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A problem of cell-to-cell communication by diffusible ligands is analyzed for the case when cells
are distributed in three dimensions and diffusible ligands are secreted by cells and reversibly bind
to cell surface receptors. Following its binding to a receptor, the ligand can either dissociate and be
released back in the medium or be absorbed by the cell in a process that is called internalization.
Using an effective medium approximation, we derive analytical expressions that characterize the
time and length scales associated with the ligand trajectories leading to internalization. We discuss
the applicability of our approximation and illustrate the application of our results to a specific
cellular system. © 2008 American Institute of Physics. �DOI: 10.1063/1.2936845�

I. INTRODUCTION

A significant fraction of cell-cell communication in mul-
ticellular organisms relies on secreted ligands.1,2 In a typical
cell communication context, a cell secretes a protein that
diffuses through the extracellular medium to the neighboring
cells before binding to their cell surface receptors. Ligand-
receptor binding leads to a wide range of biochemical and
biophysical changes inside the cell and in this way controls
cellular responses, such as differentiation and division. This
type of cell-cell communication is called paracrine.2 A ligand
can also bind to receptors on the same cell that has secreted
it. This mode of cell signaling is called autocrine.2 Following
its binding to a surface receptors, the ligand can either dis-
sociate from receptor and be released back in the medium
or be absorbed by the cell in a process that is called
internalization.

One of the key issues in autocrine and paracrine cell
communication is related to the time and length scales of
secreted signals. Recently, we have derived results that char-
acterize the time and length scales of autocrine and paracrine
ligand trajectories that lead to the first binding event.3 This
problem corresponds to the case when ligand internalization
is essentially instantaneous and the probability of ligand re-
lease back into the medium is zero. Here, we extend these
results to the more general case, where the probability of
dissociation of the ligand-receptor complex is finite.

The present note is focused on the time and length scales
associated with the ligand life before internalization. Thus
we have to deal with a problem of diffusion and trapping in
disordered medium. This problem is too complicated to be
solved exactly. We apply the effective medium approxima-

tion to overcome the difficulties. This allows us to derive an
analytical solution for the Laplace transform of the ligand
propagator. The propagator is then used to find the distribu-
tion of the ligand lifetime before internalization as well as
the distribution of its internalization point. Note that the ef-
fective medium approximation, which we use, neglects the
slowdown of trapping of the diffusing ligands due to the
Poisson fluctuations in the distribution of the traps.4

The paper is organized as follows. We start by describing
the mathematical problem that models the specific cell com-
munication context discussed in this paper: spherical cells
randomly distributed in three dimensions and communicat-
ing by diffusing ligands. Following that, we introduce the
key quantities that characterize the statistical properties of
ligand trajectories. Within the framework of the effective
medium approximation, we derive an analytical solution for
the propagator and use it to find the quantities of interest.
Finally, we establish the conditions of applicability of the
effective medium approximation and illustrate the applica-
tion of our results for a specific biological problem.

II. STATEMENT OF THE PROBLEM

Consider a ligand released by a spherical cell of radius R
located at the origin at t=0. This ligand diffuses in the solu-
tion containing other cells which are identical to the parent
cell. Each cell contains a fixed number N of the receptors
which can bind the ligand. The rate constant of ligand bind-
ing to the receptor is denoted by kon. The cells are uniformly
distributed in the solvent and their concentration is denoted
by c. The ligand diffuses with diffusivity D until it binds to
one of the receptors on the surface of either the parent cell or
one of the other cells. The ligand-receptor complex may dis-
sociate, and the ligand continues its diffusion in the solution.
Alternatively, the complex may be internalized that impliesa�Electronic mail: stas@princeton.edu.
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ligand annihilation as a diffusing signal. We assume that the
dissociation and internalization are monomolecular reactions
and denote corresponding rate constants by kd and ki. Thus,
the list of the problem parameters includes c, R, N, kon, kd, ki,
and D.

