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To escape from a cavity through a small window the particle has to overcome a high entropy barrier
to find the exit. As a consequence, its survival probability in the cavity decays as a single
exponential and is characterized by the only parameter, the rate constant. We use simulations to
study escape of Langevin particles from a cubic cavity through a small round window in the center
of one of the cavity walls with the goal of analyzing the friction dependence of the escape rate. We
find that the rate constant shows the turnover behavior as a function of the friction constant, {: The
rate constant grows at very small £, reaches a maximum value which is given by the transition-state
theory (TST), and then decreases approaching zero as {— . Based on the results found in
simulations and some general arguments we suggest a formula for the rate constant that predicts a
turnover of the escape rate for ergodic cavities in which collisions of the particle with the cavity
walls are defocusing. At intermediate-to-high friction the formula describes transition between two
known results for the rate constant: the TST estimation and the high friction limiting behavior that
characterizes escape of diffusing particles. In this range of friction the rate constants predicted by the
formula are in good agreement with those found in simulations. At very low friction the rate
constants found in simulations are noticeably smaller than those predicted by the formula. This

happens because the simulations were run in the cubic cavity which is not ergodic.
© 2006 American Institute of Physics. [DOI: 10.1063/1.2374893]

I. INTRODUCTION

This paper deals with the escape of Langevin particles
from a cavity through a small round window on the cavity
wall. It is well known that the survival probability decays as
a single exponential when the particle has to overcome a
high energy barrier to escape from a potential well." In
1991 Zhou and Zwanzig indicated that the survival probabil-
ity also decays as a single exponential when the escape is
controlled by an entropy barrier rather than the energy
barrier.® This is just the case considered in the present paper.
Indeed, when the window radius is much smaller than the
cavity size, it takes the particle a lot of time to find the exit.
For sufficiently small windows this time is much larger than
the equilibration time in the cavity with no window. As a
consequence, there is a gap in the eigenvalue spectrum of the
evolution operator, and the survival probability decays as a
single exponential.

The paper is focused on the rate constant defined as the
inverse mean first passage time of the particle to the window.
This problem has recently been studied for diffusing
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particles.7 It has been shown that the rate constant k is inde-
pendent of the shape of the cavity and depends only on its
volume V as well as on the radius of the window a and the
particle diffusion constant D. The expression for k found in
Ref. 7 has the form

4Da
k=——m.

v (1.1)

Using the Einstein relation between D and the friction con-
stant {, D=kgT/{, where ky and T are the Boltzmann con-
stant and the absolute temperature, one can write the rate
constant in Eq. (1.1) as

4akpT

k= Ve (1.1a)

This expression diverges as {— 0. This is a consequence of
the fact that it has a restricted range of applicability. It works
only in the so-called high friction regime when the friction is
high enough so that Langevin dynamics reduces to diffusion.

In the present paper we study the dependence of the rate
constant on { over the entire range of friction when the par-
ticle motion varies from ballistic at {=0 to diffusive at suf-
ficiently large values of {. We will see that the rate constant
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has a turnover behavior as a function of the friction constant.
The turnover differs from the known turnover in the Kramers
theory of activated rate processesl’s’8 and is similar to the
turnover of the rate of activationless irreversible bimolecular
reactions studied recently in Ref. 9. Another interesting fea-
ture of the rate constant is its dependence on the radius of the
window. The transition-state theory6 predicts the rate con-
stant which is proportional to the area of the window and,
hence, to a®. At the same time, according to Eq. (1.1), for
diffusing particles the rate constant is proportional to a.
Thus, variation of the friction constant is accompanied by
variation of the rate constant dependence on the radius of the
window.

To find the rate constant one has to solve the Klein-
Kramers equation in the phase space with mixed boundary
conditions: absorbing on the window and reflecting on the
rest of the cavity wall. This is an extremely complicated task.
Instead we study the behavior of the rate constant by simu-
lations. In the next section, based on the semiquantitative
arguments partly discussed in Ref. 10, we suggest a formula
that approximates the behavior of the rate constant over the
entire range of friction. We compare the behavior predicted
by the formulas with the results found in simulations in Sec.
III. Section IV contains a brief summary and some conclud-
ing remarks.

