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Biological networks frequently use cascades, generally defined as
chain-like arrangements of similar modules. Spatially lumped cas-
cades can serve as noise filters, time-delay, or thresholding ele-
ments. The operation and functional capabilities of spatially dis-
tributed cascades are much less understood. Motivated by studies
of pattern formation in the early Drosophila embryo, we analyze
cascades of 2-state reaction-diffusion systems. At each stage
within such as a cascade, a diffusible particle is reversibly bound by
immobile traps and can be annihilated in both mobile and immo-
bile states. When trapped, these particles drive the next stage by
converting mobile particles of a different type from a passive to
active form. The cascade initiated by injection of mobile particles
into the first stage. We derive analytical expressions for the
steady-state concentration profiles of mobile and immobile parti-
cles and analyze how the output of a cascade is controlled by
properties of the constituent stages.

B iological networks frequently use cascades, generally defined
as chain-like arrangements of similar modules. Among the

numerous examples of cascades are proteolytic cascades in blood
clotting, phoshorylation cascades in intracellular signal trans-
duction systems, and gene expression cascades that control cell
differentiation. Biophysical studies of lumped cascades have
shown that they can serve as noise filters, time-delay, or thresh-
olding elements, but the operation and functional capabilities of
spatially distributed cascades are much less understood (1–6).
One class of problems where this understanding is necessary
arises in studies of embryonic pattern formation.

In a common mode of developmental patterning, a layer of
cells is presented with a concentration field of a molecule that
acts, not necessarily directly, as a dose-dependent regulator of
gene expression. Thus, one spatially distributed signal, called a
morphogen gradient, can generate a precise spatial arrangement
of cell fates (7, 8). A patterning gradient can lead to the
production of another molecule which can act as an intermediate
link between the original signal and its transcriptional targets.
For instance, in the developing Drosophila wing, a short-ranged
gradient of a diffusible ligand Hedgehog, induces the production
of a long-ranged diffusible ligand Dpp, which controls the
expression of multiple genes responsible for wing patterning (9).

Similar cascades exist in other developmental contexts, but
their quantitative understanding, required for interpreting the
wild-type patterns and defects in mutant genetic backgrounds, is
yet to be developed (10). In particular it is not clear how the
output of the cascade is shaped by its individual stages. Here, we
answer this question for cascades of 2-state reaction-diffusion
systems. Each of the individual stages within such a cascade is a
system where a diffusible particle is reversibly bound by immo-
bile traps and can be annihilated in both mobile and immobile
states. The output of a stage, given by the distribution of
immobile particles, provides an input to the next stage.

Our interest in such models is motivated by experimental
studies of patterning of the early Drosophila embryo, which is
initiated by four different morphogen gradients (11, 12). Two of
these gradients, responsible for the dorsoventral and terminal

patterning, are established by cascades of reaction-diffusion
modules (11). The dorsoventral gradient depends on a cascade
of extracellular proteolysis reactions, similar to the ones char-
acterized in the blood clotting system (13, 14). The transcrip-
tional response to this gradient has been extensively studied, but
the gradient itself is yet to be quantified (15, 16). On the other
hand, the terminal gradient has been recently quantified, and,
as we argue below, it can be viewed as a cascade of 2-state
systems (17).

The terminal gradient depends on a highly conserved MAPK
pathway (18), which is activated by Torso, a receptor that is
uniformly distributed along the surface of the embryo (Figs. 1 A
and 2 A) (19, 20). Torso, in turn, is activated by Trunk, its
diffusible extracellular ligand produced at the embryonic poles.
Binding to Torso interrupts diffusion of Trunk and generates a
ligand–receptor complex that can either dissociate or be inter-
nalized by the cell (21). The complex does not diffuse at
appreciable rates along the plasma membrane of the early
embryo and can be considered immobile (22). This set of
processes is thus a 2-state system, where diffusible Trunk is
reversibly bound by immobile Torso receptors (Fig. 1 A and B).

