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The steady-state flux through a singly occupied membrane channel is found for both discrete and
continuum models of the solute dynamics in the channel. The former describes the dynamics as
nearest-neighbor jumps between N sites, while the latter assumes that the molecule diffuses in a
one-dimensional potential of mean force. For both models it is shown that the flux is the same as
that for a simple two-site model with appropriately chosen rate constants, which contain all the
relevant information about the more detailed dynamics. An interesting consequence of single
occupancy is that the flux has a maximum as a function of the channel-solute interaction. If this
interaction is too attractive, the molecule will never leave the channel, thus blocking it for the
passage of other molecules. If it is too repulsive, the solute molecule will never enter the channel.
Thus the flux vanishes in the two limits and, hence, has a maximum somewhere in-between. In the
framework of the diffusion model, we find the optimal intrachannel potential of mean force that
maximizes the flux using the calculus of variations. For a symmetric channel this potential is flat and
occupies the entire channel. In the general case of an asymmetric channel, the optimal potential is
obtained by tilting the optimal flat potential for the corresponding symmetric channel around the
channel center, so that the solute is driven towards the reservoir with the lower solute concentration
by a constant force. This implies that the flux is higher when the solute binding near the channel exit
is stronger than that near the entrance. �DOI: 10.1063/1.2766720�

I. INTRODUCTION

Membrane channels that allow metabolites or other mac-
romolecular solutes to exchange between cells or different
cell compartments are protein structures with water-filled
pores. In this paper we consider the steady-state flux through
a single channel in a membrane that separates two reservoirs
with different concentrations of the solute. We assume that
the channel can be occupied by at most one solute molecule,
so that a molecule can enter only an empty channel, and once
inside it blocks the channel. The major focus of our analysis
is on how the interaction between the solute and the channel-
forming protein affects the flux. To be more specific, we are
looking for the interaction that maximizes the flux at a given
concentration difference between the two reservoirs.

Traditionally large channels were thought to be “molecu-
lar sieves” which discriminate between different solutes
based only on the solute size. In other words, they were
regarded as low-selectivity structures that allow passage of
the solute without any significant interaction with the chan-
nel pore. However, accumulating evidence1–13 indicates that
many such channels exhibit specific interactions with the sol-
utes they have evolved to transport.

Recently Berezhkovskii and Bezrukov14,15 have shown
that solute attraction to the channel-forming proteins makes
the transport through large solute-specific channels more ef-
ficient. They used the diffusion model introduced in Ref. 16
and explored in detail in Refs. 17 and 18 to describe the
solute-pore interaction in terms of the potential of mean
force. The attraction of the solute to the channel pore was
modeled in terms of a square potential well that occupied the
entire channel. The well depth that maximizes the flux was
found as a function of the solute concentrations in the reser-
voirs, the solute diffusion coefficients in the channel and in
the bulk, and the channel radius. It turns out that the optimal
depth is independent of the channel length. It was shown that
the smaller is the concentration, the deeper is the potential
well. As the concentration increases, the depth decreases and,
for very high solute concentrations, the depth is negative so
that the optimal interaction is repulsive.15 Kolomeisky19 has
recently shown that repulsive site-specific interaction in-
creases the flux at sufficiently high concentrations also for
the N-site model of the solute dynamics in the channel.

In this paper, in the framework of the diffusion model,
we determine the optimal potential that maximizes the flux
through a singly occupied channel without any a priori as-
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sumptions about the shape of the potential. We begin by
presenting a simple self-contained derivation of the general
expression for the steady-state flux through a singly occupied
channel. We show that the flux for the diffusion and multisite
nearest-neighbor model of the solute dynamics in the chan-
nel is identical to the flux for a two-site model with appro-
priately chosen transition rates. Specifically, we find that
jump rates between the two sites are equal to the reciprocal
of the mean first passage times from one end of the channel
to the other, calculated within the framework of the more
detailed models. The site models of channel-facilitated mem-
brane transport are frequently used in the literature because
they combine conceptual simplicity with the ability to de-
scribe the main features of the transport found experimen-
tally. The mapping of the diffusion and multistate models
onto the two-site model, which is used to describe the
steady-state flux through the channel, provides a microscopic
interpretation of the phenomenological parameters of the
two-site model.

