lengths
and angles are set to the PAR2264 default values. The
crystal structure was prepared by adding all hydrogen
atoms using the HBUILD option in CHARMM.65 No
further energy minimization was carried out. The con-
struct used for the calculations (see earlier sections)
consists of the trans-membrane helices capped at each
terminus with a dummy glycine and standard C- or
N-terminus. These dummies serve to satisfy the bonding
requirements of CHARMM. Note that for the construct
consisting of only the TM helices the crystal structures of
1l9h and 1u19 are essentially identical.5,66

To reduce computing time the cutoff radius for all
nonbonded interactions is set to 12 Å and for the Hessian
the cutoff is 7 Å because it is mainly determined by the van
der Waals interactions. With these cutoffs computing time
is 8–13 h per replica for a full open–close cycle on the PSC
TCS1 (lemieux). It should be noted that at 12 Å the
screening function, D(r) has reached its asymptotic value;
thus, all electrostatic interactions for distances larger than
12 Å are about 1/80th of their vacuum values. All other
parameters are set to their default values. The calculation
is carried out with the all-atom PAR22 forcefield;64 param-
eters of the SCP-ISM were determined in the context of
this CHARMM parameter set.41 The number of energy
evaluations for each k value in the SCV calculations is
determined from the number of dihedral angles to be
varied and is made large enough to constitute a complete
enough search of the conformation space to find the new
minimum determined by the force constant. First, the
Hessian is evaluated and half of the energy evaluations
are carried out. Subsequently, the Hessian is reevaluated;
thus, the preferred directions in the conformational space
are reassigned, and the search is completed. This proce-

dure is carried out on the �100 replicas selected from step
li in the flow chart of the procedure. The entire calculation
is a compromise between available computing resources
and the requirement of performing enough sampling to
locate the native ensemble. This compromise is to some
extent self-checking as will be discussed in Results.

To calculate the energies (U of Eq. 3) of the variable
segments resulting from completing the loop closure, the
dummy residues are removed from all the segments, which
are then capped with specially prepared N- and C-terminal
caps with all partial charges set to zero. The variable
segment containing the loop is then subject to 300 steps of
ABNR minimization to remove steric clashes. Subse-
quently, the total energy of the structure is calculated with
the CHARMM/SCP-ISM force field. The corresponding
variable segment with crystal structure coordinates is
treated in the same way. To calculate the root mean square
differences (RMSD) the structure with the calculated loop
conformation is superimposed on the crystal structure
using only coordinates from the fixed portion of the protein
(i.e., the loop itself is not used in the superposition).
Subsequently, the RMSD of the loop (or, more generally,
segment) is calculated relative to the coordinates of the
corresponding loop in the crystal structure, or relative to
the coordinates of another calculated loop that is taken as
a reference, for example, the calculated lowest energy
conformation. The C�-RMSD are labeled “RMSD” in the
following sections, and the all-heavy atom RMSD are
labeled “HA-RMSD.”

The free energy of a distribution relative to the crystal
structure is defined as 		A � 	A � Extl, where 	A �
Emin � RTlnQ, Q � �i�1

N exp[�(Ei � Emin)/RT], where N is
the number of replicas used in the MC calculation, and
Emin, Extl, and Ei are the minimum energy of the distribu-
tion, the energy of the crystal structure, and the energy of
the ith conformation in the distribution. It is noted that Q
as defined here is not a true statistical partition function
because the loop closure step does not produce a pure
Boltzmann ensemble as discussed above. Moreover, it is
incomplete because the distribution obtained using the
SCV with N replicas (where N is relatively small) only
covers a local region of the entire conformation space.
Nevertheless, it appears to be a useful quantity that can be
used to rank the ensembles. Because it approximates the
entropy contributions missing in the effective energies
calculated from the forcefield, 		A can be interpreted as a
local Helmholtz-like free energy.

RESULTS AND DISCUSSION
Construction of the Model

The crystal structure of rhodopsin5 consists of seven
trans-membrane helices, the loops that connect them and
the amino- and carboxy-terminal tails. Because the aim of
this work is to develop a protocol for calculating the
structures of loops in GPCRs for which only model coordi-
nates of the TM helices have been reported, a more
suitable construct of rhodopsin that better mimics the
model situation, consists of the crystallographic coordi-
nates of the TMHs only. Therefore, in the first cycle of the
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protocol presented here (completion of steps 1–4 in the
flow chart) the structure of each loop in rhodopsin is
calculated in the absence of the other loops and the C- and
N-termini tails. The force field corresponding to this
system consists of contributions from a loop-containing
segment, all the TM-helices and the aqueous environment.
Table I gives the residues defining the variable segments
that contain the loops e1, e3, and i1.

