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A B S T R A C T

Mapping tumor cell protein networks in vivo will be critical for realizing the promise of patient-tailored
molecular therapy. Cancer can be defined as a dysregulation or hyperactivity in the network of
intracellular and extracellular signaling cascades. These protein signaling circuits are the ultimate targets
of molecular therapy. Each patient’s tumor may be driven by a distinct series of molecular pathogenic
defects. Thus, for any single molecular targeted therapy, only a subset of cancer patients may respond.
Individualization of therapy, which tailors a therapeutic regimen to a tumor molecular portrait, may be the
solution to this dilemma. Until recently, the field lacked the technology for molecular profiling at the
genomic and proteomic level. Emerging proteomic technology, used concomitantly with genomic
analysis, promises to meet this need and bring to reality the clinical adoption of molecular stratification.
The activation state of kinase-driven signal networks contains important information relative to cancer
pathogenesis and therapeutic target selection. Proteomic technology offers a means to quantify the
state of kinase pathways, and provides post-translational phosphorylation data not obtainable by gene
arrays. Case studies using clinical research specimens are provided to show the feasibility of generating
the critical information needed to individualize therapy. Such technology can reveal potential new
pathway interconnections, including differences between primary and metastatic lesions. We provide a
vision for individualized combinatorial therapy based on proteomic mapping of phosphorylation end
points in clinical tissue material.
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INTRODUCTION

Although gene microarrays can provide im-
portant information about somatic genetic
taxonomy, they are unable to provide a full
picture of the fluctuating signaling events
that occur at the proteomic level.

The discovery and characterization of de-
fective or hyperactive signaling pathways have
been a major focus for mechanistic studies of
cancer progression, the identification of can-
didate therapy targets, and the rational selec-
tion of patients who are most likely to respond
to a therapeutic regimen.1-19 Gene microar-
ray and transcriptional profiling can provide
important insights into coordinate gene ex-
pression and transcriptional control mecha-
nisms.20,21 However, cellular signaling events
are driven by protein-protein interactions,
post-translational protein modifications, and

enzymatic activities that cannot be predicted
accurately or described by transcriptional pro-
filing methods alone.22,23

Activation of kinases and subsequent
protein-protein interactions is an orchestrated
event that uses select scaffolding proteins
and specific protein phosphorylations and
dephosphorylations.24-26 Protein phosphory-
lation occurs at tyrosine, serine, and threonine
residues, and these modifications, in turn,
provide sites in which specific protein-protein
interactions drive cellular signaling cas-
cades.24,25 In the complex tissue microenvi-
ronment the interconnections of kinases,
phosphatases, their substrates, and the scaf-
folding proteins that tie them all together are a
product of the cellular lineage, the local cellu-
lar microecology, and the pathologic state.27

Recently, antibodies have been developed
to specifically recognize the phosphorylated
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isoform of kinase substrates. In theory, it could be possible to
evaluate the state of entire portions of a signaling pathway or
cascade, even though the cell is lysed, by looking at dozens of
kinase substrates at once through multiplexed phospho-
specific antibody analysis. Protein microarrays offer the prom-
ise to dramatically multiplex, quantify, accelerate, and
miniaturize this type of analysis over any existing format.28,29

In this perspective, we summarize the translational potential of
proteomics in the field of clinical oncology and patient-
tailored combinatorial therapy.

PROTEIN POST-TRANSLATIONAL MODIFICATIONS: A
RECORD OF ONGOING SIGNALING

Molecular networks of signaling cascades are driven by
post-translational modifications in proteins (eg, phosphor-
ylation or cleavage) that happen in a small subset of the total
pool of proteins that can actively participate in signaling
events. Unlike genomics, proteomics lacks a proteomic
equivalent of a polymerase chain reaction for protein am-
plification. Thus the major challenge for translational ap-
plications of proteomics to patient-specific cancer network
analysis is successfully measuring low-abundance post-
translational events.

