
Analytical theory of hysteresis in ion channels: Two-state model
M. A. Pustovoit
St. Petersburg Nuclear Physics Institute, Gatchina 188300, Russia

A. M. Berezhkovskii
Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience,
Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892

S. M. Bezrukova�

Laboratory of Physical and Structural Biology, National Institute of Child Health and Human
Development, National Institutes of Health, Bethesda, Maryland 20892

�Received 30 June 2006; accepted 27 September 2006; published online 20 November 2006�

Channel-forming proteins in a lipid bilayer of a biological membrane usually respond to variation
of external voltage by changing their conformations. Periodic voltages with frequency comparable
with the inverse relaxation time of the protein produce hysteresis in the occupancies of the protein
conformations. If the channel conductance changes when the protein jumps between these
conformations, hysteresis in occupancies is observed as hysteresis in ion current through the
channel. We develop an analytical theory of this phenomenon assuming that the channel
conformational dynamics can be described in terms of a two-state model. The theory describes
transient behavior of the channel after the periodic voltage is switched on as well as the shape and
area of the hysteretic loop as functions of the frequency and amplitude of the applied voltage. The
area vanishes as the voltage period T tends to zero and infinity. Asymptotic behaviors of the loop
area A in the high- and low-frequency regimes, respectively, are A�T and A�T−1.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2364898�

I. INTRODUCTION

This paper deals with hysteresis in voltage-gated ion
channels. A distinctive feature of such a channel is high sen-
sitivity of its conformational equilibrium to the transmem-
brane voltage. Because of significantly different conduc-
tances of different conformations of the channel-forming
protein molecule, this results in a strong nonlinearity of the
channel stationary current-voltage characteristics.1 However,
equilibration of the channel-forming protein may occur very
slowly. When the period of the applied transmembrane volt-
age is comparable with the protein equilibration time, the ion
current through the channel depends on prehistory, and one
meets standard conditions under which hysteresis is ob-
served. In the present paper we develop an analytical theory
of hysteresis for a two-state model of the protein voltage
gating. Although the model is greatly simplified, we believe
that our results will be used as a benchmark for studying
hysteresis in voltage-gated ion channels.

Hysteresis is ubiquitous both in nature and in man-made
devices. In voltage-gated channels, it has been studied ex-
perimentally for more than two decades. One can find recent
discussions of such studies,2–7 which also include the ques-
tion of physiological significance of the hysteretic response.
For example, it was proposed that channel hysteresis plays a
beneficial role in maintaining regular firing of a neuron
pacemaker.6 Computer simulations of hysteresis are used to
discriminate between different kinetic models of the channel
gating.2,6 However, to the best of our knowledge, no analyti-

cal studies of hysteresis in voltage-gated channels have been
performed even for the simplest case of a two-state model.
The goal of the present study is to fill this gap.

A function frequently used when discussing hysteresis is
the hysteresis loop area. The loop area depends on the fre-
quency and amplitude of the applied periodic voltage as well
as on the protocol of the voltage change. In the absence of
static hysteresis, the loop area vanishes in two limiting cases
of very slow and very fast voltage change. When the voltage
varies sufficiently slowly, the protein molecule has enough
time to adjust its conformational distribution to the instanta-
neous value of the voltage. As a consequence, the ion current
through the channel is independent of the prehistory and
hence there is no hysteresis. In the opposite limiting case,
when the period of the voltage change is much shorter than
the characteristic protein relaxation time, the protein mol-
ecule cannot follow fast variations of the voltage and sees
only its average value. As a consequence, the current through
the channel becomes again independent of the prehistory,
and the hysteresis loop collapses to a single line. Thus, the
loop area first monotonically grows with the frequency of
voltage change, reaches a maximum, and then goes to zero,
as the frequency tends to infinity.

In the present paper we develop a theory of hysteresis in
voltage-gated ion channels in the framework of a two-state
model of gating, which is discussed in the next section. In
Sec. III we derive transient behavior of the channel after the
periodic external voltage is switched on. An expression for
the hysteresis loop area is derived in Sec. IV. In this section
we also show that in one special case this expression leads toa�Electronic mail: bezrukos@mail.nih.gov

THE JOURNAL OF CHEMICAL PHYSICS 125, 194907 �2006�

0021-9606/2006/125�19�/194907/8/$23.00 © 2006 American Institute of Physics125, 194907-1

Downloaded 18 Sep 2007 to 128.231.88.5. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.2364898
http://dx.doi.org/10.1063/1.2364898


an explicit formula for the loop area. In the general case we
use the expression to study the dependence of the loop area
on the voltage period and amplitude including its asymptotic
behavior at low and high frequencies. We compare our re-
sults with those obtained in other studies of hysteresis in
Sec. V.

II. THE MODEL

Consider a membrane containing N channels each of
which can be in one of the two conformational states of
differing conductances. Electrolyte solutions on both sides of
the membrane are identical. When constant voltage V is ap-
plied, ion current through the membrane is given by

I = N�P1g1 + �1 − P1�g2�V , �2.1�

where gi is conductance of an individual channel in state i,
i=1,2, and P1 is the equilibrium probability of finding the
channel in state 1, which is a function of V, P1= P1�V�. In
principle, the conductances gi may be voltage dependent, but
we do not consider this case here. The current-voltage char-
acteristics of the membrane are highly nonlinear when the
conductances g1 and g2 are substantially different, and the
probability P1�V� significantly varies over the range of volt-
ages used in experiment.