A central assumption of this approach is that the free
energy of each of the six possible rhodopsin constructs,
that is, each construct consisting of the seven TM helices
plus the crystal structure coordinates of a single loop, is
still part of a LE-LR ensemble. If this is not the case the
SCV-MC procedure will not be able to find the native
ensemble without adding additional information. It should
be noted that the reported crystal structure coordinates of
the loops are not necessarily identical with the (hypotheti-
cal) coordinates that would be observed experimentally if
each construct were crystallizable. Because parts of the
actual protein structure are missing in the constructs, it is
possible that low energy conformations exist that have
large RMSD with respect to the crystallographic loops.
Thus, the native ensembles of the constructs need not be
identical with the native ensemble of the complete protein
and, therefore, will probably be a poorer representative of
the latter. In the results discussed below it is shown that
this can indeed happen, but that the resulting structures
are still close enough to the native ensemble to be useful
for modeling, or as input for step 5 in the flow chart. The
resulting extended force field should be a more realistic
approximation of the force field describing the complete
native structure than that used in the first phase where
model coordinates of the loops are not available.

The LE-LR Ensemble

The energy landscape of a loop is defined as the region of
the protein energy surface restricted to the subspace of

dihedral angles of the variable segment only, while all
other dihedral angles are fixed at their values in the
crystal structure. As discussed in the previous section, the
characteristics of the loop’s energy surface imply that a
loop with a conformation in the native ensemble (the
LE-LR region) is trapped in this region of the conforma-
tional space due to the large energetic barrier surrounding
the native funnel. In practice, it is difficult for a sampling
technique to get a loop out of such regions unless the
temperature is raised or the energy landscape is smoothed
using some of the techniques discussed in the Introduc-
tion. Therefore, carrying out an open–close cycle on any
loop conformation that is part of the native ensemble
should explore the LE-LR region and find other members
of this ensemble. To test this hypothesis, a complete
open–close calculation, at T � 310 K, was carried out
starting from the crystal structure coordinates of each loop
embedded in the construct consisting of the seven TM
helices and the aqueous environment. The results are
given in Figure 3 for the three test loops. The open–close
cycles of each loop start from �100 copies of the crystal
structure (see Table II). For e1, all members of the cluster
are included in the LE-LR ensemble shown in Figure 3(A),
which demonstrates that for this loop all the structures
sampled belong to a subset of the native ensemble, and
none crossed the energy barrier surrounding the native
funnel to find conformations with higher RMSD. This was
also the case for loop i1 [Fig. 3(B)], but for loop e3 [Fig.
3(C)], six structures (out of 128) crossed the barrier as
suggested by their high RMSD (�2 Å). A possible reason
for this behavior will be discussed in a following section.
Note that the native ensembles shown in Figure 3 are
characterized by relatively dense clusters of conformations
with RMSD centered around 0.5 Å and HA-RMSD mostly
�1 Å. Note also that within the clusters there are regions
where no conformations were found, which is probably due
to incomplete sampling.

TABLE II. RMSD and Energetics of Native Ensembles Derived
from Crystal Structure Coordinates

Loopa

RMSD

		Ab Qb

HA-RMSD EMin
c

Mean Max Min Mean Max Min RMSD

e1 (96) 0.27 0.58 0.075 �6.94 18.9 0.77 1.31 0.12 0.37
e3 (98) 0.62 1.1 0.21 �5.99 8.1 0.86 1.57 0.38 0.55
i1 (128) 0.30 0.46 0.07 �9.79 5.4 0.76 1.30 0.42 0.44
aNumbers in parentheses are the number of replicas in the set; RMSD in Å.
b		A is the Helmholz-like free energy (kcal/mol), and Q is the partition function, see text.
cColumn gives the RMSD of the conformation with lowest energy.

TABLE I. Segment Length and Target Residue for i1, e1, and e3.

Loop Segment Target Lengtha

i1 Gln His Lys Lys Leu Arg Thr Pro Leu 8 (6)
e1 His Gly Tyr Phe Val Phe Gly Pro Thr 8 (6)
e3 Thr His Gln Gly Ser Asp Phe Gly Pro Ile 9 (8)
aThe first number is the length of the variable segment; the number in
parentheses is the loop’s length.
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The above results are summarized for all three loops in
Table II. The mean RMSD value of e1 and i1 are similar,
whereas for e3 it is somewhat larger. Note that the
HA-RMSD are also small, and the trends do not differ

