THE JOURNAL OF CHEMICAL PHYSICS 129, 184706 (2008)

Particle size effect on diffusion in tubes with dead ends: Nonmonotonic
size dependence of effective diffusion constant
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Diffusion of a spherical particle of radius r in a tube with identical periodic dead ends is analyzed.
It is shown that the effective diffusion constant follows the Stokes—Einstein relation, Dgg(r) < 1/r,
only when r is larger or much smaller than the radius of the dead end entrance. In between, Ds(r)
not only deviates from the 1/r behavior but may also even become a nonmonotonic function, which
increases with the particle radius for a certain range of r. © 2008 American Institute of Physics.
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I. INTRODUCTION

In this paper, we discuss the diffusion of spherical par-
ticles in a tube with identical periodic dead ends shown in
Fig. 1. Our major focus is on the difference between particles
of “finite” size and “point” particles whose size is well below
the radius a of the dead end entrance. For point particles the
dead ends work as reversible entropy traps,' which shorten
the time used by the particle for diffusion along the tube.
This leads to the decrease in the particle effective diffusivity
compared to that in a tube without dead ends. We analyze
this effect in detail in Ref. 2. Of course, a point particle is an
approximation. Therefore, it seems interesting to consider
how the dead end effect on diffusion depends on the particle
size. This was the motivation for this work. The point par-
ticle approximation fails when the particle radius r becomes
comparable with a. In particular, relatively large particles
whose radius is greater than a, r>a, do not “see” the dead
ends. As a consequence, their diffusivities are identical to
those in a purely cylindrical tube.

Particle size effect on diffusion in a tube with dead ends
has two aspects: Depending on its size, the particle (i) sees
different traps and (ii) “feels” different hydrodynamic inter-
actions. In this note, we are concentrated on the first aspect,
which is purely geometric, and mainly neglect the second
aspect. It is well known that in space with no constraints the
diffusion constant of a spherical particle according to the
Stokes—Einstein relation is inversely proportional to the par-
ticle radius. We show that in tubes with dead ends the
r-dependence of the effective diffusivity may significantly
deviate from the 1/r behavior. Moreover, the r-dependence
may even be nonmonotonic. Our analysis is based on the
results of our recent study of transient diffusion of point
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particles in tubes with dead ends,2 which are briefly dis-
cussed in the next section. The major results of this note are
presented in Sec. III and illustrated in Figs. 2-5. Concluding
this brief introduction, we indicate that one can find a de-
tailed discussion of different theoretical approaches to the
problem of the point particle diffusion in a tube with periodic
dead ends in Ref. 2. Different objects to which the theory
may be potentially applied are also mentioned in that paper.

Il. POINT PARTICLES IN TUBES WITH PERIODIC
DEAD ENDS

Consider a tube of radius R with periodic identical dead
ends separated by distance /, as shown in Fig. 1. A dead end
is formed by a cavity of volume V,, connected to the tube
by a cylindrical channel of radius a and length L. We assume
that the dead end entrance radius, a, is much smaller than the
tube radius, R, and the period, /, a<<R,l. About the cavity,
we assume that its size, Vif,, is much greater than a as well,
a<<V!3 In addition, we consider the case of purely cylindri-
cal dead ends without cavities, i.e., dead ends with V_,,=0.
We also consider the case of dead ends with no connecting
channel, i.e., dead ends with L=0.

In Ref. 2 we analyze the transient behavior of the diffu-
sion coefficient, D(¢|r), for point particles, r<a, assuming
that initially, at =0, the particles are uniformly distributed in
the tube and there are no particles in the dead ends. Under
these initial conditions, D(|r) monotonically decreases with
time from D(r), which is the particle diffusion constant in the
tube with no dead ends, to the effective diffusion constant,

Dgi(r),

V
Degi(r) = —2=—

D(r).
Vlube+Vde ( )

(2.1)

Here, Vp.=7R?] is the tube volume per one dead end and
Vg is the dead end volume, Vy.=V.,+Vy, where Vg
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FIG. 1. A tube of radius R with identical periodic dead ends separated by
distance /. Dead ends are formed by cavities of volume V,,, connected to the
tube by narrow channels of radius a and length L. The larger particle cannot
enter the dead ends since its size exceeds the size of the dead end entrance.
The smaller particle is capable of entering the dead ends that work as re-
versible traps for this particle, which slow down its diffusive spreading
along the tube axis.

=ma’L is the volume of the connecting channel. Note that
we neglect the size of the particle when writing V. and V.
since this size, r, for point particles is much smaller than all
other characteristic length scales of the problem.