Before analysis of clinical specimens can take place, it is
important to select a technology that is sensitive and can
recapitulate linked kinase network events. Reverse-phase
protein microarrays have the potential to meet this
need.29-34 Example data demonstrating such potential are
presented in Figure 1. We analyzed a series of known con-
nected phosphorylation substrates: epidermal growth fac-
tor receptor (EGFR; c-erbB1), MEK, and ERK kinases using
a colon cancer cell line (CCL250) with overexpressed
c-erbB1 receptor levels. On receptor-ligand binding, the
EGFR becomes rapidly phosphorylated and downstream
substrates (eg, MEK and ERK) of the cascade associate and
become phosphorylated. When these events are analyzed by
reverse-phase protein microarray, both ERK and MEK
phosphorylation show a coordinately linked kinetic profile
that is expected given that ERK is a direct substrate of MEK
kinase (Fig 2). When the cells were pretreated with a specific
MEK kinase inhibitor, as expected, phosphorylation of
MEK was not altered. In contrast, phosphorylation of the
downstream MEK kinase substrate, ERK, was suppressed.
This example supports the utility of analyzing the phos-
phorylation of the kinase substrate itself as a surrogate for
the upstream kinase activity. Phosphorylation of kinase
substrates is a transient event, given that phosphatases
promptly dephosphorylate the substrate as the cascade con-
tinues. Therefore, at any point in time, if two substrates are
phosphorylated concurrently, it is likely that they are linked
together to some extent in an active pathway, such as that
seen with MEK and ERK kinase (Fig 1).

Beyond the challenge of sensitivity, the next hurdles to
overcome are the issues associated with the complexity of
the tissue microenvironment and the cellular heterogeneity
of tissue. In vivo cellular signaling events are an intimate
product of the local cellular ecology, cell-cell interactions,
and cell-matrix interactions, and include the influence of
soluble factors such as cytokines and hormones. Thus, what
is happening in the tissue may have little relationship to
what is observed or predicted from cultured cells. The
merging of microdissection technology with new types of
protein microarrays has the potential to meet the challenge
of sensitive analyte measurements with the correct tissue
and cellular context. We provide example case studies that
illustrate the feasibility of this approach.

FEASIBILITY CASE STUDIES

Translational Potential of Protein Microarrays

for Routine Use in Clinical Research Specimens

To provide a foundation for the vision presented in this
perspective, we conducted feasibility case studies using clin-
ical specimens obtained under clinical trial research ap-
proved by the Institutional Review Board.

Laser capture microdissection (LCM) was used to pro-
cure an enriched starting population of cells. Microdissec-
tion is critical because every cell type may contain
differences in its proteomic repertoire.29 To study kinase

Fig 1. Molecular network analysis of defined pathways can be obtained
using reverse-phase protein microarrays. One million CCL250 cells were
treated, (A) with and (B) without 10 �mol/L of the MEK kinase inhibitor
PD98059 for 60 minutes and then treated with 100 ng/mL of EGF (epidermal
growth factor) for the times indicated on the x axis. Arrays were probed with
phospho-specific antibodies.
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substrate and signal pathway analysis, multiple reverse-
phase protein arrays containing immobilized cell lysates
were constructed. Protein phosphorylation was detected
using a set of antibodies that was validated for specificity
and sensitivity using a subset of the LCM breast tissue.
Before use for array-based investigation, all antibodies un-
derwent extensive validation by Western blot analysis.
These antibodies recognize the protein only when it is phos-
phorylated on a specific tyrosine and/or threonine residue
substrate, effectively providing a readout for a specific up-
stream kinase activity, and recognize the protein regardless
of phosphorylation state. A full list of the antibodies vali-
dated by our laboratory can be found at http://home
.ccr.cancer.gov/ncifdaproteomics. The phosphorylation
pattern attained from different discreet LCM cell popu-
lations in the same tissue specimen was reported to be
reproducible using reverse-phase protein microarray tech-
nology.29,32 In these studies, linearity, sensitivity, and inter-
and intra-assay variability were assessed. Analysis was
performed by measuring the relative intensity of each phos-
phorylation end point within multiple independent LCM
samples procured from different regions within the same
tissue sample. As a result of these previous studies, we
determined that a pooled lysate consisting of about 25,000

epithelial cells procured from different regions of the tissue
specimen gave reproducible and linear results for phos-
phorylation outcomes with a coefficient of variation of less
than 10%.29,32-34 The sensitivity was fully adequate to detect
the phosphorylated subpopulations of low-abundance sig-
naling proteins such as phosphorylated AKT.32