substantially from the RMSD. The overall energetics of the
ensembles also behaved similarly, and noteworthy is the
result that for all three loops the total energies of almost
all the conformations in the clusters were below that of the
corresponding crystal structure. One difference between
the native ensembles of e1 and e3 compared to i1 is that the
energy range spanned by the clusters is about 5 kcal/mol
for e1 and e3, but about 10 kcal/mol for i1. Reference to the
segment sequences given in Table I shows that e1 consists
of nonpolar residues, e3 of both polar and nonpolar resi-
dues (with a net charge of �1), but i1 is highly charged,
consisting almost entirely of polar and ionizable residues.
Thus, the energy of the latter loop is likely to be sensitive
to small changes in conformation that do not appreciably
affect the RMSD values (e.g., small changes in side-chain
orientations), but cause large changes in energy due to the
strong electrostatic interactions. Nevertheless, given the
smallness of all the RMSD, each ensemble consists of
many nearly indistinguishable conformations that indi-
vidually and collectively represent the native structure.
The finding that any representative structure of the native
ensemble can be used to explore the LE-LR region sug-
gests that a first goal in loop structure prediction is to find
at least one conformation that is in this region of conforma-
tional space, although not necessarily one that minimizes
the potential energy of the system (U of Eq. 3). It is
important to note that within the native ensemble it is not
necessary to find the structure at the global minimum.
This is so because all conformations in this ensemble are
equivalently good representatives of the native structure.

The properties of the three ensembles differ somewhat
as indicated by the values of the local partition functions
given in Table II. The dense, low energy cluster of the e1
distribution leads to a large value of Q. The smaller value
of Q calculated for the e3 cluster is strongly influenced by
the two lower energy conformations that are somewhat
isolated from the main cluster. Removal of these two
conformations substantially increases the value of Q (to
22.4). The gaps seen within the clusters in all three cases
indicate incomplete sampling, because these are regions of
similar energy and conformation as those accepted by the
SCV-MC simulation. The large spread of energies acces-
sible to the members of the native ensembles and the
finding that most of the calculated energies are below that
of the crystal structure value is not surprising. Because
the ensembles for the three loops were calculated in the
construct, and not in the complete crystal structure, some

TABLE III. Dependence of RMSD of Fully Open i1 Loop on Temperaturea

Quantity 310 K 560 K 810 K 1060 K 1310 K 1560 1810 K

Min 0.27 0.40 0.41 0.45 0.75 0.91 0.52
Max 1.55 2.22 9.83 8.16 12.97 13.11 16.20
Mean 0.68 0.91 1.65 2.64 4.02 4.28 5.86
Std. dev. 0.25 0.39 1.10 1.47 2.30 2.40 2.96
Nob �1 Å 110 95 35 16 2 1 1
aRMSD in Å.
bNumber of replicas with RMSD � 1 Å (out of 128).

Fig. 3. Native ensemble distributions of e1 (A), i1 (B), and e3 (C). The
ensembles were generated by starting from the crystal structure of each
loop placed in the rhodopsin construct and carrying out an open–close
cycle at 310 K.
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of the characteristics of the native ensembles shown in
Figure 3 may be, at least partially, artifactual. This
question will be considered further in a later section.
Moreover, because the energy of these ensembles is scat-
tered within several kcal/mol, conformations can be found
by the SCV-MC procedure that are part of the native
ensemble, but not the lowest energy conformation.

The results of applying the open–close cycle at 310 K
starting from the crystal structures of the loops demon-
strates the existence of an ensemble in the LE-LR region
for all three loops in the construct of rhodopsin. These
clusters appear to be reasonable representatives of the
native ensemble in all three cases. However, the ability of
the energy function and the search procedure to find and
identify the native ensemble starting from the crystal
structure, while necessary, is not sufficient to demonstrate
that the loop structure can actually be predicted. To show
this, the calculation must be started from an arbitrary
conformation of the variable segment. The reason can be
understood from the analysis of the loop conformations
when they are fully opened at k � 0 given in Table III. The
second column of Table III lists various RMSD values for
the fully opened structures of i1 at 310 K. Most striking is
that although these structures are not constrained to
remain close to the crystal structure and are free to move
away from their initial native fold, at k � 0, the RMSD of
most conformers are still small (��2 Å). Thus, at 310 K
the opening of the loop is incomplete, because the depth of
the native funnel and the height of the surrounding energy
barriers ensure that the loop can only explore conforma-
tions that are still in the LE-LR ensemble. This behavior is
characteristic of all three loops, and shows that in the
present cases the observed loop structures, despite their
variability compared to other elements of secondary struc-
ture, are in highly favorable conformations. In contrast,
the conformations shown in Figure 2 are in secondary
minima.

Because of the broadness of the barrier and the rough-
ness of the surface, there is only a small practical possibil-
ity of finding a combination of dihedral angles that allows
the segments to pass over the energy barrier (actually
through transition states in the energy landscape) that
surround the secondary minima (metastable conforma-
tions) and fall into the native funnel. A path that connects
secondary minima to the native funnel can be found more

readily if the energy surface is properly smoothed and/or if
the temperature is judiciously raised. The method pro-
posed here uses the latter approach to help overcome the

Fig. 4. Distributions of e1 (A), i1 (B), and e3 (C) obtained by starting
from the lowest energy structure of the distribution obtained from step 2,
for example, e3 shown in Figure 2, and carrying out an open–heat–close
cycle. When the loops were open (k � 0) e1 and e3 were heated to 1310 K
and i1 was heated to 1510 K. This high temperature was maintained
throughout the closing part of the cycle.