Il. THEORETICAL PRELIMINARIES

Consider a particle of unit mass whose motion is gov-
erned by the Langevin equation

v=—{v+R(), (2.1)

where v is the particle velocity and R(¢) is the &-correlated
Gaussian random force with zero mean, (R(7))=0, related to
the friction constant { by the fluctuation-dissipation relation

(R (DR (t")) =2kpTL6,,0(t—1"), (2.2)

The particle moves in a cavity and may escape through a
small round window of radius a on the cavity wall. It will be
assumed that the particle escapes when its trajectory crosses
the window area for the first time. Particle collisions with the
cavity wall are assumed to be elastic. As the friction in-
creases, the particle motion varies from ballistic in the ab-
sence of friction, i.e., at {=0, to diffusive when the friction is
high enough.

The simplest estimation of the rate constant is provided
by the transition-state theory® (TST) that leads to

Ta*(|V])eq N wkgTa®
4v \2v

M,Vz)C,y,Z-

kst = , (2.3)
where the notation (F(v)),, means the equilibrium average of
the function F(v) and we have used the relation (|v|)e
=(8kgT/m)"2. The TST provides an upper boundary for the
rate constant. It fails both at high and low friction. As ¢
— oo the rate constant vanishes [see Eq. (1.1a)] because the
particle does not move and hence never escapes from the
cavity. To estimate friction that leads to a noticeable devia-
tion from krgr one can compare the radius of the window

and the velocity relaxation length, [,=7,(kzT)"?, where
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7,={"! is the velocity relaxation time. The slowdown occurs
when [, becomes smaller than a, and the friction constant
satisfies

4_ £ > 1 (2.4)
lU \"kBT

To estimate the range of friction where the slowdown
occurs at low friction we compare time 7, with the TST
estimation for the average lifetime in the cavity, kg At
sufficiently small values of { time 7, becomes larger than
krgp, and escape leads to depletion of the velocity distribu-
tion at large |v|. As a consequence, the process slows down
and the rate constant decreases compared to kpgr. The in-
equality determining the friction at which the slowdown be-
comes noticeable is given by
al a’

—= < —, (2.5)
\“’kBT V

a_
I,
The inequalities in Egs. (2.4) and (2.5) show that the rate
constant is close to kpgy when { satisfies

3
@ el (2.6)
1% \r’kBT

We will see that this estimation agrees well with our simu-
lation results.

It is convenient to use kygy as a scale for the rate con-
stant and to write k({) as

k(¢) = K(g)kTSTs

where «({) is a function that varies between unity and zero.
By analogy with the corresponding function in the theory of
activated rate processes we will call «({) the “transmission
factor.” Qualitative pictures of the escape at low and high
friction are quite different. To cover the entire range of fric-
tion we adopt the Visscher-Mel’nikov-Meshkov®!! (VMM)
strategy: First we consider the two cases separately. Then we
use the VMM interpolation formula to cover the entire range
of friction.

2.7)

A. Intermediate-to-high friction

In this subsection we discuss the behavior of the trans-
mission factor in the so-called intermediate-to-high (i-h) fric-
tion regime where «({) monotonically decreases from unity
to zero as { increases from zero to infinity. One can use the
rate constant in Eq. (1.1a) to find how the transmission factor
approaches zero as {— . This leads to

N
AN2kgT
k)~ —=—=—",
vral 4

where the subscript 4 indicates that this expression is appli-
cable in the high friction regime, and we have introduced the
effective frequency wey=4\2kgT/7r/a, which may be con-
sidered as an analog of the barrier frequency in the Kramers

theory of activated rate processes.

We cannot find «;({) by solving the Klein-Kramers
equation. One might guess that variation of «;,({) between

— 0, (2.8)
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FIG. 1. Transmission factor at the intermediate-to-high friction. The solid
curve shows k;,({) in Eq. (2.11) as a function of the dimensionless friction
constant a/. Transmission factors Kf{](g“) and KEE({,’) given in Egs. (2.9) and
(2.10) are shown by the upper and lower dotted curves, respectively. The
dashed curve represents the high friction asymptotic behavior of the trans-
mission factor «;,({) given in Eq. (2.8). The inset shows the relative differ-
ence between the two transmission factors in percent, g(¢) X 100%, where
(O =2[k5(D - kKDY [KS(Q) + KK (D], as a function of al.

unity at =0 and the large-{ asymptotic behavior in Eq. (2.8)
is reasonably well approximated by the Kramers (Kr) for-
mula

2
Kffl(g): \/ 1+ gz - g .
4weff 2weff

Another potential candidate for the interpolation formula is
the Collins-Kimball-type'? (CK) formula

k(O 1
1+ 1y(0) 1+ P

Similar formula has been used in Ref. 9 to describe the de-
crease of the rate of an irreversible bimolecular reaction from
its upper limit given by the TST to the high friction behavior
obtained for diffusing molecules.