A ligand that survives by time t can be found either
diffusing in the solution or bound to a receptor on the surface
of the parent cell or one of the other cells. To describe the
state of the ligand at time t we introduce a three-component
propagator with the components denoted by gm�r , t�, gim�r , t�,
and PR�t�. The first two components gm�r , t� and gim�r , t� are
the probability densities of finding the ligand at point r of the
solution, r�R, in mobile �m� and immobile �im� states, re-
spectively, at time t. The third component of the propagator
PR�t� is the probability of finding the ligand bound to the
parent cell at time t.

To write the evolution equation for the propagator we
use an effective medium approximation to describe diffusion
and binding of the ligand in the solution and boundary ho-
mogenization to describe ligand binding to the parent cell. In
these approximations the set of the evolution equations for
the components of the propagator has the following form:

�gm

�t
= D�2gm − kbgm + kdgim − ��r − R�

���gm −
kd

4�R2 PR�, r � R , �2.1�

�gim

�t
= kbgm − �kd + ki�gim, �2.2�

�PR

dt
= �4�R2�gm�r=R − �kd + ki�PR. �2.3�

Here the effective surface trapping rate � is2

� =
konN

4�R2 , �2.4�

and the binding rate kb is given by the following Berg–
Purcell–Shoup–Szabo formula.5

kb =
kSmkonN

kSm + konN
c =

4�DR2�

D + R�
c , �2.5�

where kSm=4�DR is the Smoluchowski rate constant.6 The
initial and boundary conditions which complement the set in
Eqs. �2.1�–�2.3� are

PR�0� = gim�r,0� = 0, gm�r,0� =
��r − R�

4�R2 , �2.6�

and

� �gm�r,t�
�r

�
r=R

= 0. �2.7�

A. Quantities and functions of interest

All quantities and functions that characterize time and
length scales of the ligand internalization can be expressed in

terms of the two components of the propagator: gim�r , t� and
PR�t�. We begin with the fractions of ligands internalized by
the parent cell, autocrine fraction Pauto, and by other cells,
paracrine fraction Ppara. The former is given by

Pauto = ki	
0

�

PR�t�dt , �2.8�

while the latter is

Ppara = 1 − Pauto = 4�ki	
0

�

dt	
R

�

r2gim�r,t�dr . �2.9�

The spatial distribution of the ligand internalization
point is described by the probability density p�r�,

p�r� =
��r − R�

4�R2 Pauto + ki	
0

�

gim�r,t�dtH�r − R� , �2.10�

which is normalized to unity, H�z� is a Heaviside step func-
tion,

4�	
R

�

r2p�r�dr = 1. �2.11�

Using the probabilities Pauto and Ppara, we can write p�r� as a
weighted sum of the probability densities that characterize
distributions of the internalization points for autocrine
pauto�r� and paracrine ppara�r� ligands. The expression is

p�r� = pauto�r�Pauto + ppara�r�Ppara, �2.12�

where

pauto�r� =
��r − R�

4�R2 , �2.13�

and

ppara�r� =

0

�gim�r,t�dt

4�
0
�dt
R

�r2gim�r,t�dr
H�r − R� . �2.14�

One can use ppara�r� to find the mean distance from the origin
where a paracrine ligand is internalized �rpara�,

�rpara� = 4�	
R

�

r3ppara�r�dr , �2.15�

which is one of the important characteristics of the process.
Probability densities for the lifetimes of autocrine

�auto�t� and paracrine �para�t� ligands are given by

�auto�t� =
kiPR�t�
Pauto

=
PR�t�


0
�PR�t�dt

, �2.16�

and

�para�t� =
4�ki
R

�r2gim�r,t�dr

Ppara
=


R
�r2gim�r,t�dr


0
�dt
R

�r2gim�r,t�dr
.

�2.17�

The total probability density for the ligand lifetime, which
does not discriminate between autocrine and paracrine
ligands, ��t�, is
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��t� = �auto�t�Pauto + �para�t�Ppara. �2.18�

Using the probability densities �auto�t� and �para�t�, one can
find the mean lifetimes of autocrine and paracrine ligands,
�tauto� and �tpara�,

�tauto� = 	
0

�

t�auto�t�dt , �2.19�

and

�tpara� = 	
0

�

t�para�t�dt . �2.20�

The total mean lifetime of the ligand �t� is

�t� = 	
0

�

t��t�dt = �tauto�Pauto + �tpara�Ppara. �2.21�

The mean lifetimes in Eqs. �2.19�–�2.21� are also important
characteristics of the process.