The cytoplasmic tail of the Torso–Trunk complex acts as a
tyrosine kinase (21, 23, 24), setting in motion a sequence of
events that lead to MAPK phosphorylation (Fig. 1C). The
pattern of phosphorylated MAPK, with 2 peaks at the poles of
the embryo, can be visualized using an antibody that recognizes
the phosphorylated form of MAPK (25) (Fig. 2B Left). Phos-
phorylated MAPK diffuses inside the early emrbyo, where
multiple nuclei are uniformly distributed in the shared cytoplasm
(26). Phosphorylated MAPK shuttles in and out of the nuclei,
which interrupts its cytoplasmic diffusion, and can be dephos-
phorylated in both of these compartments (27–29). These pro-
cesses define another two-state system, in which nuclei trap
phosphorylated MAPK (Fig. 1D).

This model, suggested in our recent studies of the terminal
gradient, motivates the mathematical analysis presented here.
The article is organized as follows. In the next section, we derive
the propagator for a particle in a 2-state system. We then use this
propagator to analyze the concentration fields in 2 state systems.
Next, we analyze the output of a 2-stage cascade with either
localized or distributed inputs. Finally, we discuss the applica-
bility of the model to the terminal patterning system.

Results
Propagator for a 2-State System. Consider a particle that can be in
the mobile (m) and immobile (im) states. The mobile (diffusible)
particle reversibly binds to one of the immobile traps. Diffusion
is 1D and occurs along the x-coordinate. The diffusion constant
is denoted by D. The particle binding and release are first-order
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processes characterized by the rate constants � and �, respec-
tively. The particle can be annihilated in both mobile and
immobile states. The annihilation step is also a first-order
process, characterized by the rate constants km and kim in the
mobile and immobile states, respectively.

The particle is injected at the origin, x � 0, in the mobile state
at time t � 0. The 2-component propagator, Gv (x, t), is the
probability density of finding the particle at point x and state v
at time t, v � m, im. The components of Gv (x, t) satisfy:

�Gm

� t
� D

�2Gm

�x2 � �km � ��Gm � �G im [1]

�Gim

� t
� �Gm � �k im � ��G im. [2]

The initial conditions are:

Gm �x , 0� � ��x� , G im �x , 0� � 0. [3]

After the Fourier-Laplace transformations defined in the
conventional way,

f̂�s� � �
0

�

e�stf�t�dt [4]

g��� � �
��

�

e�i�xg�x�dx , [5]

the evolution equations for the components of the propagator
take the following form:

�s � D�2 � km � ��Ĝm � �Ĝ im � 1 [6]

� �Ĝm � �s � k im � ��Ĝ im � 0. [7]

From this, we find:

Ĝm �
s � k im � �

�s � D�2 � km � ���s � k im � �� � ��
[8]

Ĝim �
�

�s � D�2 � km � ���s � k im � �� � ��
. [9]

Below, we use these transforms to find the gradients (concen-
tration profiles).

Gradients in 2-State Systems. Consider time-dependent concen-
tration profiles, Cv (x, t), v � m, im, when particles are injected
into the mobile state with the injection rate j(x, t). The injection
begins at t � 0. Concentrations Cv (x, t) satisfy:

�Cm

�t
� D

�2Cm

�x2 � �km � ��Cm � �C im � j�x , t� [19]

�Cim

� t
� �Cm � �k im � ��C im [11]

with Cv (x, 0) � 0. Solutions to these equations can be written as
convolutions of the propagators and the injection rate:

Cv�x, t� � �
0

t

dt��
��

�

Gv�x � x�, t � t��j�x�, t��dx� [12]

The Fourier–Laplace transforms of these solutions are

Ĉv��, s� � Ĝv��, s�ĵ��, s� , [13]

where ĵ (�, s) is the Fourier-Laplace transform of j (x, t).
When particles are injected at the origin with time-

independent rate Q, we have j (x, t) � Q�(x) H(t), where H(t) is
the Heaviside step function. In this case ĵ(�, s) � Q/s and Eq. 13
takes the form

Ĉv��, s� �
Q
s

Ĝv��, s� . [14]