As an application of this mapping we use it to find the
optimal potential for a symmetric channel. Our analysis
shows that the square-well potential occupying the entire
channel, conjectured in Refs. 14 and 15, is indeed optimal
when the channel is symmetric. However, the flux at given
concentrations in the reservoirs can be further increased by
making the channel asymmetric. Assuming that the intrac-
hannel potential is arbitrary we use the calculus of variations
to find the potential that maximizes the flux. The optimal
potential in the general case turns out to be surprisingly
simple. It can be obtained by tilting the optimal square-well
potential of the corresponding symmetric channel around the
center of the channel so that the optimal tilt drives the solute
molecules towards the reservoir with the lower solute con-
centration by a constant force. An interesting implication of
this result is that for a channel to function optimally, the
solute attraction to the channel must be stronger on the side
of the channel facing the reservoir to which solute molecules
translocate. This finding is in contrast with a conjecture that
the more pronounced binding takes place on the side of in-
coming solutes.20

Different models of the solute dynamics in the channel
are schematically illustrated in Fig. 1. The simplest model of
the steady-state flux through the channel that takes into ac-
count the solute dynamics in the channel �Fig. 1�a�� is com-
pletely characterized by six rate constants. Two of them de-
scribe the intrachannel transitions between the two sites, �+

and �−, while the other rate constants, kin
L , kout

L , and kin
R , kout

R ,
describe the entrance and escape from the channel into the
left �L� and right �R� reservoirs, respectively. A more general
N-site model is shown in Fig. 1�b�, and its continuum limit,
the diffusion model, is shown in Fig. 1�c�.

II. FLUX AND MAPPING ONTO THE TWO-SITE
MODEL

The simplest model of transport through a singly occu-
pied channel that connects two reservoirs containing the
transferring particles at concentrations cL and cR, which takes

the particle intrachannel dynamics into account, is shown in
Fig. 1�a�. In this model the channel can be in three states,
whose steady-state populations normalized to unity are de-
noted by P0, PL, and PR,

FIG. 1. Different models of the solute dynamics in the channel. �a� The
two-site model. The rate constants for transitions between the two sites are
�+ and �− and for escape from the channel are kout

L and kout
R . �b� The N-site

model. There are 2�N−1� rate constants for the intrachannel transitions be-
tween neighboring sites and the rate constants kl and kN to describe the
solute escape from the channel. �c� The diffusion model which is the con-
tinuous limit of the N-site model. The solute intrachannel dynamics is de-
scribed as diffusion in the presence of a potential of mean force, while
escape from the channel is described by imposing the radiation boundary
conditions at the channel ends. Solid curves in this panel show the potential
along the channel axis; doted lines show the solute potential energy outside
the channel. In all panels the black dot shows location of the solute in the
channel. The solute entrance into the channel from the left and right reser-
voirs is described by the bimolecular rate constants kin

L and kin
R .
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P0 + PL + PR = 1. �1�

The steady-state flux J, defined as the difference between the
average number of the particles passing through the channel
from the left reservoir to the right one and the average num-
ber of the particles passing in the opposite direction, can be
written as

J = kin
L cLP0 − kout

L PL = kout
R PR − kin

R cRP0 = �+PL − �−PR.

�2�

Thus we have four unknowns, P0, PL, PR, and J, and four
linear equations. Solving them we find that the flux is given
by

J =
�+kout

R kin
L cL − �−kout

L kin
R cR

�+kout
R + �−kout

L + kout
L kout

R + kin
L cL��+ + �− + kout

R � + kin
R cR��+ + �− + kout

L �
. �3�

Below we show that both the N-site and the diffusion models
�Figs. 1�b� and 1�c�� can be mapped onto the two-site model.
Specifically, the flux for these multistate models is given by
Eq. �3� when the rate constants are chosen in accordance
with the appropriate “microscopic” interpretation.