TABLE IV. RMSD and Energetics of Ensembles Calculated for Loop e1

Loopa

RMSD

		Ab Qb

HA-RMSD EMin
c

Mean Max Min Mean Max Min RMSD

e1 (1) 3.10 5.59 0.56 �2.87 1.3 4.98 7.25 2.57 0.58
e1 (2) 4.19 5.52 3.84 0.02 3.8 all �4 Å 4.07
e1 (3)d 1.25 3.26 0.24 �7.13 7.0 3.12 5.88 1.84 0.55
e1 (1–3) 0.72 3.20 0.49 �8.77 41.4 (31.1) 2.54 5.80 2.11 0.49
e1 (31–3) 2.34 2.64 1.96 �7.93 24.9 (18.7) all �3 Å
aNumber in parentheses denotes energy rank of starting structure from {SF

iii}; (a–b): a � rank in distribution b; RMSD in Å.
bSee footnote b in Table 2; 		A in kcal/mol.
cRMSD of lowest energy conformation.
dThe native cluster of el(3) contains 96 replicas while the others contain 128 replicas. Scaling
e1 (1–3) and e1 (31–3) yields Q values in parentheses.
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barriers, and maintains intact the energy surface as given
by the force field. Therefore, to determine how high the
temperature of the open structure must be raised, it was
increased in steps of 	T � 225 K, and the results are also
given in Table III. It is seen that even at 810 K the mean
RMSD is still small, and only at 1060 K have the open
structures found conformations far enough away from the
crystal structure so that the mean value of the RMSD �2
Å, but even at this temperature there are still 16 conforma-
tions (out of 128) with RMSD �1 Å. Even at the three
highest temperatures one or two conformations with small
RMSD values are found so that when the open loops are
closed a few structures can find the highly favorable
LE-LR region.

Finding the LE-LR Ensemble

From Table III it is seen that between about 1000 and
1300 K the conformations become almost completely ran-
domized, but one or two conformations still have low
RMSD. This suggests that if an open–close cycle is carried
out at high temperature it is likely that a few structures
cross the barriers and find the native funnel (step 3 in the
flow chart and referred to as the open–heat–close step).
Although none of the conformations from this step that
have low RMSD need to be at the absolute energy mini-
mum, they are expected to be in the LE-LR region of the
high-temperature distribution (see below). An open–close
cycle at 310 K applied to such a structure should generate
a cluster of structures with similar conformation because
they are trapped in the native funnel, as was the case for
the crystal structure of the loops (step 4 in the flow chart).
However, when trying to predict loop conformations start-
ing from an arbitrary structure that is, in general, far from
the native funnel, it is also necessary to take into account
that structures can get trapped in secondary minima
instead of in the native funnel. In that case, step 4 may
also generate a cluster, but its free energy will be higher
than the free energy of the native cluster, which is
assumed to be at the absolute free energy minimum.
Taken together, these observations define the extended
protocol for calculating loop structures that is described by
steps 1–4 in the flow chart. Starting structures that
yielded scattered distributions in step 4 can be discarded,
but from those that yielded densely packed clusters, the
cluster with the lowest free energy is assumed to be the
best representation of the native ensemble from this initial
series of calculations (i.e., steps 1–4) with each loop
embedded in the TMH construct only.

The energy versus RMSD distributions (relative to the
crystal structure) were obtained from {SF

iii}, and are shown
in Figure 4 for the three loops. Only the relative energies of
the conformations and the cluster densities are used to
identify clusters in the native ensemble, so that any
reference (e.g., the lowest energy structure) not just the
crystal structure, can serve. Note that for loop e1 [Fig.
4(A)] and loop i1 [Fig. 4(B)] there is one conformation with
RMSD around 1 Å, but in neither case is this the lowest
energy structure. For e3, the two lowest energy structures
also have the lowest RMSD.

The Segments e1 and i1

To test if any of the low energy structures of e1 shown in
Figure 4(A) are representatives of the native ensemble, 64
replicas were generated from each of the three lowest
energy structures and an open–closed cycle was applied
(note that for step 4 fewer than 100 replicas were found to
be sufficient). The resulting distributions are plotted in
Figure 5, and quantitative results are given in Table IV.
By the criteria given above, neither e1(1) (the number in
parenthesis refers to the energy rank of the starting
conformation (for constructing {SI

iv} taken from {SF
iii}) or

e1(2) is a good representative of the native ensemble,
although there are four conformations from the e1(1)
distribution in the LE-LR region. On the other hand the
cluster of �40 conformations from the e1(3) distribution
with RMSD �0.5 Å and HA-RMSD �2 Å are clearly in the
LE-LR region. Note that for e1(3) the value of 		A is
substantially lower than for the other two distributions,
and Q is larger. The larger value of Q is due to the
favorable entropic effect resulting from the system having
access to many conformations with similar energies. This
is not the case for e1(1), because most of the conformations
are in a cluster that is less dense and with higher energies.