Network analysis of expected kinase substrate cascades
was performed on a set of patients with high and low levels
of AKT phosphorylation. Glycogen synthase kinase 3
(GSK3) and the Forkhead protein family (FKHRL/FKRH)
are well-known AKT kinase substrates involved in glucose
mobilization and energy metabolism as well as transcrip-
tional regulation of pro-survival pathways.35 Concordance
was observed between phosphorylation of AKT and the
downstream kinase substrates GSK3 and FKHRL/FKHR,
but not with other substrates such as ER and STAT1 (Fig 3).
The working hypothesis demonstrated by both cell line–
based studies (Fig 1) and microdissected tissue cells (Fig 3)
is that closely linked events will show tight correlation of
phosphorylation (activation), whereas those phosphoryla-
tion events that are not coordinate are likely not to be
directly linked in a network.

A meaningful network analysis, of course, should begin
with data representing the status of a large number of

Fig 2. Individualized cancer therapy paradigm. After biopsy, molecular network analysis is conducted. A tumor-specific network portrait becomes the basis for
combinatorial therapy selection. A panel of molecular target inhibitors is selected and administered. After therapy, the molecular network is re-evaluated for
efficacy, and a new therapeutic regimen is considered depending on target assessment.
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signaling phosphorylation events measured concomitantly.
Bioinformatic analysis methods, such as those applied
routinely to gene arrays, can be applied to this type of data
to highlight phosphorylation events that appear simulta-
neously activated or suppressed, and therefore are poten-
tially linked. Figure 4 shows the clustering results obtained
using an unsupervised Bayesian clustering methodology for
each of the 54 patients in the feasibility set (45 patients with
cancer and nine normal patients) as a heat map on which
relative protein levels are measured and colorized representing
higher (red) or lower (green) relative expression. Clustering
analysis was performed as described previously.29

In this feasibility set we noted a striking degree of
heterogeneous signaling (Fig 3). Each patient’s microdis-
sected sample reflected a unique constellation of kinase-
driven signaling events. This observation concurs with
recent gene microarray analysis36 and indicates that al-
though some other cancers such as chronic myelogenous
leukemia and stromal tumors are underpinned by a com-
mon pathway defect (eg, c-kit family signaling activation),
sporadic human breast cancer and other epithelial tumors
are controlled by a multiplex of protein circuitry derange-
ments. Many of the normal epithelial signaling portraits are
grouped together in large families that are distinct from the
tumor fingerprint subsets (Fig 4). However, within the con-
text of the underlying tumor heterogeneity, the clustering
reveals larger subsets of tumors that have common pathway
activation, some of which are expected and some of which
are unexpected (Fig 4A). For example, the 10 patients at the
top of the map are dominated by estrogen receptor overex-
pression and phosphorylation. Principal component anal-
ysis (Fig 4B) of the data reinforce the observation that a
significant number of tumor and histologically normal ep-

ithelium can be distinguished from each other using the
STAT1 and PKC� kinase substrates (43 of 45 cancers
[95% CI, 85% to 95%] and 15 of 16 histologically normal
epithelium [95% CI, 70% to 100%]). In keeping with this
preliminary observation, in a neoadjuvant setting, PKCa
phosphorylation was found to be dramatically decreased, or
below the limits of detection in seven of eight patients (95%
CI, 47% to 100%) with more than four positive lymph
nodes compared with a relatively elevated level in eight of
nine patients (95% CI, 52% to 100%) with fewer than four
positive nodes.

Translational protein network signaling analysis is not
restricted to the primary tumor site. Too often the present-
ing pathology is metastatic disease. Because the tissue mi-
croenvironment of the metastatic cancer cell is completely
different from the primary tumor, there is no reason to
expect that the phosphorylation events of the metastatic
tumor cells will be identical to those of the primary tumor
cells. Indeed, the state of signaling for the metastatic lesion
may be the most appropriate basis for the selection of tar-
geted therapy. An example of how the kinase substrate
profile of the metastatic tumor is different from its primary
tumor lesion is shown in Figure 5, which presents a case
study of laser capture, microdissected, patient-matched pri-
mary colorectal tumor tissue and liver metastasis obtained
simultaneously at surgery. In this small study set of three
patient-matched primary and metastatic tumor specimens,
36 separate protein end points were measured. Thirty-two
of these end points measured the phosphorylated form of
specific kinase substrates. This preliminary result, using a
small number of samples, could reflect important pathway
changes influenced by the organ microenvironment.