We begin with the diffusion model �Fig. 1�c��. In this
model the particle motion in the channel is described as one-
dimensional diffusion in the presence of a potential of mean
force U�x�, with position-dependent diffusion coefficient
Dch�x�, which may be quite different from the diffusion con-
stant in the bulk. The steady-state distribution of the particle
in the channel is described by the probability density p�x�,
xL�x�xR, where xL and xR are coordinates of the left and
right boundaries of the channel �Fig. 1�c��. The normaliza-
tion condition analogous to that is Eq. �1� and the set of
equations analogous to that in Eq. �2� are given by

P0 + �
xL

xR

p�x�dx = 1, �4�

J = kin
L cLP0 − �Lp�xL�

= �Rp�xR� − kin
R cRP0

= − Dch�x�
dp�x�

dx
− Dch�x��

dU�x�
dx

p�x� . �5�

Here �L and �R are rate constants describing escape from the
channel of a particle approaching the boundary, and �
= �kBT�−1, where kB and T are the Boltzmann constant and the
absolute temperature. The last expression in Eq. �5� gives J
as a sum of the diffusive and drift fluxes. The latter is due to
the force, −dU�x� /dx, acting on the particle in the channel.

It is convenient to write p�x� as a product of the dimen-
sionless function ��x� and the “equilibrium” density in the
channel normalized to unity peq�x�,

p�x� = ��x�peq�x� , �6�

where

peq�x� = e−�U�x�/Z, Z = �
xL

xR

e−�U�x�dx . �7�

Then Eqs. �4� and �5� take the forms

P0 + �
xL

xR

��x�peq�x�dx = 1, �8�

J = kin
L cLP0 − kL��xL�

= kR��xR� − kin
R cRP0

= − Dch�x�peq�x�
d��x�

dx
, �9�

where

kI = �Ipeq�xI� = �Ie
−�U�xI�/Z, I = L,R . �10�

Function ��x� can be found from Eq. �9� by simple in-
tegration,

��x� = ��xR� + J�
x

xR dx�

Dch�x��peq�x��
. �11�

We use this ��x� to write the normalization condition in Eq.
�8� as

P0 + ��xR� + J�+ = 1, �12�

where we have defined time �+ by

�+ = �
xL

xR

peq�x�dx�
x

xR dx�

Dch�x��peq�x��
. �13�

Changing the order of integration one can write this time in
the form

�+ = �
xL

xR dx

Dch�x�peq�x��xL

x

peq�x��dx�. �14�

This is the standard expression for the mean first passage
time from xL to xR when the boundary at x=xL is
reflecting.21,22 Note that this mean first passage time was not
introduced on the basis of physical considerations but arose
naturally. The mean first passage time in the opposite direc-
tion, i.e., from xR to xL when the boundary at x=xR is reflect-
ing, �−, is

�− = �
xL

xR dx

Dch�x�peq�x��x

xR

peq�x��dx�. �15�

The sum of the times �+ and �− has a simple form,
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�+ + �− = �
xL

xR dx

Dch�x�peq�x�
. �16�

We use this sum to write ��xL� obtained from Eq. �11� in the
form

��xL� = ��xR� + J��+ + �−� . �17�

Using Eq. �17� we can write the normalization condition
in Eq. �12� and Eq. �9� as

P0 +
��xL��+ + ��xR��−

�+ + �−
= 1, �18�

J = kin
L cLP0 − kL��xL�

= kR��xR� − kin
R cRP0 =

��xL� − ��xR�
�+ + �−

. �19�

Comparison of these equations with those in Eqs. �1� and �2�
shows that one can map the diffusion model of the particle
motion in the channel onto the two-site model by taking
PL=��xL��+ / ��++�−� and PR=��xR��− / ��++�−� together
with