The result that a number of the e1(3) conformations are
not part of the cluster suggests that the starting structure
probably is located at the “entrance” of the native funnel.
In this case, the SCV-MC appears to select values of the
torsion angles that explore both the funnel and regions of
the energy landscape further away from the native funnel.
To check this hypothesis, the lowest energy conformation
of the e1(3) distribution [labeled e1(1–3)] and the conforma-
tion with an RMSD around 2.8 Å with energy rank 31 were
replicated and an open–close cycle was initiated. The
results are given in the inset in Figure 5, which shows the
tight clustering of the native ensemble; note also that its
free energy is lowest (Table IV). The ensemble resulting

Fig. 5. Distributions of 	E versus RMSD from the three lowest energy
conformations of the e1 open–heat–close cycle shown in Figure 4(A).
The native ensemble (black circles) is e1(3), open squares with � signs is
e1(1), and open squares with circle is e1(2). The inset shows the
distributions obtained from the lowest energy conformation (black circles)
of e1(3) and the conformation in e1(3) with energy rank 31 (open circles)
(see Table IV and text).
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Fig. 6. Superposition of lowest en-
ergy conformation (yellow) from the
native ensemble shown in Figure 5
and the corresponding crystal struc-
ture (cyan). Parts of the N-terminal tail
(red), loop e2 (magenta) and loop e3
(green) are also shown. Y102 from the
calculated structure clashes with the
side chains of P23 and F24 in the
N-terminal tail.

Fig. 7. Distributions of 	E versus RMSD from the three lowest energy
conformations of the i1 open–heat–close cycle shown in Figure 4(B). The
native ensemble (black circles) is i1(3), open squares with � signs is i1(2),
and open squares with circle is i1(1) (see Table V and text).

Fig. 8. Distributions of 	E versus RMSD from the five lowest energy
conformations of the e3 open–heat–close cycle shown in Figure 4(C).
Energy rank of starting structures: 1, open squares with circles; 2, squares
with �; 3, thin crosses; 4, squares with �; 5, fat crosses.

Fig. 9. Superposition of lowest en-
ergy conformation from the distribution
e3(1) (orange) and from the distribu-
tion e3(n) (yellow) on the crystal struc-
ture (cyan). Other color coding as in
Figure 6. Asp282 from e3(1) shows
widest deviation from experimental
structure.



from e1(31–3) is also clustered but not as densely, as
shown by the values of Q given in the last two rows of Table
IV. The free energies are lower than the e1(3) LE-LR
cluster, but the RMSD values of the e1(1–3) do not differ
substantially from the values of the e1(3) cluster. Figure 6
shows the superposition of e1(1–3) on the crystal structure.
It is clear that the main chain folds of the two conforma-
tions are very similar, and except for residue Y102, the
side chains are also well superimposed. Y102 is notewor-
thy because its orientation in the calculated structure
clashes with P23 and F24 of the N-terminal tail so that
this rotamer would not have been selected if the tail
(removed in the constructs) was present. Interestingly the
two conformations differ only by a rotation about the
C�OC� bond, so that if the N-terminal tail moved away
from its ground state conformation in the crystal struc-
ture, Y102 could rotate from its observed conformation to
its calculated position that is energetically favored in the
absence of the N-terminal tail.

The results for segment i1 are similar to e1, and
inspection of Figure 4(B), that is, the distribution of {SF

iii},
shows that there is one structure with RMSD �1 Å and
two other LE conformations with larger RMSD. Step 4 was
applied to these three low-energy structures, and the
resulting distributions are given in Figure 7; quantitative
results are given in Table V. Only i1(3) is in the LE-LR
region, with small C�- and HA-RMSD. Moreover, its free
energy is also substantially lower than either i1(1) or i1(2).
In this case one conformation of the i1(3) distribution
seems to lie outside the LE-LR cluster, with an RMSD �1
Å. The small gap between the two lowest energy conforma-
tions and the remaining members of the cluster is most
likely due to the small sample size (56 replicas). Thus,
including more replicas would probably lead to a larger
value of Q and an additional decrease in 		A although this
conjecture was not corroborated here. At the same time, a
small sample is sufficient to identify a cluster that is part
of the native ensemble. Superposition of a low-energy
structure from the native ensemble obtained from i1(3) on
the crystal structure is included as supplementary mate-
rial.