The transient behavior of D(t| r) can be written in terms
of the relaxation function, R(¢|r), which monotonically de-
creases from unity to zero as ¢ goes from zero to infinity,

D(tr) = Degy(r) +1D(r) = Degr(r) IR(1]r). (2.2)

In Ref. 2, we derived an analytical solution of the Laplace
transform of R(t|r) and used it to find the relaxation time,
T.e(r), defined as

Trel(r) = fw R(t|r)dt. (2.3)
0

One of the main results of our analysis is a general expres-
sion, which gives 7,4(r) in terms of D(r) and all geometric
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FIG. 2. The ratio D(r)/D(r) as a function of the dimensionless particle
radius, x=r/a, for the case of dead ends with no cavities, V.,=0. The
curves from top to bottom correspond to @=0,2,5,10,20. All curves merge
into one, D(r)/D(r)=1, at x>1 since D u(r)=D(r) at r>a.
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FIG. 3. Dimensionless effective diffusion constant, Dx(r)/D(a), as a func-
tion of the dimensionless particle radius, x=r/a, for the case of dead ends
with no cavities, V,,=0. The curves from top to bottom correspond to «
=0,2,5,10,20. All curves merge into one, D(r)/D(a)=1/x, at x>1 since
D(r)=D(r)=D(a)alr at r>a.

parameters of the problem [Eq. (3.12) from Ref. 2],
 (Tuabe MDY 7(7) + 2(7, (1) X 7e(1)

el = ) () + () &Y
where
Vb TR
<Ttube(r)>_ 4aD(r) - 4aD(r)’ (25)
Ve Vi + ma’L
<7-de(r)>_4aD(r) B 4aD(r) (2.6)
lZ
(7,(r)) = 1200)" (2.7)
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FIG. 4. The ratio D(r)/D(r) as a function of the dimensionless particle
radius, x=r/a, for the case of dead ends with cavities of the same volume as
Vives and B=1. The curves from top to bottom correspond to «
=0,2,5,10,20. All curves merge into one, D.(r)/D(r)=1, at x>1 since
D(r)=D(r) at r>a.
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FIG. 5. Dimensionless effective diffusion constant, D (r)/D(a), as a func-
tion of the dimensionless particle radius, x=r/a, for the case of dead ends
with cavities of the same volume as V., i.e., B=1. Solid curves from top to
bottom correspond to @=0,2,5,10,20. The dashed line shows the 1/x be-
havior of the ratio at x<<1. All curves merge into one, D u(r)/D(a)=1/x, at
x>1 since D(r)=D(r)=D(a)al/r at r>a.

4LD(r) [ Veas

<7§e(r>>-2<rde<r)>{1+( * Dl Ve

de
—_ ( _Ch ) s
3 de

where D,(r) is the particle diffusion constant in the connect-
ing channel, which may be much smaller than D(r).

(2.8)

lll. FINITE SIZE PARTICLES IN TUBES WITH PERIODIC
DEAD ENDS

According to Egs. (2.1) and (2.4), both D(r) and 7,,(r)
depend on the particle radius, r, only through the
r-dependence of the particle diffusion constant, D(r). This is
an approximation, which is justifiable only for point par-
ticles, i.e., when r is much smaller than all other character-
istic length scales of the problem. The approximation fails
for finite size particles, whose radii may be comparable with
the dead end entrance radius, a. Below we use Eq. (2.1) to
analyze the r-dependence of D «(r) for finite size particles,
assuming that r is much smaller than the tube radius, r<<R.
Based on the Stokes—Einstein relation, we take that D(r)
«1/r.

A. Dead ends with no cavities, V,,,=0

A finite size particle of radius r sees a purely cylindrical
dead end of radius @ and length L (with no cavity) as a point
particle sees a cylindrical dead end of radius a—r and length
L—r. With this in mind, we can use Eq. (2.1) to write D (r)
for our finite size particle as

Deg(r) = " ?(r) r ,
1+a(1——) (1——>H(a—r)
L

a

(3.1)

where
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Ve a’L
a=— =2 (3.2)
Vtube R

and we have neglected the variation of the tube volume due
to the finite size of the particle based on the fact that r<R.
The Heaviside step function, H(a-r), entering into Eq. (3.1)
takes account of the fact that particles of the radii larger than
a do not enter the dead ends. Therefore, for such particles
De4(r)=D(r).