�+ = �+
−1, �− = �−

−1, �20�

kout
L = kL�1 + �−/�+�, kout

R = kR�1 + �+/�−� , �21�

where kL and kR are defined in Eq. �10�. Note that the rates of
transitions between the two sites ��+/−� turn out to be simply
the reciprocals of the mean first passage times �+/−. Relations
in Eqs. �13�–�16� allow one to express the rate constants in
Eqs. �20� and �21� in terms of U�x� and Dch�x� that describe
the interaction of the particle with the channel in the diffu-
sion model. This mapping is analogous to that found by
Kamp and Szabo23 in the context of electron transfer be-
tween a donor and an acceptor undergoing conformational
dynamics.

Thus we have shown that the steady-state flux for the
diffusion model �Fig. 1�c�� is the same as the flux for the
two-site model �Fig. 1�a�� with the rate constants given in
Eqs. �20� and �21�. This mapping means that as far as the
flux is concerned, all information about the details of the
particle dynamics in the channel can be packed into the mean
first passage times from one end to the other and the equi-
librium probabilities of being at the ends. All models for
which these quantities are the same predict the same flux.

Using the relations in Eqs. �20� and �21� we can write
the flux in Eq. �3� in terms of the mean first passage times
between the channel ends given in Eqs. �14� and �15�,

J =
kRkin

L cL − kLkin
R cR

�kin
L cL + kL��1 + �+kR� + �kin

R cR + kR��1 + �−kL�
. �22�

To our knowledge this result was first obtained on the basis
of physically appealing arguments in Ref. 15 in the form �cf.
Eqs. �1� and �6� from that paper�

J =
Ptr

L→Rkin
L cL − Ptr

R→Lkin
R cR

1 + kin
L cLtinside

L + kin
R cRtinside

R . �23�

Here Ptr
L→R and Ptr

R→L are the translocation probabilities
which are the probabilities that the particle entering the chan-
nel from one side exits on the other, and the times tinside

L and
tinside
R are the average lifetimes of particles entering the chan-

nel from the left and right reservoirs. General expressions for
the translocation probabilities and for the average lifetimes
are given in Eq. �3.14� of Ref. 17 and in Eq. �3.11� of Ref.
18, respectively. When these expressions are substituted into
Eq. �23�, the result in Eq. �22� is recovered.

Similarly, the N-site model �Fig. 1�b�� can also be
mapped onto the two-site model. In this case, �+ and �− are,
respectively, the mean first passage times, ��1→N� and
��N→1�, between the two end sites of the channel when k1

and kN are set equal to zero. These times can be found ana-
lytically for arbitrary site-to-site hopping rates. The rate con-
stants kL and kR in Eq. �21� for the N-site model are given by
kL=k1Peq�1� and kR=kNPeq�N�, where Peq�i� is the equilib-
rium distribution in the N-site channel normalized to unity.
With this correspondence the steady-state flux for the N-site
model is given by Eq. �22�.

The expression in Eq. �22� is applicable both in the pres-
ence and in the absence of the potential drop between the
reservoirs. Our further analysis is focused on the optimal
potential U�x� that maximizes the flux which is due to the
concentration difference in the absence of the potential drop.
In this case the expression for the flux in Eq. �22� can be
simplified using two relations. The first follows from the
requirement that the flux vanishes at equilibrium when cL

=cR=c and has the form kRkin
L =kLkin

R �see Eq. �22��. The sec-
ond relation follows from the fact that for a singly occupied
channel kin

I /kI, I=L ,R, is just the equilibrium constant for
“binding” a particle to the channel. Let V�x ,y ,z� be the po-
tential energy of the particle at the point �x ,y ,z� inside the
channel, xL�x�xR. If it is assumed that V�x ,y ,z�=0 out-
side, x�xL, xR�x, then

kin
I

kI
= �

xL

xR

dx� exp�− �V�x,y,z��dydz = AZ, I = L,R ,

�24�

where Z is the partition function defined in Eq. �7�, and A is
a constant with dimensions of area entering into the defini-
tion of the potential of mean force U�x�,

exp�− �U�x�� =
1

A
� exp�− �V�x,y,z��dydz,

xL � x � xR. �25�

Using these relations we can write the flux in Eq. �22� as
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cL − cR

J
=

1

kin
L +

1

kin
R +

�+ + �−

AZ

+ � cL

kin
R +

cR

kin
L �AZ + cL�+ + cR�−. �26�

This will be used in Section IV to find the optimal U�x� that
maximizes the flux.