As t3 �, the concentration profiles approach their steady states
(ss), Cv,ss (x), given by

Fig. 1. Summary of the processes in a 2-stage cascade of two-state systems.
(A) A diffusible ligand (solid circle) is reversibly bound by cell surface receptors.
A diffusible intracellular molecule (star) shuttles in and out of the nuclei. (B)
Transitions between mobile and immobile states for a particle in the extra-
cellular stage of the cascade. (C) Immobile particles in the first stage initiate
the production of mobile particles in the second stage. In this case, a ligand-
receptor complex is an enzyme acting on a pool of inactive intarcellular
molecules (present in excess; denoted by an empty square). (D) A mobile
intracellular molecule is reversibly trapped by immobile traps. In this case, the
traps are nuclei distributed in a shared cytoplasm of the early embryo.

Fig. 2. Terminal patterning system in the early Drosophila embryo. (A) Torso
receptors (purple) are uniformly distributed along the plasma membrane of
the embryo. Inactive ligand (Trunk) is distributed uniformly in the extracellu-
lar matrix; it is converted into an active and diffusible form (blue) by Torsolike
(yellow), a protein localized at the poles of the embryo. The Torso-Trunk
complex signals through the MAPK signalin cascade, which leads to MAPK
phosphorylation and nuclear import. (B) Quantified pattern of MAPK phos-
phorylation. (Left) Fluorescent image of the anterior of the embryo; nuclei are
stained in green, and phosphorylated MAPK is stained in red. (Right) Gradi-
ents of nuclear and cytoplasmic phosphorylated MAPK.
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Cv,ss�x� � lim
s30

sĈv�x , s� . [15]

The Fourier tranform of Cv,ss (x) is

Cv,ss��� � lim
s30

sĈv�� , s� � QĜv�� , 0� . [16]

Using Eqs. 8 and 9, we obtain

Cm,ss��� �
�k im � ��Q

kmk im � km� � k im� � �k im � ��D�2 [17]

Cim,ss��� �
�Q

kmk im � km� � k im� � �k im � ��D�2 .

[18]

Inverting these transforms, we find the gradients of the mobile
and immobile particles:

Cv,ss��� �
Nv,ss

2	
e��x�/	 , [19]

where 	 is the characteristic length scale of the gradient, and Nv,ss
are the total numbers of particles in the steady-state concentra-
tion profiles

Nv,ss � �
��

�

Cv,ss�x�dx . [20]

Nv,ss and 	 can be expressed in terms of the parameters of the
problem:

	 � � D�kim � ��

kmk im � km� � k im�
[21]

Nm,ss �
�k im � ��Q

kmk im � km� � k im�
�

	2Q
D

[22]

Nim,ss �
�Q

kmk im � km� � k im�
�

�

k im � �
Nm,ss . [23]

Gradients in a 2-Stage Cascade. Consider now a 2-stage cascade of
2-state systems (Fig. 1). Mobile particles are injected into the
first stage by a point source at the origin. Injection starts at t �
0 and generates particles with a constant rate Q. These particles
are reversibly trapped by the boundary separating the 2 stages of
the cascade. Trapped particles initiate the generation of mobile
particles in the second system, with the generation rate, j2 (x, t),
given by

j2�x, t� � gCim
�1��x , t� , [24]

where g is the rate constant of the generation process, and Cv
(i)

(x,t) are the concentrations of mobile and immobile particles, v �
m, im, in the i th stage of the cascade. The concentration Cv

(i) (x,
t) satisfies

�Cm
�1�

� t
� D1

�2Cm
�1�

�x2 � �km
�1� � �1�Cm

�1� � �1C im
�1� � Q��x�H� t�

[25]

�Cim
�1�

� t
� �1Cm

�1� � �k im
�1� � �1�C im

�1� [26]

�Cm
�2�

� t
� D2

�2Cm
�2�

�x2 � �km
�2� � �2�Cm

�2� � �2C im
�2� � gC im

�1�

[27]