The e3 Segment

The high-temperature run of loop e3 [Fig. 4(C)] shows
that the lowest energy structures have somewhat larger
RMSD than the equivalent structures for loops e1 or i1.
Open–close cycles were applied to the five lowest energy
structures in Figure 4(C). When selecting structures for

testing (step 4) it must be recognized that there is no
quantitative criterion for choosing which structures in 
 �
{SF

iii} should be tested. Ultimately, the limitation in the
number of structures chosen is not conceptual, but subject
to the availability of computational resources. The distribu-
tions are given in Figure 8, which show that the smallest
RMSD values of the two clusters with lowest free energy
(see Table VI) are in the 1.2–1.4 Å range, thus larger than
for either of the other loops. It is noted as well, that the
distributions e3(3,4,5) [that is, e3(3), e3(4), and e3(5)] can
be discarded on inspection because their free energies are
higher and/or these distributions are not well clustered,
while the distributions, e3(1,2) are similar. Comparison of
e3(1) in Table VI with e1(3) in Table IV and i1(3) in Table V
shows that the e3(1) distribution is a poorer representation
of the native cluster than the LE-LR clusters found for the
other two loops. These observations are supported by the
superposition shown in Figure 9, of the lowest energy
structure in e3(1) on the crystal structure. It is seen that
although the overall fold of the loop is reasonably well
reproduced, at an RMSD �1 Å there are larger deviations
than was seen in e1 and i1. The difference seems to be
greatest around D282. It is also apparent that the side-
chain conformations of the calculated and observed struc-
tures differ substantially.

Because the high temperature run starting from the
lowest energy structure in {SF

ii} of the e3 distribution [Fig.
4(C)] did not yield such good representatives of the native
ensemble, a high-temperature run was carried out on
another low energy structure from {SF

ii}. From this struc-
ture an ensemble with smaller RMSD was found and the
distribution is shown in Figure 10(A) along with the
e3(1,2) distributions from Figure 8. The quantitative re-
sults for this distribution are given in Table VI in the row
labeled e3(n). Figure 10(A) shows that there are four
structures with energies below the cluster values. Superpo-
sition of these structures on the crystal structure indicates
strong steric clashes with the N-terminal tail and loop e2.
Thus, if the intact crystal structure had been used instead
of the construct consisting only of the TMHs, the SCV-MC
procedure would not have selected these structures. Dis-
counting them, the RMSD values show that cluster e3(n) is
in the LE-LR region, but its free energy is higher by 3–4
kcal/mol than the free energies of the distributions e3(1,2).
However, it is seen that this cluster is denser than the
clusters of e3(1,2), as indicated by the substantially larger
value of Q, and as seen for e1 and i1, a densely packed
cluster could be a reasonable representative of the native

TABLE V. RMSD and Energetics of Ensembles Calculated for Loop i1

Loopa

RMSD

		Ab Qb

HA-RMSD EMin
c

Mean Max Min Mean Max Min RMSD

i1 (1;64) 2.24 2.37 2.12 �5.01 1.1 all � 3.5 Å 2.34
i1 (2;128) 2.40 3.57 1.69 �21.42 1.0 4.29 5.18 2.63 2.26
i1 (3;56) 0.48 1.00 0.31 �28.2 3.3 1.65 2.97 0.79 0.48
aFirst value in parentheses is the energy rank, second value is the number of replicas in the open–close cycle; RMSD in Å.
bSee footnote b in Table 2, 		A in kcal/mol.
cRMSD of conformation of lowest energy.
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ensemble. The lowest energy conformation from the e3(n)
cluster has also been superimposed on the crystal struc-
ture in Figure 9. It is clear that this structure is close to the
experimental structure, and there are no side chains with
large deviations from the observed conformations. Never-
theless, because the 		A of e3(n) is higher than e3(1), it is
more difficult to find this cluster, because it only meets one
of the two conditions for identifying good representatives
of the native ensemble. Significantly, however, and despite
the higher value of 		A, this cluster could be found by
repeating steps 3 and 4 starting from another conforma-
tion in {SF

ii}.

The e3 Segment Embedded in the Complete Protein

It is of considerable interest to determine if the above
findings regarding the native ensemble [e3(n)] are inher-
ent to the method, to a weakness of the force field, which
includes the solvation model, or are due to the missing
parts of the protein. To clarify this, the procedure outlined
in the last section of Methods, for calculating the energy
and RMSD of each conformation in {SF

iv}) was repeated.
However, the segment conformations were placed in the
complete protein environment, that is, including the crys-
tal structure coordinates of loops e1 and e2 and the
complete N-terminal tail. Note that because a cutoff of 12
Å is used for calculating the nonbonded interactions it is
not necessary to include the intracellular loops and tail.
All conformations, including the crystal structure, were
minimized for 300 steps. The results are plotted in Figure
10(B). All three distributions have changed; the RMSD of
the LE-LR cluster has shifted to smaller values [see Table
VI, e3(n-all)] and the distributions e3(1,2) are more spread
out while the lowest energy conformations are higher than
those in Figure 10(A). The four structures with energies
lower than the rest of cluster in that figure now have high
energies due to steric clashes that could not be resolved
with 300 steps of minimization. Nevertheless, there are
still a few conformations in e3(1,2) that have energies
slightly below the LE-LR cluster. There is also one confor-
mation in the e3(n-all) distribution with RMSD �1.4 Å
with energy �0.18 kcal/mol below the lowest energy

conformation in the cluster. However, the e3 segment
conformations used to calculate the distributions shown in
Figure 10(B) were the same ones used in Figure 10(A), that
is, they were obtained from the construct, not from the
complete protein. Therefore, there is no reason to assume
that these conformations are optimal in the field of the
complete structure of rhodopsin.