Transport of solutes that block the channel has been re-
cently considered by Bauer and Nadler,24 who obtained an
expression for the steady-state flux using heuristic argu-
ments. The authors, however, did not recognize that transport
of solutes that blocks the channel is identical to transport
through a singly occupied channel analyzed in Refs. 14 and
15. They mistakenly claim that considerations in Refs. 14
and 15 “hold only for noninteracting particles” in spite of the
fact that their Eqs. �21� and �22� for the flux are essentially
the same as our Eq. �26�, which in turn is a special case of
Eq. �23�, which was first derived in Ref. 15. Specifically,
their Eqs. �21� and �22� can be recovered from Eq. �26� if we
formally set A=1 and make the following correspondence
between our cI, kin

I , I=L ,R, �+/−, Z and their c1,2, k−
�1,2�, �, n,

�n: c1=cL, c2=cR, k−
�1�=kin

L , k−
�2�=kin

R , �= ��++�−� /2, n=Z /2,
and �n= ��+−�−�Z / �2��++�−��.

Finally we note that when the potential V�x ,y ,z� is lo-
calized inside the channel, the rate constants kin

I , I=L ,R, for
a channel with circular openings are given by the Hill
formula,25 kin

I =4Dbr�xI�, where Db is the particle diffusion
constant in the bulk and r�xI� are the effective radii of the
openings �e.g., for a spherical solute the difference between
the radii of the channel openings and the solute�. When the
openings are noncircular one still can use kin

I given by the
Hill formula with the approximate effective radii given by
�32Ach�xI�Pch�xI� / �2�2��1/3, where Ach�xI� and Pch�xI� are the
areas and perimeters of the openings.26

III. OPTIMAL SYMMETRIC CHANNEL

Now we consider conditions when the flux through a
channel occupied by at most one particle has a maximum.
We begin with a symmetric channel for which kin

L =kin
R =kin,

�+=�−=�, and kout
L =kout

R =kout. In this case the flux for the
two-site model given in Eq. �3� can be written as

kin�cL − cR�
J

= 2 +
kout

�
+ kin�cL + cR�� 2

kout
+

1

�
� . �27�

This flux goes to zero as kout→0 and kout→	 and thus must
have a maximum for some value of kout, denoted here by kout

* .
The flux vanishes as kout→0 because a particle entering the
channel stays in the channel for a very long time blocking
the channel for other particles. The flux vanishes as kout

→	 since in this limiting case an entering particle has no
chance to go through the channel because it instantly comes
back to the reservoir from which it entered.

The flux in Eq. �27� considered as a function of kout has
a maximum at kout=kout

* =�2�kin�cL+cR�. The maximal value
of the flux through the symmetric channel Jmax

sym is given by

Jmax
sym =

kin�cL − cR�
2�1 + �kin�cL + cR�/�2���2

. �28�

This flux monotonically increases with � and reaches the
maximum when � is as large as possible. Based on our map-
ping one can see that this happens when the mean first pas-
sage time between the channel ends is as small as possible
�Eq. �20��. When Dch�x�=const=Dch, this occurs when the
intrachannel potential U�x� is flat. The presence of a poten-
tial barrier would increase the first passage time because the
particle would have to climb uphill to overcome the barrier.
The presence of a potential well would also increase this
time because the particle would become trapped. The largest
value of �, �max, can be found from Eqs. �14� and �20�,
�max=2Dch/ l2, where l=xR−xL is the length of the channel.
This leads to kout