Functions «lf({) and <\ ({) are shown in Fig. 1 for
kzT=1 where we also show their average denoted by «;,({),

(2.9)

K () = (2.10)

0= ST + K, e
In addition, for the sake of comparison we show the depen-
dence on ¢ predicted by «,({) in Eq. (2.8). One can see that
this dependence provides a good approximation for the trans-
mission factor when () <0.1. To characterize how differ-
ent the dependences predicted by the two candidates are,
Kilf}rl(g“) and Kic_llf(g’), we introduced function g({) defined as
2=k ()= kS0 kip(£). Tn Fig. 1 this function is
shown in the inset. Function g({) first grows with £, reaches
its maximum value which is close to 0.2, and then decreases
slowly approaching zero as {— . Its asymptotic behavior at
large { is given by g(g)z4v"2/77/(a{) (kgT=1). In simula-
tions we found that the values of the transmission factor fall
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in between the two dependences. Therefore, we use () in
Eq. (2.11) when discussing the simulation results.
According to Egs. (2.8)—(2.11) the transmission factor is
a function of the product a{, which is equal to the ratio a/l,
for kzT=1. (Note that if kzT and the particle mass m are not
equal&unity the dimensionless ratio a/l, is equal to
all/VmkgT.) We checked this fact in simulations and found
that for windows of different (but small) radii the results at
the same values of a{ are indistinguishable within the simu-
lation error. This means that at given friction deviations from
krst are more strongly pronounced for larger windows.

B. Low-to-intermediate friction

In this subsection we discuss the behavior of the trans-
mission factor in the so-called low-to-intermediate friction
regime where x({) monotonically increases with ¢ from «(0)
to unity, as { grows from zero to infinity. Our analysis below
is close to that in Ref. 9 where the mathematically identical
problem has been studied in a different context. Therefore
we skip some steps which are discussed in detail in that
paper.

At intermediate-to-high friction the escape rate and the
survival probability are insensitive to the shape of the cavity.
In the absence of friction the situation is quite different, and
these functions depend on the cavity shape because the shape
determines whether particle collisions with the walls are de-
focusing or not. When collisions are defocusing the particle
motion in the cavity is ergodic.13 In such a cavity the particle
survival probability is given by the microcanonical

transition-state theory (mTST) and has the form®
Surst(Tlv) = exp[— kyrsr(v)], (2.12)

where v=|v|. The microcanonical rate constant kypsr(v) is
given by

2
mav T v
kprst(V) =——= \/jk U, U= ,
s1(v) AV g KTsT \’/_kBT

where we have introduced dimensionless velocity .
Assuming that the probability density of the velocity dis-
tribution at =0 is the equilibrium one, feq(ﬁ),

(2.13)

2, 0’
feq(m = —vtexpl -/, (214)
T 2
we can write the density at time 7 as
f§=0(17» t) = SmTST(t|6)feq(l7)~ (2 15)

Then the particle survival probability in the cavity is
S{ZO = f f(:O(i;’ t)di]: <SmTST(t|v)>eq
0

= (1 + 27 P)exp(mP)erfc(Varr) - 21, (2.16)

where T=krgrt/16 is the dimensionless time. Note that in the
absence of friction the survival probability is not single ex-
ponential in spite of the fact that the window is small. Even-
tually we can find the rate constant at zero friction,
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oo

4
[k(Z=0)]"= f Seo(t)dt = <k;1TST(U)>eq = ;k}éT'
0

(2.17)

Thus, for ergodic cavities the transmission factor remains
finite even at {=0 and is given by

ar
K(§=0)=Z. (2.18)

It does not depend on the shape of the cavity.

The situation is completely different in regular cavities
which are not ergodic. In such cavities in the absence of
friction the particle survival probability remains finite as 7
— . As a consequence, the average lifetime diverges, and
both the rate constant and the transmission factor vanish as
{—0. In our simulations performed in a cubic cavity, at very
low friction we found noticeably smaller values of the trans-
mission factor than its limiting value for ergodic cavities
given in Eq. (2.18).