The values of 		A for e3(1,2) obtained from the distribu-
tions in Figure 10(B) are �7.98 and �7.63 kcal/mol,
respectively, whereas the value for e3(n-all) is �8.25
kcal/mol. Thus, 		A of the native ensemble is lowest
despite the fact that both e3(1,2) have a few conformation
with lower internal potential energies than e3(n-all). This
result is due to the favorable configurational entropy
contribution resulting from there being many similar
conformations with nearly the same low energy. The
entropy contributions to e3(1,2) are small, as evidenced by
values of Q between 2 and 3.

Figure 10(C) shows the result obtained after repeating
the calculation in Figure 10(B), but now in the presence of
the loops e1 and e2 only, that is, not including the
N-terminal tail. The results appear to be intermediate
between the distributions shown in Figure 10(A) and (B),
but closer to the former. 		A of e3(1) is �8.59 kcal/mol,
slightly lower than for e3(n-e1e2). Unlike the conforma-
tions resulting from using the complete protein structure,
inclusion of the other two loops without the N-terminal tail
did not lead to a decrease in overall RMSD values of the
native cluster.

CONCLUSIONS

The crystal structure of rhodopsin has been used to
accomplish the following interrelated goals: (1) to explore
the shape of the energy surface that surrounds the native
conformations of the extra- and intracellular loops in the
crystal; (2) to design and test a protocol for the ab initio
modeling of these loops; and (3) to formulate a set of
criteria that can be used for prediction of native loop
conformations in GPCRs, for which experimental struc-
tural information is in general not available. In pursuing
goal (1) we found that the native loops are trapped in

TABLE VI. RMSD and Energetics of Ensembles Calculated for Loop e3

Loopa

RMSD

		Ab Qb

HA-RMSD EMin
c

Mean Max Min Mean Max Min RMSD

e3 (1) 1.55 2.47 1.13 �11.6 1.8 3.40 4.14 2.65 1.28
e3 (2) 1.59 2.65 1.15 �10.3 1.8 1.39
e3 (3) 6.30 6.84 5.05 �3.9 2.1 all �5.5 Å 6.49
e3 (4) 2.02 2.29 1.41 �2.5 2.7 3.11 3.41 2.92 2.14
e3 (5) 3.62 4.42 1.52 �10.4 1.0 all �3 Å 1.52
e3 (n)d 1.06 3.07 0.60 �8.8 (�8.4) 25.5 (17.0) 1.79 3.95 1.24 0.76
e3 (all)d 0.72 3.27 0.30 �8.5 (�8.2) 22.3 (14.3) 1.58 4.13 1.01 0.38
e3d (e1e2) 1.12 3.20 0.66 �8.5 (�8.2) 22.4 (14.9) 1.73 3.98 1.21 0.82
aOpen–close cycle of e3 (1,2,3,4,5) contained 64 replicas, e3(n) and e3(e1e2) 96 replicas and e3(all) 100 replicas. The numbers in parentheses in
columns 5 and 6 are the scaled values; RMSD in Å.
bSee footnote b in Table 2, 		A in kcal/mol.
cColumn gives RMSD of lowest energy conformer.
d(n): native ensemble in forcefield of TM helices only; (all): native ensemble in complete forcefield of rhodopsin; (e1e2) native ensemble in forcefield
of TM helices and loops e1 and e2.
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narrow potential wells, surrounded by relatively high
energy barriers. These barriers prevent the loops from
escaping the native folds (even when one of the loops ends
is completely “detached” from the protein), but also make
it difficult for a search algorithm to visit conformations in
the native ensemble because of the narrowness of the
native funnel. These observations led to goal (2), that is,
the design of a protocol that maximizes the chances to find
a native loop structure. This was accomplished by generat-
ing a relatively small number of loop conformations that
either belong to the native ensemble, or are structurally
close enough such that they can converge to the native

ensemble within a few computer iterations. The design of
the protocol is based on the hypothesis described in the
section Protein Segment Calculation in Methods. To accom-
plish goal (3), a heuristic convergence test was proposed
based on the LR-LE criterion as described above. This
approach associated the absolute free energy minimum
ensemble of the system with the ensemble of lowest
(Helmholtz) free energy that exhibits a dense cluster of
conformations with similar structures and energies. This
was necessary because the standard approach of identify-
ing the conformation of lowest energy as the native
structure cannot be used because when portions of the
system are missing the lowest energy structure is not
necessarily a member of the native ensemble.