* = �2/ l��Dchkin�cL+cR�.
Thus we have shown that the optimal potential for a

symmetric channel is a square-well potential that occupies
the entire channel. The well energy U* can be obtained by
equating kout

* , with the expression for kout that follows from
Eqs. �21� and �24�, namely, kout=2kin / �AZ�
=2kin / �Al�exp��U�. Here we have used the fact that when
the intrachannel potential U is a constant the partition func-
tion is Z=Al exp�−�U�. In this way we find that the optimal
energy U* can be obtained from

exp�2�U*� = A2Dch�cL + cR�/kin. �29�

For a cylindrical channel of radius r and cross section area
Ach=�r2 it is natural to choose A=Ach so that the potential of
mean force vanishes at the channel ends, U�xL�=U�xR�=0
�Eq. �25��. Then using kin=4Dbr in Eq. �29� we arrive at

exp�2�U*� = �2Dch�cL + cR�r3/�4Db� . �30�

This result has been previously obtained in Refs. 14 and 15
using a different approach. It is interesting that the optimal
well energy of the symmetric channel, U*, is independent of
the channel length. Finally, now we can write the flux in Eq.
�28� in terms of the two concentrations, cL and cR, the geo-
metric parameters of the channel, r and l, and the particle
diffusion coefficients in the channel and in the reservoirs, Dch

and Db.
For typical values of the parameters, the right-hand side

of Eq. �30� is smaller than unity, and, hence, U*�0, so that
the optimal potential is a square well. At concentrations, for
which �cL+cR�r3
4Db / ��2Dch�, the right-hand side of Eq.
�30� is greater than unity, and, hence, U*
0. For such ex-
tremely high concentrations �higher than 1M assuming that
r=1 nm and 4Db / ��2Dch�=1�, the optimal potential is a
square barrier rather than a square well. The fact that the
optimal potential can be repulsive rather than attractive at
sufficiently high concentrations of the solute, mentioned in
Ref. 15, has been recently discussed in detail by
Kolomeisky19 in the framework of the N-site model of the
solute dynamics in the channel. In its simplest form, his
analysis employs a single site model of the channel and as-
sumes that a change in the energy of the channel site changes
the rate of entering the channel �i.e., kin

l �. Here we have as-
sumed that kin

l are independent of the potential inside the
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channel. A consequence of this distinction is that the optimal
potential becomes repulsive at different concentrations in the
two models.

IV. OPTIMAL ASYMMETRIC CHANNEL

Next we relax the symmetry requirement and find the
optimal potential profile Uopt�x�, xL�x�xR, for the more
general case of an asymmetric channel assuming that
Dch�x�=const=Dch. To do this we write the flux in Eq. �26�
in terms of U�x� using the relations in Eqs. �7� and �14�–�16�.
The result is

cL − cR

J
=

1

kin
L +

1

kin
R +

1

ADch
�

xL

xR

e�U�x�dx

+ A� cL

kin
R +

cR

kin
L ��

xL

xR

e−�U�x�dx

+
1

Dch
�

xL

xR

e�U�x�dx	cL�
xL

x

e−�U�x��dx�

+ cR�
x

xR

e−�U�x��dx�
 . �31�

The right-hand side of Eq. �31� is a functional of the poten-
tial U�x�, W�U�x��. To find the potential that minimizes this
functional and hence maximizes the flux, we expand
W�U�x�+�U�x�� to linear order in �U�x�. This leads to
W�U�x�+�U�x���W�U�x��+�xL

xR�U�x��w�x��dx�, where
function w�x� is called the functional derivative of W�U�x��,
w�x�=�W�U�x�� /�U�x�. This function, in turn, is a func-
tional of U�x�. For the optimal potential w�x�=0. In this way
we find that