III. GENERAL SOLUTION

In this section we find an exact solution for the Laplace
transform of the propagator and use it in our further analysis
of the quantities and functions of interest. The Laplace trans-

form of function f�t�, denoted by f̂�s�, is defined by

f̂�s� = 	
0

�

e−stf�t�dt . �3.1�

After the Laplace transform the set of Eqs. �2.1�–�2.3� takes
the following form:

sĝm −
��r − R�

4�R2 = D�2ĝm − kbĝm + kdĝim − ��r − R�

��ĝm −
kd

4�R2 P̂R�, r � R , �3.2�

sĝim = kbĝm − �kd + ki�ĝim, �3.3�

sP̂R = �4�R2�ĝm�r=R − �kd + ki�P̂R. �3.4�

Solving the last two equations we obtain

ĝim =
kb

s + kd + ki
ĝm, �3.5�

and

P̂R = � 4�R2�

s + kd + ki
ĝm�

r=R

. �3.6�

Using Eqs. �3.5� and �3.6� we can write Eq. �3.2� as

D

r2

d

dr
�r2dĝm

dr
� − K�s�ĝm

= −
��r − R�

4�R2 1 −
4�R2��s + ki�

s + kd + ki
ĝm�, r � R , �3.7�

where function K�s� is defined by

K�s� =
s2 + s�kb + kd + ki� + kbki

s + kd + ki
. �3.8�

Equation �3.7� should be solved with the following boundary
condition:

�dĝm

dr
�

r=R
= 0, �3.9�

which follows from Eq. �2.7�. The solution is

ĝm�r,s� =
exp�− �K�s�/D�r − R��H�r − R�

4�Dr1 + R�K�s�/D +
R�

D

s + ki

s + kd + ki

�
.

�3.10�

Substituting this into Eqs. �3.5� and �3.6� we obtain

ĝim�r,s�

=
kb exp�− �K�s�/D�r − R��H�r − R�

4�Dr�s + kd + ki�1 + R�K�s�/D +
R�

D

s + ki

s + kd + ki

�
,

�3.11�

and

P̂R�s� =
R�/D

�s + kd + ki�1 + R�K�s�/D +
R�

D

s + ki

s + kd + ki

�
.

�3.12�

Equations �3.10�–�3.12� provide an exact solution for the
Laplace transform of the propagator, which we use in our
further analysis.

A. Quantities and functions of interest

Using the definitions in Eqs. �2.8� and �2.9� we can find
the autocrine and paracrine fractions which are given by

Pauto = kiP̂R�0� =
PiR/��

1 + R/�para + PiR/��

, �3.13�

Ppara = 4�ki	
R

�

r2ĝim�r,0�dr =
1 + R/�para

1 + R/�para + PiR/��

.

�3.14�

Here we have introduced the internalization probability Pi

for a ligand bound to a receptor,

Pi =
ki

ki + kd
, �3.15�

and the two lengths, �para and ��, defined as
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�para = �D/�Pikb�, �� = D/� . �3.16�

The former provides a length scale for the distance traveled
by a paracrine ligand before internalization �see Eq. �3.19��.

Based on the definitions of ppara�r� and �rpara� in Eqs.
�2.14� and �2.15� we obtain

ppara�r� =
ĝim�r,0�

4�
R
�r2ĝim�r,0�dr

=
exp��r − R�/�para�H�r − R�

4�r�para
2 �1 + R/�para�

, �3.17�

and

�rpara� = R + �para�1 +
1

1 + R/�para
� . �3.18�

This can be used to estimate the mean distance traveled by a
paracrine ligand before internalization,

�rpara� − R = �para�1 +
1

1 + R/�para
� . �3.19�

One can see that this distance is between �para and 2�para.
Thus, �para provides a scale for the distance traveled by a
paracrine ligand. Finally, the probability density of the inter-
nalization points in Eq. �2.12� is given by

p�r� =

Pi��r − R�
4�R��

+ �1 +
R

�para
�exp�−

r − R

�para
�H�r − R�

1 +
R

�para
+

PiR

��

.