Using a construct of rhodopsin that mimics the state of
our knowledge on other GPCRs, that is, only model
coordinates of the TM helices are available, we found that
the crystal structure coordinates of the loops in the force
field of the TM helices and a continuum solvent model, still
are members of their respective native ensembles. This is a
necessary condition to enable MC methods to find the
native ensemble starting from an arbitrary conformation
of the segment to be determined. In the first phase of the
calculations, as carried out here, a structure was calcu-
lated for each variable segment in the absence of the other
segments and the N- or C-terminal tails (note that the
latter will be absent in most cases). The crucial issue in the
calculations is the influence of the missing coordinates on
the conformations and energies of the loop structures
comprising the native ensemble. In the case of rhodopsin,
the absence of the tails did not substantially alter the basic
structure of the native ensembles of the three variable
segments, and it was gratifying that good representatives
of the native ensemble were easily found for e1 and i1 (with
RMSD around 0.5 Å) starting from the fully extended
structure including default values of the bond lengths and
angles.

For e3, the situation was more complex, because step 3
applied to the lowest energy conformation found two
relatively poor representatives of the native ensembles
(RMSD around 1.3 Å). Further searching did find a better
representative ensemble (RMSD �0.7 Å), but although it
was a dense distribution, its energy was higher than the
energies of the two lower quality ensembles. This combina-
tion would make this ensemble more difficult to identify in
actual cases where experimental coordinates are not avail-
able. Repeating the final step of the calculation on e3, but
with the complete protein in place, yielded a densely
packed cluster with RMSD �0.5 Å. This result showed
that the effective energy being used in these calculations is
reliable, but that missing coordinates can have consider-
able impact on the structure and energetics of the native
ensemble. In the present case, it was the set of interactions
between the N-terminal tail and amino acid residues in e3
that were most important in correcting the native en-
semble, while interactions with loops e1 and e2 were of
lesser importance. This finding also suggests that for
GPCRs, where the N-terminal tail is not so tightly packed
against the extracellular loops, this aspect would have less

Fig. 10. Distributions of 	E versus RMSD for the native ensemble
(black circles) and e3(1) (open squares with crosses) and e3(2) (open
squares with circles). Distributions in panel A: 7 TM helix construct of
rhodopsin; B: e3 loop embedded in complete structure including e1, e2,
and the N-terminal tail; C: e3 loop in structure including the 7 TM helices,
e1 and e2 but not the N-terminal loop.
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impact on the loop structures so that interloop interactions
would become the most important modulating factors. The
results of the calculations suggest that in an actual
application step 3 should be applied to several conforma-
tions. From these calculations the protein structure can be
assembled by combining the optimal loop structures with
the TM helices, and then steps 3 and 4 can be repeated,
that is, carry out step 5 in the flow chart.

In rhodopsin (as well as the serotonin receptors) the e2
loop consists of about 25 amino acid residues; thus, it is
substantially longer than the loops considered in this
article, and as far as the authors are aware, no method is
available at present that can reliably predict the structure
of such long loops when homology modeling cannot be
used. Several problems appear when the loop complexity
increases, including a large increase in computing time
needed to carry out sufficient sampling. A method for
reducing computing time was proposed by taking advan-
tage of the disulfide bridge formed between a cysteine in
the e2 loop and at the N-terminal region of TMH3.12 The
reliability of this approach is currently being explored in
rhodopsin, and the results will be reported elsewhere.

The results presented here, taken together with earlier
calculations (see Introduction) indicate that the protocol
can be used reliably to calculate the structure of variable
segments up to about 12 residues in length. The question
then arises how are the results of these calculations to be
interpreted when applied to a model system like the
5HT2A receptor?12 Unlike rhodopsin, the TMHs are now
represented by model coordinates so that the loop struc-
tures calculated from this model representation must also
be considered a model, despite the method’s apparent
ability to identify the actual native ensemble of the loops in
a construct consisting of the experimental structure of the
TMHs only. Moreover, it is not clear how any errors in the
model of the TMHs will be transmitted to the loops,
although the results from the e3 loop indicate that missing
segments can be problematic, especially in finding a good
representative cluster of the native ensemble. Careful
consideration of all these caveats suggests that the com-
bined structure (TMHs and loops) cannot be considered as
a representative of the observed structure, but rather as
the most accurate compendium about everything that is
known (from experiment and computer modeling) about
the system under study. With this appropriately cautious
attitude, interpretations based on the model are most
likely to lead to fruitful new insights and suggest new
avenues of exploration.
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