w�x� =
1

Ae−�U�x� −
ADch

kin
L kin

R �kin
L cL + kin

R cR�e−�U�x�

+ cL	e�U�x��
xL

x

e−�U�x��dx�

− e−�U�x��
x

xR

e�U�x��dx�

+ cR	e�U�x��

x

xR

e−�U�x��dx�

− e−�U�x��
xL

x

e�U�x��dx�
 = 0. �32�

Thus Uopt�x� is the solution of this equation.
Differentiating Eq. �32� with respect to x twice, we find

that the optimal U�x� satisfies U��x�=0 and hence can be
written in the form

Uopt�x� = U − F�x − xL − l/2�, xL � x � xR, �33�

where U is the value of Uopt�x� at the center of the channel,
x=xL+ l /2, and F is the tilt. The optimal values of U and F
denoted by U* and F* can be found using Eq. �32�. This
leads to the following expression for the energy of the opti-
mal potential in the center of the channel, U*,

exp�2�U*� = A2Dch�kin
L cL + kin

R cR�/�kin
L kin

R � . �34�

The optimal tilt F* can be found solving the equation

cL exp�− �F*l/2� − cR exp��F*l/2� = �F* exp��U*�/A .

�35�

Using these relations in Eq. �31� we can write the maximum
flux Jmax as

cL − cR

Jmax
=

1

kin
L +

1

kin
R +

cL�1 + �F*l − exp�− �F*l�� + cR�1 − �F*l − exp��F*l��
Dch��F*�2 . �36�

V. ILLUSTRATIVE CALCULATIONS

Our analysis has shown that the optimal intrachannel
potential that maximizes the flux through a singly occupied
channel is determined by the solute concentrations in the two
reservoirs separated by the membrane. Usually these concen-
trations are quite different. With this in mind we set cR=0.
We assume that the channel is a cylinder of radius r and
again choose A in Eq. �25� equal to the channel cross section
area, A=�r2, so that U�xL�=U�xR�=0. Using this and the
Hill formula, kin

L =kin
R =kin=4Dbr, we can write Eqs. �34�–�36�

as

exp�2�U*� = �2DchcLr3/�4Db� , �37�

��F*l�2 exp��F*l� = 4DbcLrl2/Dch, �38�

Jmax =
4DbcLr

1 + �1 + �F*l�exp��F*l�
. �39�

The maximum flux through the symmetric channel �Eq. �28��
in this case takes the form

Jmax
sym =

2DbcLr

�1 + �DbcLrl2/Dch�2
, �40�

obtained earlier in Refs. 14 and 15. Note that Eq. �30� �with
cR=0�, which determines the optimal value of the constant
intrachannel potential for the symmetric channel, is identical
to Eq. �37� which determines the optimal potential at the
center of the asymmetric channel.

The two maximum fluxes, Jmax and Jmax
sym, have different

behavior as functions of the dimensionless concentration c̃
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=cLrl2. When c̃→0 the energy U* is negative and 
�U*

�1 while �F*l
1. This means that the optimal intrachannel
potential is a deep well, which is practically flat �Fig. 2�.
Consequently, a particle entering the channel equilibrates in-
side the channel and escapes to the both reservoirs with equal
probability 1 /2. Since the flux entering the channel is kincL,
the flux through the channel is kincL /2=2DbrcL, in agree-
ment with Eqs. �39� and �40�.

Both maximum fluxes are monotonically increasing
functions of c̃. As c̃→	 Jmax

sym �Eq. �40�� saturates approach-
ing the plateau value 1/�+, where �+= l2 / �2Dch�=�max

−1 is the
mean first passage time discussed earlier. On the other hand
the maximum flux through an asymmetric channel tends to
infinity as c̃→	 because the optimal tilt also tends to infin-
ity, F*→	 �Eq. �38��. When c̃→	, the energy U* is positive
�repulsive intrachannel potential�, �U*→	, and the escape
from the channel to the reservoir is a barrierless process.15,19

In Fig. 2 we schematically show the optimal intrachannel
potentials of mean force, Uopt�x�, xL�x�xR, for asymmetric
�solid lines� and symmetric �dashed lines� channels at low
and high concentrations. Doted lines show the potential
V�x ,y ,z�=0 in the reservoirs outside the channel, x�xL and
x
xR.