�3.20�

The Laplace transform of the probability density for the
lifetime of an autocrine ligand, according to the definition in
Eq. �2.16�, is given by

�auto�s� =
P̂R�s�

P̂R�0�

=

�kd + ki��1 +
R

�para

+
PiR

��

�
�s + kd + ki�1 + R�K�s�

D
+

R�s + ki�

���s + kd + ki�
�

.

�3.21�

Here we have used P̂R�s� in Eq. �3.12�. We use this Laplace
transform of the probability density to find the mean lifetime
of an autocrine ligand defined in Eq. �2.19�,

�tauto� = − �d�̂auto�s�
ds

�
s=0

=

1 +
R�kb�kd + 2ki� + �kd + ki�2�

2�parakbki
+

R

��

�kd + ki��1 +
R

�para
+

PiR

��
� . �3.22�

The Laplace transform of the probability density for the
lifetime of a paracrine ligand can be found from the defini-
tion in Eq. �2.17�,

�para�s� =

R

�r2ĝim�r,s�dr


R
�r2ĝim�r,0�dr

. �3.23�

Substituting ĝim�r ,s� given in Eq. �3.11� and carrying out the
integrations we obtain

�para�s� =

kbki�1 +
R

�para

+
PiR

��

��1 + R�K�s�

D
�

�1 +
R

�para

��s2 + s�kb + kd + ki� + kbki�1 + R�K�s�

D
+

R�s + ki�

���s + kd + ki�
�

. �3.24�

The mean lifetime of a paracrine ligand, defined in Eq. �2.20�, can be found using the Laplace transform in Eq. �3.24�. The
result is

�tpara� = − � d�̂para�s�

ds
�

s=0

=

�kb + kd + ki��1 +
R

�para

�2

+
PiR

��

F�
kbki�1 +

R

�para

��1 +
R

�para

+
PiR

��

�
, �3.25�

where factor F is given by
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F =

�kd + ki�2�1 +
R

2�para
� + kbkd�2 +

3R

2�para
� + kbki�1 +

R

�para
�

�kd + ki��kb + kd + ki�
. �3.26�

Finally, one can use the results in Eqs. �3.13�, �3.14�,
�3.21�, �3.22�, �3.24�, and �3.25� to find the Laplace trans-
form of the total probability density of the ligand lifetime
�Eq. �2.18�� as well as the mean ligand lifetime �Eq. �2.21��.

Thus, we have derived general solutions for the func-
tions and quantities that characterize spatial and temporal
ranges of ligand internalization in cultures of suspended
cells. Our derivation is based on the exact solution for the
propagator given in Eqs. �3.10�–�3.12� obtained in the frame-
work of the effective medium approximation. We discuss the
conditions of applicability of this approximation in the next
section. Finally, we indicate that in the limiting case of in-
stantaneous internalization, ki→�, Pi=1, and the results de-
rived above reduce to the corresponding results derived in
our recent work.3

IV. DISCUSSION

The theory developed in the last two sections is based on
the effective medium approximation, which replaces the so-
lution with randomly located cells by an effective, uniformly
absorbing homogeneous medium. This approximation is ap-
plicable when the characteristic length �para �Eq. �3.16�� is
much greater than the cell radius and the intercell distance,
�para�R, c−1/3. Below we show that the condition of appli-
cability of this approximation is given by

Pi
R

��

	 1. �4.1�

Being written in terms of the initial parameters of the system,
this inequality takes the following form:

konN

4�DR
	 1 +

kd

ki
. �4.2�

This reduces to the requirement of the weak ligand capture
by an individual cell,

konN

4�DR
	 1, �4.3�

when ki�kd. However, if ki	kd, the inequality in Eq. �4.2�
can be fulfilled even when the individual cells operate in the
strong capture regime so that

konN

4�DR
� 1. �4.4�

To prove the inequality in Eq. �4.1� consider the radio
�R /�para�2, in which we use the definition of �para in Eq.
�3.16� to obtain

� R

�para
�2

= Pi
R2kb

D
. �4.5�

Substituting here the definition of kb in Eq. �2.5� we arrive at

� R

�para
�2

= Pi
3
R/��

1 + R/��

	 1, �4.6�

where we have introduced the cell volume fraction 
,


 = 4
3�R3c . �4.7�

The inequality in Eq. �4.6� is a consequence of the inequality
in Eq. �4.1� and the fact that the cell volume fraction is
smaller than unity, 
�1, since the cells do not overlap.