�Cim
�2�

� t
� �2Cm

�2� � �k im
�2� � �2�C im

�2� , [28]

and the initial conditions are Cv
(i) (x, 0) � 0. Here, Di, �i, �i, and

kv
(i) are the diffusion constant and rate constants of the corre-

sponding processes in the i-th stage.
Using the result in Eq. 14, we can write the Fourier-Laplace

transforms of the gradients in the first stage as

Ĉv
�1���,s� �

Q
s

Ĝv
�1���,s� , [29]

where Ĝv
(i) (�, s) is the Fourier-Laplace transform of the prop-

agator Gv
(i) (x, t) in the i th stage. Then the Fourier-Laplace

transform of j2 (x, t) in Eq. 24 is

ĵ2��, s� � gĈim
�1��� , s� . [30]

Using Eq. 13 to find the transforms of the concentrations in the
second stage, we obtain

Ĉv
�2���, s� � Ĝv

�2���, s�ĵ2��, s� � gĜv
�2���, s�Ĉim

�1��� , s� . [31]

As t 3 �, the gradients in both stages approach their steady
states, Cv,ss

(i) (x):

Cv,ss
�i� �x� � lim

s30
sĈv

�i��x , s� . [32]

The Fourier transform of Cv,ss
(i) (x) is

Cv,ss
�i� ��� � lim

s30
sĈv

�i��� , s� . [33]

For the first stage, we have

Cv,ss
�1� ��� �

Nv
�1�

1 � 	1�2 , [34]

where 	1 is the characteristic length associasted with this stage:

	1 � � D1�kim
�1� � �1�

km
�1�k im

�1� � km
�1��1 � k im

�1��1
[35]

and Nv
(1) are the total numbers of mobile and immobile particles

in the steady-state concentration profiles in the first stage:

Nm,ss
�1� �

	1
2Q

D1
; N im,ss

�1� �
�1

km
�1� � �1

Nm,ss
�1� . [36]

Inverting the transform in Eq. 34, we find

Cv,ss
�1� �x� �

Nv
�1�

2	1
e��x�/	1 . [37]

The Fourier transforms of the steady-state gradients in the
second stage are given by

Cv,ss
�2� ��� � gĜv

�2��� , 0� C im,ss
�1� ��� . [38]

Using Eqs. 8 and 9, we obtain

Cv,ss
�2� ��� �

Nv,ss
�2�

�1 � 	1
2�2��1 � 	2

2�2�
, [39]
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where 	2 is the characteristic length of the second stage:

	2 � � D2�kim
�2� � �2�

km
�2�k im

�2� � km
�2��2 � k im

�2��2
, [40]

and Nv
(2) are the total numbers of mobile and immobile particles

in the steady-state gradient in the second stage

Nm,ss
�2� �

	2
2Q1

D2
; N im,ss

�2� �
�2

k im
�2� � �2

Nm,ss
�2� , [41]

where Q1 is the intensity of the � source located at the origin

Q1 � gNim,ss
�1� . [42]

Inverting the transform in Eq. 39, we find the steady-state
gradients:

Cv,ss
�2� �x� � Nv,ss

�2� p2�x� , [43]

where p2 (x) can be interpreted as the probability density of
finding a particle at point x

p2�x� �
1

2�	1
2 � 	2

2�
� 	1e��x�/	1 � 	2e��x�/	2� . [44]

This function determines the shape of the steady-state gradients
in the second stage.

The length L2, which characterizes the decay of p2 (x) from its
maximum value at x � 0, p2 (0) � 1/[2(	1 � 	2)], is given by

L2 � 2�
0

�

xp2�x�dx �
	1

2 � 	1	2 � 	2
2

	1 � 	2
. [45]

As might be expected, this length is greater than 	1 and smaller
than the sum (	1 � 	2).