Figure 3 shows the flux in Eq. �31� as a function of �U
and �Fl /2 for a cylindrical channel of radius r=1 nm and
length l=5 nm �these parameters reasonably describe the
voltage-dependent anionic channel of mitochondrial outer
membrane7 when the size of the ATP molecule is taken into
account� at cL=100 mM, cR=0, and Db=2Dch=3
�10−10 m2/s. As follows from Eqs. �37� and �38�, for this
parameter set the flux reaches a maximum at �U*�−1.3 and
�F*l /2�0.8.

In Fig. 4 we show the energies �U* and �F*l /2 found
from Eqs. �37� and �38� as functions of the dimensionless
concentration c̃ for l /r=5 and Db /Dch=2. The inserts, show-
ing Uopt�x� at three values of c̃, illustrate how the optimal
potential changes as the concentration increases.

VI. CONCLUDING REMARKS

One of the main results of this paper is the mapping of
the diffusion description of the particle intrachannel dynam-

ics onto the two-site model. The transition rates for the two-
site model can be chosen so that the steady-state flux found
for the two-site model is equal to the flux found in the frame-
work of the diffusion description. The resulting intersite hop-
ping rates have a transparent physical interpretation since
they turn out to be just the inverse mean first passage times
between the channel ends. An analogous mapping holds for
the multisite nearest-neighbor model of the solute dynamics
in the channel. Thus all complex models with the same end-
to-end mean first passage times and equilibrium probabilities
at the channel ends predict the same flux. If one is interested
only in the flux, the mapping onto the two-site model is
exact. However, this does not imply that any other quantities
obtained using the more detailed description of the particle
intrachannel dynamics will be identical to those found in the
framework of the equivalent two-site model.

FIG. 2. Optimal intrachannel potentials of mean force at low and high
concentrations of the solute in the left reservoir. Solid and dashed lines show
the optimal potentials for asymmetric and symmetric channels, respectively,
while dotted lines show the solute potential energy outside the channel. At
low concentrations �cLrl2
1, cR=0� the optimal potential is a deep well
which is almost flat even for an asymmetric channel �left panel�. At high
concentrations �cLrl2�1, cR=0� the optimal potential becomes a barrier
which is strongly tilted towards the channel exit �right panel�.

FIG. 3. The flux for U�x�=U−F�x−xL− l /2�, xL�x�xR=xL+ l, as a func-
tion of dimensionless energies �U and �Fl /2 for a cylindrical channel of
radius r=1 nm �A=�r2, kin

L =kin
R =4Dbr� and length l=5 nm at cL=100 mM,

cR=0, and Db=2Dch=3�10−10 m2/s. The cross in the ��U ,�Fl /2� plane
shows the location of the maximum, �U*�−1.3, �F*l /2�0.8.

FIG. 4. The optimal energy at the center of the channel �U* and the optimal
tilt �F*l /2 for l /r=5 and Db /Dch=2 as functions of the dimensionless con-
centration c̃=cLrl2. The inserts show how the optimal intrachannel potential
of mean force changes as the concentration increases.
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The second main result of this paper is the determination
of the optimal intrachannel potential of mean force that
maximizes the flux through a singly occupied channel when
the flux is due to the difference in solute concentrations. The
optimal potential drives the solute towards the reservoir with
lower concentration �i.e., the channel “exit”�. Thus it is pref-
erable for a solute to “bind” more strongly near the exit
rather than near the “entrance.” The optimum value of the
interaction potential depends on the concentrations of the
solute outside the channel. This suggests that in a given or-
ganism, channel proteins designed to transport the same mol-
ecule might have different amino-acid sequences. One gene
might code for a channel protein that functions at high solute
concentrations, while another for the one that works at low
concentrations.
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