Translational Applications of Proteomic

Network Analysis: Patient-Tailored

Combination Therapy

Evidence is emerging from gene microarray data to
support the concept that each patient’s cancer may have a
unique complement of pathogenic molecular derange-
ments. In our feasibility case studies, we found the same
type of patient heterogeneity at the cell signaling level in
human breast cancer, and colorectal cancer primary lesions
compared with liver metastasis. In the face of such hetero-
geneity, we would expect no single targeted therapy to be
equally successful for all patients. A given class of therapy
may be effective for only a subset of patients who harbor
tumors with susceptible and specific protein network de-
fects. Such defects may have a direct or indirect basis in
somatic genetic mutations within the tumor genome. At a
functional level, the protein network alterations within the
tumor presumably have been selected out because they
provide a survival value for the individual tumor within its
specialized tissue microenvironment.

Fig 3. Kinase substrate analysis demonstrates concordance of AKT-
mediated signaling using reverse-phase protein microarrays. Four patient
samples, two with high and two with low levels of phosphorylated AKT (ser
473) were chosen and analyzed for phosphorylation of STAT1 (Tyr 701),
c-erbB2 (Tyr 1248), AKT, GSK3� (Ser 9), and FKHRL/FKHR (Thr 32/Thr 24).
STAT1, signal transducer and activator of transcription 1; ER, estrogen
receptor; Erb2, erythroblastic leukemia viral oncogene homolog 2, neuro/
glioblastoma derived oncogene homolog (avian) GSK3�, glycogen synthase
kinase 3; FKHRL, forkhead protein family.
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This conclusion is in keeping with the existing body of
published clinical experience for molecular targeted cancer
therapy. The recent literature has many examples of tar-
geted therapies proving effective for only subsets of patient
populations. EGF mutations in lung cancer correlate with
the clinical response to gefitinib, an EGFR kinase inhibi-
tor.18,19 Mutational analysis of specific kinases (eg, c-kit,
PDGFr) in gastrointestinal stromal tumors,1-3 B-Raf in
colorectal cancer,6 PI3K in a variety of cancers,7 or global
mutational analysis of the so-called kinome,8 all highlight
the fact that patients will stratify into degrees of response to
a selected targeted therapy. These studies emphasize the

clinical need to understand more than the quantitative
measurement of the expression of a protein analyte such as
c-erbB1 and c-erbB2 when considering EGF-related thera-
peutic targeting. In fact, it would seem more important to
elucidate the degree of activation of the pathway, the en-
gagement with downstream network components, and the
phosphorylation state of the molecules.37

Although cancer therapy has been directed at a single
molecular target, in the future we can imagine targeting
an entire set of interconnected kinase-driven events all
along a deranged signaling pathway.38 Interconnecting
points within a signaling cascade are interdependent. This

Fig 4. (A) Molecular network analysis of human breast cancer and normal breast epithelium. Twenty-two end points (11 matched phospho-specific and total
protein-specific end points) of the 54-patient study set (normal � blue; tumor � red) were used. Example molecular networks and activated signaling pathways
that separate patients into different groups (eg, tumor group 1) are identified by dotted boxes. (B) Subsequent principal component analysis of (A); normal, blue;
tumor, red.
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is because a downstream phosphorylation event is driven by
upstream events leading to the activation of the kinase
acting on the target substrate. For example, as shown in
Figure 2, phosphorylation of ERK is dependent on the
activity of MEK, which is in turn driven by an entire series of
upstream events. Consequently, in the context of this active
pathway, a potential combinatorial therapeutic strategy
would use an MEK inhibitor (the readout being ERK phos-
phorylation) and a Raf farnesyltransferase inhibitor (the
readout being MEK phosphorylation). Given that the mo-
lecular network signaling pathways share an interacting and
interdependent linkage, strategically selected combinatorial
therapies could be given at a potentially lower dose, which
could result in reduced toxicity compared with that seen
using either agent alone. The potential reduction in toxicity
combined with increased therapeutic efficacy is a promising
hallmark of the potential for combinatorial therapeutics.
Moreover, the likelihood of a tumor developing resistance
to a cocktail of inhibitors that target an entire pathway
could be significantly less probable.