Cascades with Distributed Sources. Our approach allows us to
analyze not only delta-sources of the particles but distributed
sources as well. As an example, consider a Gaussian source, jG
(x, t), with width 
,

jG�x, t� �
QH�t�

�2�

e�x2/2
2 , [46]

which injects mobile particles in the first stage of the cascade. In
this case, Cv,ss

(1) (x) in Eq. 37 is replaced by

Cv,ss
�1� �x� � Nv

�1�p1�x �	1, 
� , [47]

where the probability density p1 (x�	, 
) is given by

p1�x�	, 
� �
1

4	
e
2/2	2�ex/	erfc�
2 � 	x

�2	

�� e�x/	erfc�
2 � 	x

�2	

�� .

[48]

The characteristic length 	1 given in Eq. 35 is replaced by

L1 � 2�
0

�

xp1�x�	1, 
�dx � 	1e
2/2	1
2
erfc� 


�2	1
� � �2

�

 , [49]

which reduces to 	1 as 
 3 0.

The concentration profiles in the second stage are given by
Eqs. 43 and 44, in which p2 (x) is replaced by p2 (x�	1, 	2, 
):

p2�x�	1, 	2, 
� � �
��

�

1
2�	1

2 � 	2
2�

�	1e��x�y�/	1 � 	2e��x�y�/	2� 1
�2�


e�y2/2
2 dy . [50]

Carrying out the integration, one can obtain

L2 �
1

	1
2 � 	2

2 �	1
3e
2/2	1

2
erfc� 


�2	1
� � 	2

3e
2/2	2
2
erfc� 


�2	2
��

� �2
�


 . [51]

Respectively, the characteristic length L2 given in Eq. 45 is
replaced by

L2 � 2�
0

�

xp1�x�	1, 	2, 
�dx

�
1

	1
2 � 	2

2�	1
3e


2

2	1
2erfc� 


�2	1
� � 	2

3e

2

2	2
2 erfc� 


�2	2
�� � �2

�

 ,

[52]

which reduces L2 in Eq. 45 as 
 3 0.

Discussion
We have developed a linear theory for signaling gradients in

cascades of 2-state systems. Our main results are the expressions
for the steady-state concentration profiles and characteristic
length scales of mobile and immobile particles, as well as the
general approach used to derive these expressions. Our approach
can be straighforwardly extended to cascades with more than 2
stages and to models where particles move by mechanisms other
than diffusion and in more than 1 dimension (30, 31). We
conclude with discussion of the potential applications of our
results to the terminal patterning system in the Drosophila
embryo (12, 19, 20).

Taken together, the extracellular diffusion of Trunk, its
trapping by Torso receptors, and receptor-mediated internal-
ization can be viewed as a 2-state reaction–diffusion system.
Similarly, the intracellular diffusion of phosphorylated
MAPK, its dephosphorylation, and trapping by nuclei define
the second 2-state system. We assume that the rate of MAPK
phosphorylation at a particular point along the embryo is
proportional to the number of occupied receptors at this point.
This approximation, which lumps a number of processes
between the activated Torso and MAPK phosphorylation into
a single step, is supported by the fact that the expression
boundaries of the genes controlled by MAPK signaling can be
shifted by manipulations of the Trunk (ligand) levels (32). This
approximation is also supported, indirectly, by experiments
with cultured cells stimulated by soluble growth factors (27,
33). A number of such studies demonstrated that MAPK
phosphorylation is correlated with ligand concentration and
receptor occupancy.
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Full activation of MAPK requires 2 phosphorylations (18), but
because it is currently possible to detect only MAPK in its
twice-phosphorylated state, our model contains only a single
form of phosphorylated MAPK. We model dynamics of MAPK
activation using a simple phosphorylation/dephosphorylation
cycle. In such a model, the reversible activation and deactivation
of a substrate (unphosphorylated MAPK) is mediated by 2
separate enzymes (kinase and phosphatase). To a first approx-
imation, both reactions are modeled using the Michaelis-Menten
(MM) kinetics.