We illustrate the deviation of D.g(r) from D(r) in Fig. 2,
assuming that the cylinder is long enough so that L>r. One
can see that the ratio Dy(r)/D(r) monotonically grows with
r for r<a and approaches unity as r tends to a. This ratio is
equal to unity for r>a since the particles of the radii larger
than a do not see the dead ends.

To analyze the r-dependence of the effective diffusion
constant, consider the ratio D.u(r)/D(a). Assuming that L
>r and using the relation D(r)=D(a)a/r, we can write Eq.
(3.1) as

Desi(r) 1
D(a) x[1+a(1-x)%H(1-x)]

x=". (3.3)
a

In Fig. 3 we show the ratio as a function of x for several

values of a. This parameter defined in Eq. (3.2) determines

whether the ratio is a monotonic function of x or not. The

dependence is nonmonotonic when «>3. Positions of the

minimum and maximum, x,;, and x_,,, are given by

1- a>3,

S RN
R W

1
- 5 (3.4)

Xmin =

1-

R Iw

. a>3. (3.5)

W | =

2
xmaxz 5 +

Thus, when purely cylindrical dead ends are long enough the
r-dependence of the effective diffusion constant is nonmono-
tonic. When the dead ends are not sufficiently long, the de-
pendence is monotonic but differs from the 1/r-dependence
predicted by the Stokes—Einstein relation. We will see that
this is a distinctive feature of purely cylindrical dead ends
with no cavities. When dead ends have cavities, the
r-dependence of the effective diffusion constant is always
nonmonotonic independent of the length of the connecting
channel.

Concluding this subsection, we briefly discuss the par-
ticle size effect on the relaxation time given in Eq. (2.4). For
dead ends with no cavities, V,,=0, the expressions in Egs.
(2.6) and (2.8), written for point particles, simplify and take
the form

mral
(7ge(r)) = D)’ (3.6)
~ 5 4LD(r) )
(73(r)) = 2(70e(r)) (1 +—37chh(r) ) (3.7)

Accordingly, 7.,(r) in Eq. (2.4) can be written as
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4LD(r)
<Ttube(r)><1 + 37TaDCh(l’)> + <Tw(r)>

(Tube(r)) + (7e(r))

Trel(r) = <Tde(r)>
(3.8)

To analyze the particle size effect on the relaxation time, one
has to replace a by a-r in this equation and in Egs. (2.5) and
(3.6) as well. After such a replacement, one can see that as
r—a (74(r)) =0, (Type(r))—, while (7,(r)) remains fi-
nite. Using these relations, one can find the asymptotic be-
havior of the relaxation time,

4LD(r) v
(a - r)Dch(r) - 3Dch(") |

Tre](r) = <Tde(r)>3ﬂ_
(3.9)

This shows that the relaxation time diverges as r—a since
D (r) vanishes in this limit because of the hydrodynamic
interaction.

B. Dead ends with large cavities, a< V!5

When the dead ends have cavities, the expression for
D(r) in Eq. (3.1) must be modified. Following the same
way of reasoning, which led us to Eq. (3.1), and assuming
that the cavity size is much greater than a, a<V!’?, we arrive
at

D(r)

Deff(r) = R P s (310)
1+ {,3+ a(l ——) JH(a—r)
a
where
Vcav Vcav
= = . 3.11
A Ve TR (3.11)

From Eq. (3.10) one can see that when r— a, D (r) tends to
D(a)/(1+B) or D(a) depending on whether the particle size,
r, approaches a from below or from above, respectively. At
r=a function D.{r) makes a step up of the height
D(a)B/(1+ ). This step is a distinctive feature of the behav-
ior of D(r) in the presence of the dead end cavities. In the
absence of the cavities, 8=0 and the step disappears. We
illustrate the step in transition of D.g(r) to its universal be-
havior, D.«(r)=D(r), at r>a in Fig. 4.

When analyzing the dependence of the effective diffu-
sion constant on the particle radius, we again use D(a) as a
scale for Dyg(r). This allows us to write Eq. (3.10) as

Deff(r) _ 1
D) x[1+a'(1-x)H(1-x)][1 +BH(1-x)]

. (3.12)

Q|

where
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, o VCh

o = = .
I+ B Vtube + Vcav

(3.13)

Equations (3.12) and (3.3) are identical at x>1 since at r
>a D.4(r) demonstrates a universal behavior, D(r)=D(r),
which is independent of the dead end geometry. At x<<1 the
right-hand sides of Egs. (3.12) and (3.3) are almost identical:
The former can be obtained from the latter by dividing the
right-hand side of Eq. (3.3) by (1+ /) and replacing their «
by «'. Parameter o’ determines whether the ratio in Eq.
(3.12) is a monotonic function of x at x<<1 or not. The non-
monotonic behavior of the ratio is realized when o’ >3, with
the minimum and maximum located at [cf. Egs. (3.4) and