Next, to prove the inequality

�para � c−1/3, �4.8�

we consider the quantity �c1/3�para�−2. Using the definition of
�para in Eq. �3.16� we can write

1

c2/3�para
2 =

Pikb

c2/3D
= � R

�para
�2�4�

3

�2/3

, �4.9�

where we have used the relation in Eq. �4.5�. Substituting
here the expression for �R /�para�2 in Eq. �4.6� we obtain

1

c2/3�para
2 = Pi

�4��3�2/3
1/3R/��

1 + R/��

, �4.10�

where the factor �4��3�2/3 is approximately equal to 7.7.
Thus, one can see that the inequality in Eq. �4.8� is fulfilled
when the quantity PiR /�� satisfies the inequality in Eq. �4.1�.

Using the latter inequality �Eq. �4.1��, we can simplify
the expressions for the quantities and functions of interest
derived in the last section. From this inequality together with
Eqs. �3.13� and �3.14� it follows that Pauto�0 while Ppara

�1. According to Eq. �3.18� we have �rpara�=�para and ac-
cording to Eqs. �2.12� and �3.17� we can write

p�r� � ppara�r� �
exp�− r/�para�

4��para
2 r

. �4.11�

The mean lifetime �tpara� �Eq. �2.23�� also simplifies and
takes the following form:

�tpara� =
kb + kd + ki

kbki
. �4.12�

The simplified versions of the Laplace transforms �̂�s� and
�̂para�s� are given by

�̂�s� � �̂para�s� �
kbki

s2 + s�kb + kd + ki� + kbki
, �4.13�

where we have used the relations in Eqs. �2.18� and �3.24�.
Inverting this transform we obtain
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��t� � �para�t� �
kbki

s2 − s1
�es1t − e−s2t� , �4.14�

where s1 and s2 are negative roots of the denominator in Eq.
�4.13�,

s1,2 = 1
2 �kb + kd + ki � ��kb + kd + ki�2 − 4kbki� . �4.15�

Note that the results in Eqs. �4.12�–�4.15� can be obtained
from consideration of the two-state model,

m �
kd

kb

im →
ki

, �4.16�

which describes transitions of the ligand between the mobile
�m� and immobile �im� states and its annihilation in the im-
mobile state.

To illustrate the results derived above we discuss the
spatial and temporal ranges of Interferon �IFN�  signaling
in experiments on early response of cultured human dendritic
cells to viral infection.3,7 In response to viral infection den-
dritic cells secrete IFN  molecules. When bound to cell
surface receptor, IFN  induces a variety of biochemical and
transcriptional effects. To determine the special and temporal
ranges of IFN  signaling we use the following values of the
problem parameters: c=106 cm−3, R=2.5�10−3 cm, N=5
�104, kon=107 mol−1 s−1, kd=10−3 s−1, ki=5�10−5 s−1, and
D=10−6 cm2 s−1.3 One can check that for this set of the pa-
rameter values the inequality in Eq. �4.2� is fulfilled and,
hence, the applicability of the effective medium approxima-
tion is justified. As a consequence, we have Pauto=0 and
Ppara=1. Using Eq. �3.16� we find that �lpara��0.16 cm and,
hence, �lpara� /R and �lpara�c1/3�1. Using the definition in Eq.
�2.5� we obtain kb=0.8�10−3 s−1. Then the mean ligand life-
time �Eq. �4.2�� is �tpara��12.5 h. Because the values of kb

and kd are close, the ligand spends in the mobile state about
half of its lifetime.

Finally, we note that here we have considered the case
when cells are distributed in three-dimensions. The problem
can also be posed for the case when the cells are distributed
in two-dimensions �a tissue-culture dish covered by adherent
cells under a layer of a liquid medium�.8 This case can be
analyzed using a combination of Brownian dynamics simu-
lations and a homogenization approach for problems with
patchy boundary conditions.9
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