In the rest of this section we discuss an approximate
solution for x(¢) for ergodic cavities. This solution describes
the monotonic increase of the transmission factor from /4
to unity as { goes from zero to infinity. The qualitative pic-
ture of the escape at low-to-intermediate (I-i) friction is as
follows. Particles with higher velocities escape faster than
particles with lower velocities. This leads to a depletion of
the velocity distribution at high velocities. Simultaneously,
relaxation due to the presence of the friction and random
forces tries to restore the Maxwell distribution. The density
f(U,1) satisfies the evolution equation

J J 0’ 2 0*
_=~%£ 52exp<_%)%{exp(%)f] = kirst(@)f

(2.19)

that describes competition between the depletion and relax-
ation. This equation can be derived from the Klein-Kramers
equation using the approximation which is quite natural in
the low friction regime. Note that f(v,f) in Eq. (2.15) satis-
fies this equation at frozen relaxation, {=0. Therefore, this
equation leads to k;(0)=/4. In the opposite limiting case
of fast relaxation, {— 0, the solution is given by the TST
and has the form

f(ﬁv 1= CXP(— kTSTt)feq(i;) > (2.20)
where we have used the relation krgr=(kyrsT(v))eq- This
leads to kp;()=1.

To describe variation of the transmission factor «;; from
/4 at {=0 to unity as {— we use the formula’

/4 + a3

N (2.21)

k(4 =

l+a

where N and « are given by
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FIG. 2. Transmission factor «;;({) given in Eq. (2.21) is shown as a function
of the dimensionless friction constant ¢ in linear (panel a) and logarithmic
(panel b) scales. Different curves correspond to different values of the ratio
a*/V=1073,107%,107> from bottom to top: the smaller the ratio, the larger
the transmission factor at fixed a{.

(¢ v 3591 (213) P
N=——=———, a="5- - ~3.643.
krst  NwkgTa (4 - )

(2.22)

It has been shown’ that the dependence predicted by Eq.
(2.21) (i) agrees well with the corresponding dependence ob-
tained from the numerical solution and (ii) correctly repro-
duces the initial increase of kj; at small N\, which can be
derived analytically. The dependence of k;({) is shown in
Fig. 2 for several values of the ratio a>/V. The figure shows
that for sufficiently small values of the ratio a*/V transition
of k;;({) from /4 to unity occurs in a very narrow interval
of the dimensionless friction constant a{, where the devia-
tion of x;,(£) from unity can be neglected.

C. Visscher-Mel’nikov-Meshkov interpolation formula

Having in hand the expressions for «;,({) and «;(),
Egs. (2.11) and (2.21), we use the Visscher-
Mel’ nikov-Meshkov®'! interpolation formula to write an ex-
pression for the transmission factor that covers the entire
range of friction,
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(0 = k(D kin(d).

This transmission factor shows a turnover behavior: It grows
with  at small £, reaches a maximum, and then tends to zero
as {— oo,

The expressions for the transmission coefficient dis-
cussed above are used in the next section when analyzing the
transmission factors obtained in simulations. We will see that
at not too low friction, where «({) = k;_,(£), the values of the
transmission factor found in simulations are in a good agree-
ment with «;,({) predicted by Eq. (2.11). At very low fric-
tion the values of the transmission factor obtained numeri-
cally fall below the lower boundary «;(0)=7/4 predicted
by Eq. (2.21) for ergodic cavities. This happens because the
simulations were run in a cubic cavity which is not ergodic.

(2.23)

lll. SIMULATION RESULTS AND DISCUSSION

In this section we discuss the transmission factor ob-
tained in the Langevin dynamics simulations at low and in-
termediate friction. The simulations were performed with a
discretized version'* of the Langevin equation (2.1) for par-
ticles that moved in a cubic cavity of unit size with a round
window of radius a in the center of one of the cavity walls. It
was taken that a particle escaped from the cavity through the
window when its trajectory crossed the window area for the
first time. Most of the simulations were performed with a
=0.05, although some simulations were carried out with a
=0.025, a=0.1, and a=0.2. We chose a=0.05 because
earlier’ we found excellent agreement between the theoreti-
cal predictions and numerical results for diffusing particles
that escaped from the unit cubic cavity through the round
window just of this size. The simulations were run with N
=10 000 particles uniformly distributed in the cavity at #=0.
The particle initial velocities were randomly chosen from the
three-dimensional Maxwell distribution. Collisions with the
cavity walls were elastic and changed only the direction of
the velocity, but not its magnitude. It was taken that kz7=1.