We assume that the unphosphorylated MAPK is in excess
(17). Within the framework of the MM kinetics, this implies that
phosphorylation exhibits zeroth-order with respect to unphos-
phorylated MAPK and first order with respect to the activating
enzyme. Based on the discussion above, this rate is proportional
to the local level of the occupied Torso receptors. We also
assume that dephosphorylation operates in a first-order regime,
with the rate constant proportional to the concentration of the
phosphatase. Because the precise identity and subcellular (nu-
clear vs. cytoplasmic) localization of the MAPK phosphatase in
the terminal system are currently unknown (34, 35), in our
model, dephosphorylation can occur both in the nucleus and in
the cytoplasm.

Thus, MAPK phosphorylation in the terminal system appears
to be controlled by a 2-stage cascade of 2-state linear reaction-
diffusion systems, each of which can be characterized by its own
length scale (	1 and 	2). Our recent experiments revealed that
MAPK phosphorylation gradients at a given nuclear density are
at steady state (17). Thus, they can be analyzed using the results
derived above. By quantifying MAPK phosphorylation in mu-
tants with different levels of Torso, we concluded that the

pattern of Torso occupancy is highly localized to the poles of the
embryo, and the length scale of the pattern of phosphorylated
MAPK is determined by processes inside the embryo (17).
Within the framework of the our model (see Eq. 45), this implies
that 	1��	2, hence, the resulting expressions would not depend
on the length scale of the first stage and will be a function of 	2
alone.

Our experiments detect the total level of phosphorylated
MAPK, which can be viewed as the sum of the nuclear and
cytoplasmic levels of MAPK given by Ctot,ss

(2) (x) 	 Cm,ss
(2) (x) �

Cim,ss
(2) (x). Under the assumptions discussed above, Ctot,ss

(2) (x) is
given by the following expression (with 	2 is given by Eq. 40):

Ctot,ss
�2� �x� �

Q	2

4D2
�1 �

�2

kim
�2� � �2

�e
2/2	2
2�ex/	2erfc�
2 � 	2x

�2	2

�

� e�x/	2erfc�
2 � 	2x

�2	2

�� . [53]

This expression can be used to analyze how MAPK phos-
phorylation changes with nuclear density. We found that, with
every nuclear division, the level of MAPK phosphorylation
increases near the poles (at x � 0, in the model) and decreases
in the rest of the embryo (17) (Fig. 3A). Analysis of this effect
requires a theory for predictng how the parameters appearing
in Eq. 53 depend on nuclear density. This theory can be based
on the analysis of the dynamics of nuclear divisions and recent
live-imaging studies of protein mobility in the syncytium
(26, 36–38). We expect that the diffusivity and trapping rate
will be decreasing and increasing functions of the nuclear
density, respectively. Each of these effects can amplify the

Fig. 3. Dynamics of MAPK phosphorylation profiles in the terminal system. (A) Fluorescent images of nuclei (green) and phosphorylated MAPK (red) at 2
different nuclear densities. (B) Quantified gradients of total (nuclear and cytoplasmic) phosphorylated MAPK. The green/blue curves show the patterns of MAPK
phosphorylation at nuclear cycles 10 and 14, respectively. Increase in the nuclear density amplifies the total level of MAPK phosphorylation near the poles of
the embryo and attenuates it in the rest of the system. (C) Increase in the nuclear trapping rate sharpens the profile of Ctot,ss

(2) (x), computed with Eqs. 53 and 40:
� � 0.05, 0.1 0.2, 0.4, 0.8 (green to blue curves, respectively). Other parameters: kim zbe 2, km � 0, � � 1, 
 � 1.5, and D � 0.5. (D) Decrease in the diffusivity sharpens
Ctot,ss

(2) (x). D � 2.5, 2, 1.5, 1, and 0.5 (green to blue curves, respectively), � � 0.8, other parameters as in C.
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signal close to the poles and attenuate it in the rest of the
system (Fig. 3B and C). Thus, a 2-stage cascade of 2-state
systems provides an adequate qualitative description for the
dynamics of MAPK phosphorylation in the early Drosophila
embryo.

Several assumptions of our model, such as the linearity of the
connection between the 2 stages, can be tested experimentally,
using the recently developed approach for the quantitative

comparison of MAPK phosphorylation across multiple genetic
backgrounds (17).
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