Of course the biologic complexity of the cellular protein
networks are not as simple as the box and arrow diagrams that
are often drawn in research publications and vendor catalogs.
The interconnections and cross talk are undoubtedly vast, and
constantly assembling and dissolving. It has been theorized
that cellular molecular networks can be modeled as scale-free
communication linkages resembling power grids and the
worldwide Web.39-48 Efficient targeting of such a complex
system will require the gathering of information about the
following questions. In the neoplastic state of an individual
tumor, what segments of the network are hyperactive, abnor-
mally suppressed, or otherwise deranged? How does the net-
work rewiring provide a survival advantage for the tumor cell?
What are the weak points in the deranged network that can be
used as a rational basis for targeting? What are the feedback
loops and alternate pathway connections that influence the
recovery of a tumor cell population after unsuccessful therapy?
What are the interconnections within the relevant regions of

the network that provide a rational selection for combinations
of targeted therapy? Most (if not all) of this information is
embodied or reflected by the protein post-translational mod-
ifications and protein-protein interactions. Existing and
emerging proteomic technology is being developed for the
purpose of gathering the necessary information to answer
these critical questions. Although efforts are underway to be-
gin developing an information repository for molecular net-
works, the elucidation of molecular networks is an evolving
process with many gaps in our current knowledge base. The
understanding of proteomic networks in actual human tissue
specimens is even more limited, and how these networks truly
interact (eg, regular, random, scale-free) and are perturbed in
the disease microenvironment, will be critical components of
effective therapeutic intervention strategies38,46 and clinical
trial design.49-52

In the past, a critical bottleneck for translational appli-
cation of proteomics has been the paucity of validated anti-
bodies with high specificity to the activated signaling
molecules. It is encouraging that within the last few years, a
large compendium of well-characterized and carefully val-
idated phospho-specific antibodies have become commer-
cially available. These antibodies can be used to discover
new pathway interconnections and directly monitor thera-
peutic targets; however, they cannot be used as a de novo
discovery tool. That is, these antibodies can only measure
an occurrence that one knows beforehand may be impor-
tant to measure. Identification of unknown phosphoryla-
tion events and new phosphorylation sites are an important
component of ongoing proteomic research. A number of
new and emerging proteomic technologies that use affinity
capture reagents that enrich for phosphorylated proteins
followed by mass spectrometry– based sequencing are being
used for phosphoproteomic discovery.53-59 These ongoing
discoveries will result in an ever-growing list of phospho-
specific end points with their respective antibodies. The two
major applications of proteomic technology— discovery

Fig 5. Signaling networks dramatically
change after metastasis. Unsupervised
clustering of a multiplexed kinase sub-
strate heat map obtained by reverse-phase
array analysis of laser capture microdissec-
tion procured cellular lysates. The study
set consisted of three sets of primary
colorectal cancer tissue with patient-
matched hepatic metastasis obtained con-
comitantly at surgery.
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and profiling—will be necessary driving forces for the ad-
vancement of translational clinical applications.

Translational Potential of Proteomics in

Oncology: Concluding Vision

In the future, we can visualize a time when cancer
patient management is an exercise in patient-specific net-
work targeting (Fig 2). A named pathologic diagnosis, such
as infiltrating ductal carcinoma, will be supplemented or
replaced by a molecular profile map, which may even be
unique to the individual patient. The information within
the profile can then be used to select an optimal panel of
therapies, best suited to the individual’s tumor. After ther-
apy administration, the molecular profile can be monitored
by repeat biopsy or molecular imaging to judge the success
of the therapy. Finally, if the therapy fails, the molecular
profiling process can be repeated, and will become the basis

for a revised therapy strategy that is, once again, best suited
to the individual patient’s tumor portrait.
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