The output of the simulations was a set of lifetimes #;,
i=1,2,...,N. This set was used to calculate the rate constant

A

KO =" = (—E r;) : (3.1)

N
The transmission factor was determined according to Eq.
(2.7) with kpgp given in Eq. (2.3). We estimated accuracy of
our calculations of the average lifetime and found that the
relative error did not exceed 5%. In addition, the set of life-
times was used to find the particle survival probability

S(t]2),

N
S(10) = }VE Ht; 1), (32)
i=1

where H(z) is the Heaviside step function. This was done
with the goal of checking whether the survival probability is
single exponential,

S(1]) = exp[- k(1]

or not.

(3.3)
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FIG. 3. Transmission factor x({) found in simulations at intermediate fric-
tion (black triangles) is compared with «; () given in Eq. (2.11), which is
shown by the solid curve. The upper and lower dotted curves represent the
dependences predicted by «Xr(¢) and «K(¢) given in Egs. (2.9) and (2.10),
respectively.

The values of the transmission factor found in simula-
tions are shown in Figs. 3 and 4. In Fig. 3 we compare ()
found in simulations with & ,({) given in Eq. (2.11) (solid
curve). One can see good agreement between simulated and
predicted values of the transmission factor. The relative dif-
ference, defined as |«({)— r;,(0)|/«(Z), is mainly less than
5% that does not exceed the relative error of our simulations.
In Fig. 3 we also showed Kﬂ({) and Kic_}lf(g“) (upper and lower
dotted curves, respectively). One can see that the numerical
results fall in between the two curves. Thus, these two esti-
mations provide upper and lower boundaries for the trans-
mission factor.

The turnover behavior of the transmission factor is
shown in Fig. 4, where the solid curve represents the depen-
dence predicted for an ergodic cavity by «(¢) in Eq. (2.23)
with k;({) and «;,({) given in Egs. (2.21) and (2.11). One
can see that at very low friction the transmission factor found
in simulations is smaller than k() predicted by Eq. (2.21).
We believe that this is due to the fact that our simulations
were run in the cubic cavity which is definitely not ergodic.
From Fig. 4 one can estimate the range of friction where krgr
provides a good estimation for the rate constant as

1074 <al<1. (3.4)

One can see that for the set of parameters used in the simu-
lations, kgT=V=1 and a=0.05, the estimation in Eq. (3.4) is
in good agreement with that in Eq. (2.6).

The expressions in Egs. (2.9)—(2.11) predict that at
intermediate-to-high friction the transmission factor depends
on a and { only through their product, al. To check whether
this is true or not we performed simulations with a=0.025
for af=1,2,...,8 and compared the results with those ob-
tained in simulations with a=0.05 for the same values of a(.
We found excellent agreement between the transmission fac-
tors obtained in simulations with different values of a for all
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FIG. 4. Turnover behavior of the transmission factor found in simulations
(black triangles) is compared with the turnover behavior predicted for er-
godic cavities by «({) in Eq. (2.23) with «;({) given in Eq. (2.21) and
Ky (0) given in Eq. (2.11) (solid curve).

values of a{ from 1 to 8. The differences were within the
range of the statistical error of our simulations, i.e., less than
5%. Thus, although the expressions in Egs. (2.9)—(2.11) have
not been derived, they correctly predict that at intermediate-
to-high friction the transmission factor is a function of the
product a(.

In the high friction regime we found’ that for particles
diffusing in a unit cavity the rate constants predicted by Eq.
(1.1) were in a reasonably good agreement with the rate con-
stants obtained in simulations with ¢=0.05 and a=0.1,
whereas for a=0.2 Eq. (1.1) underestimated the escape rate.
The same is true at intermediate friction. One can see this
from Fig. 5 where we compare «({) in Eq. (2.11) with the
results for « obtained in simulations with a=0.05, 0.1, and

0.8 4 -

0.6 4 m

0.4 . , . , ;
0.0 0.1 0.2 0.3
a

FIG. 5. Transmission factor as a function of a at {=20 predicted by Eq.
(2.11) (solid curve) and found in simulations with a=0.05, 0.1, and 0.2
(black triangles).

J. Chem. Phys. 125, 194501 (2006)

2 i

In S(t)

t

FIG. 6. The particle survival probability found in simulations at intermedi-
ate friction, (=20, with @¢=0.2 (dotted curve) and the single-exponential
approximation of S(¢) for the same values of ¢ and a (solid curve).

0.2 at £=20 that correspond to al{=1, 2, and 4. In Fig. 6 we
present the survival probability obtained in simulations with
a=0.2 at =20 and its single-exponential approximation,
S(r)=exp(—kt), where k is the rate constant given by Eq.
(2.7). One can see that S(r) found in simulations decays
faster than its single-exponential counterpart.