(3.5)],

xmin—3 3 a/,’ o N .
L2 '>3 (3.15)
=—+= -—, .
Tmax =37 o

When o’ <3 the ratio in Eq. (3.12) is a monotonic function
of x at x<<1. However, this ratio jumps up at x=1, which
makes it a nonmonotonic function. This nonmonotonic be-
havior of D.(r) at any value of «' is a distinctive feature of
diffusion in tubes with dead ends, which have cavities. The
size dependence of D.u(r) in such tubes is illustrated in
Fig. 5.

Finally, we discuss the particle size effect on the relax-
ation time given in Eq. (2.4), focusing on the divergence of
7,.1(r) as the particle size approaches the size of the dead end
entrance, r—a. In this limiting case, one can neglect the
channel volume compared to that of the cavity, Vg, <V u.,
and we have Vy.=V,,,. With this in mind, we can write Egs.
(2.5), (2.6), and (2.8) as

7Rl
(Trupe(r)) = Ha-npe 7@ (3.16)
VCaV
<Tde(r)>”m, r—a, (3.17)
(2.7 =~ 2 u»{uﬂ] e
d"' d° m(a—-rDg(r | '
(3.18)

Using these relations and the fact that {7,,) <{7p.) When r is
close to a, we can write the relaxation time as

Vtubevcav |: 1
Viube + Veay 2(a—r)D(r)

Trel(r) =~

+ ;} (3.19)
m(a—-r)Du(r) | “ '

This shows that the relaxation time diverges as 1/(a-r) in the

absence of the connecting channels, L=0, while in the pres-
ence of the channels, L#0, this time diverges as

1/[(a-1)*Dey(r)]-
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IV. CONCLUDING REMARKS

In this note, we have extended our analysis of the point
particle diffusion in a tube with periodic dead ends to par-
ticles of finite size. Our major focus is on the particle size
dependence of the effective diffusion constant, D.g(r). We
have found that D g(r) follows the Stokes—Einstein relation,
D.s(r)oc1/r, only when r<a and r>a and noticeably devi-
ates from the 1/r-dependence when r is comparable to a.
Moreover, for some range of the geometric parameters of the
dead ends D (r) not only deviates from the 1/r behavior but
is even a nonmonotonic function of », which increases with r
at 7y <7 <rpao Where rpin=axp, and 7o, =aXp.,, Wwith
Xmin and X, given in Egs. (3.4) and (3.5) or (3.14) and
(3.15).

We have also found that the dependence D (r) is sensi-
tive to the dead end geometry, namely, whether the dead ends
have cavities or not. When the dead ends have no cavities
(purely cylindrical dead ends), the dependence D (r) is a
continuous function of r, which is nonmonotonic only when
the dead ends are long enough. In the presence of the cavi-
ties, the dependence D 4(r) is nonmonotonic at arbitrary
length of the connecting channels since it always has a step
at r=a.

The relaxation time, 7,,(r), which provides a time scale
characterizing relaxation of D(t|r) from D(0|r)=D(r) to
D(|r)=D.x(r), diverges as r approaches a. The limiting
behavior of 7,,,(r) is also sensitive to the dead end geometry.
In the absence of the dead end cavities, 7,(r) diverges as
1/Dy(r) [recall that D, (r) —0 as r— a because of the hy-
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drodynamic interaction]. In the presence of these cavities, the
limiting behavior changes and 7,,(r) diverges as 1/(a-r), r
<a, in the absence of the connecting channels, L=0, and as
1/[(a-r)*Dy(r)] when L#0.

In summary, we have shown that diffusion in tubes with
dead ends has an interesting feature, namely, that there is a
range of the parameters for which larger particles diffuse
faster than the smaller ones. This is surprising since it is well
known that in free space the larger particles always diffuse
slower than the smaller ones. It turns out that this is not
necessarily the case when diffusion occurs in a tube with
dead ends. The reason is as follows. A larger particle, which
cannot enter the dead ends, spends all the time diffusing
along the tube axis, whereas the smaller particle, which is
able to enter the dead ends, wastes time traveling in the dead
ends and diffuses along the tube axis for only a fraction of
the total observation time. This is why its effective diffusion
coefficient may be smaller than that of the larger particle.
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