The theory predicts single-exponential decay of the par-
ticle survival probability in the cavity with sufficiently small
window. In Ref. 7 this prediction was checked and confirmed
for particles diffusing in a unit cubic cavity with the window
radius a=0.05, while for the cavity with the window of ra-
dius a=0.2 the decay was multiexponential. In our simula-
tions we checked whether the decay of the survival probabil-
ity is single exponential or not at intermediate friction. As for
diffusing particles, we found that at {=20 and a=0.05 (a{
=1) S(r) obtained numerically was practically indistinguish-
able from the single-exponential approximation, S(r)=exp(
—kt), where k was the rate constant given by the inverse of
the average lifetime found in simulations. However, the
single-exponential approximation fails at the same (=20
when a=0.2 (a{=4). Noticeable deviations from the single-
exponential behavior were found in S(7) obtained in simula-
tions, which is shown in Fig. 6.

IV. CONCLUDING REMARKS

In summary, we run Langevin dynamics simulations to
study the particle escape from a cubic cavity through a small
round window in the center of one of the cavity walls with
the goal of analyzing the escape rate at intermediate and low
friction that complements our previous study7 of the escape
of diffusing particles, i.e., in the high friction regime. One of
the main results of the present paper is the expression for the
rate constant in Eq. (2.7) together with the expressions for
krst and «({) given in Egs. (2.3) and (2.23). These formulas
predict turnover behavior of the rate constant considered as a
function of the friction constant { for ergodic cavities. At
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intermediate-to-high friction the formulas describe transition
between the two known results: the TST estimation of the
rate constant,’ krst, and the high friction asymptotic behav-
ior of the rate constant’ given in Eq. (1.1a). The rate con-
stants given by the formulas in this range of friction are in
good agreement with those found in simulations. At
intermediate-to-high friction the rate of escape is insensitive
to the shape of the cavity. The shape manifests itself only at
very low friction. In this range of friction the rate constants
found in simulations are noticeably smaller than those pre-
dicted by the formula. This happens because the simulations
were run in the cubic cavity which is not ergodic.

The escape rate derived in this paper can be used to
generalize the model of dynamical disorder"’ suggested by
Zwanzig in Ref. 16. In this model a point particle escapes
from the cavity through a small round window, the radius of
which fluctuates in time. It is assumed that variation of the
radius a(¢) is controlled by the Brownian motion of the gate
(g) and can be described by the high friction version of the
Langevin equation for harmonic oscillator of the form

D
a=—-—%K a+fu(1),

- 4.1
TR (4.1)

where D, and K, are the diffusion constant of the gate and
the force constant of the gate oscillator and f,(z) is the
d-correlated Gaussian random force with zero mean, {f,())
=0, related to the diffusion constant D, by the fluctuation-
dissipation relation {f,(¢)f,(t"))=2D,&(t~1t"). A hard reflect-
ing barrier is imposed at a=0 so that only positive radii are
involved.

Zwanzig assumed that the rate of escape from the cavity
is given by the TST estimation of the rate constant in Eq.
(2.3) with time-dependent radius of the window. This implies
that the velocity relaxation length of the escaping particle, /,,
is much larger than the average radius of the window, [,
>1/VK,/ (kgT). In other words, friction in the cavity should
not be too high. When this requirement is not fulfilled, and
the velocity relaxation length is comparable or even smaller
than the average radius of the window, 1/ K,/ (kgT), Zwan-
zig’s analysis should be generalized. This can be done using
the escape rate given in Eq. (2.7), which allows one to
study the problem at arbitrary friction inside the cavity. In
particular, when the friction is high enough, so that
1, <1/\K,/(kgT), we meet the case of diffusive rather than
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ballistic escape from the cavity. Here it is reasonable to use
the rate constant in Eq. (1.1) which is a linear function of «,
while krgy in Eq. (2.3) is proportional to a?.

Another potential application of the results obtained in
the present paper is a generalization of the theory of diffu-
sion in periodic porous materials.'” In Ref. 17 the theory is
developed assuming diffusive motion of the particles in
space with no constraints. The theory shows how the pres-
ence of periodic constraints slows down diffusion of the par-
ticles. Results obtained above can be used to extend the
theory to the case when motion of the particles in space with
no constraints is governed by the Langevin equation with
arbitrary friction.
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