We will assume that transitions between the two states
are Markovian and can be described by the kinetic scheme

1�
k2

k1

2 �2.2�

with voltage-dependent transition rates k1 and k2 given by

k1 = k1
�0� exp�− �1V�, k2 = k2

�0� exp��2V� , �2.3�

where ki
�0�, i=1,2, are the rates in the absence of the external

voltage and positive factors �i are inversely proportional to
the absolute temperature. The equilibrium fractional popula-
tion of state 1 is

P1�V� = k2� , �2.4�

where � is the equilibration time,

� = k−1, k = k1 + k2. �2.5�

The kinetic scheme in Eq. �2.2� with the rate constants in
Eq. �2.3� implies that the two states correspond to two deep
wells of the double-well potential surface. It is assumed that
the applied voltage can be sufficiently high to significantly
change equilibrium occupancies of the two wells by varying
the well energies. At the same time the voltage is not high
enough to destroy the double-well structure of the potential
surface, so that the wells are separated by a high barrier over
the entire range of voltages used in experiment. Description
of voltage gating in terms of the kinetic scheme in Eq. �2.2�,
to the best of our knowledge, for the first time was proposed
by Mueller and Rudin8 and demonstrated for individual
channels by Ehrenstein et al.9 Double-well models of
voltage-gated channels of this type have recently been stud-
ied in the framework of Kramers theory of activated rate
processes by Sigg et al.10 and Bezanilla.11

When the applied voltage is a function of time, the rate
coefficients in Eq. �2.3� are time dependent and the probabil-
ity P1�t� of finding the channel in state 1 at time t can be
found by solving the rate equation

dP1�t�
dt

= − k1�t�P1�t� + k2�t��1 − P1�t��

= k2�t� − k�t�P1�t� , �2.6�

where k�t�=k1�t�+k2�t�. The solution is

P1�t� = P1�t0�e−�t0
t k�t1�dt1 + �

t0

t

k2�t1�e−�t1
t k�t2�dt2dt1. �2.7�

The probability in Eq. �2.7� is used below both when analyz-
ing the transient behavior of the channel after the periodic
voltage has been switched on �Sec. III� and when deriving
the expression for the hysteresis loop area in Sec. IV.

Concluding this section we note that our model of volt-
age gating is greatly simplified, at least, in two respects.

• Electric measurements tell us only about conductance
of the channel. One can easily imagine that many dif-
ferent conformations of the channel-forming protein
may lead to virtually the same channel conductance. As
a consequence, transitions between the states of differ-
ent conductance, in general, cannot be described by a
simple Markovian model in Eq. �2.2�.12,13

• Dynamics of a channel-forming protein inserted into a
membrane is described in terms of transitions among
local minima of a very highly dimensional energy land-
scape. Reduction to the Markovian two-state model in
Eq. �2.2� implies dramatic decrease of the dimensional-
ity that, in general, is highly improbable.

For example, one can easily imagine a non-Markovian gen-
eralization of the two-state model in Eq. �2.2�. Recent
analyses14,15 of gating of a single potassium BK channel pro-
vide evidence for the non-Markovian character of the chan-
nel dynamics.

With all this in mind, we note that the two-state model in
Eq. �2.2� is the simplest model that still captures the most
essential properties of the voltage-gated channels.1,4,6–9 It is
surprising therefore that this model has not been studied ana-
lytically with respect to its hysteretic properties yet.

III. TRANSIENT BEHAVIOR

Suppose that periodic voltage of period T is switched on
at t=0. The current through the channel at time t is given by
�cf. Eq. �2.1��

I�t� = N�g2 + �g1 − g2�P1�t��V�t� . �3.1�

Here V�t� is the time-dependent external voltage of the form
V�t�=H�t�VT�t�, where H�t� is the Heaviside step function
and VT�t� is a periodic function of t, VT�t+T�=VT�t�. As
t→�, both P1�t� and the current I�t� become periodic,
P1�t+T�= P1�t� and I�t+T�= I�t�. In this section we study
transient behavior of P1�t�. In what follows we consider only
the probability of finding the channel in state 1. Therefore,
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we omit the subscript in the notation of this probability, i.e.,
P1�t�→P�t� hereafter.

Using the solution in Eq. �2.7� we can write P�t� for
nT� t� �n+1�T, n=0,1 , . . ., which we denote P�t �n� as

P�t�n� = P�nT�exp	− �
nT

t

k�t1�dt1

+ �

nT

t

k2�t2�exp	− �
t2

t

k�t1�dt1
dt2. �3.2�

In addition, using Eq. �2.7� one can write a recursion formula
connecting the probabilities P�nT� and P��n+1�T�:

P��n + 1�T� = �P�nT� + a0, �3.3�

where � and a0 are given by

� = exp	− �
0

T

k�t�dt
 �3.4�

and

a0 = �
0

T

k2�t2�exp	− �
t2

T

k�t1�dt1
dt2. �3.5�

The recursion formula in Eq. �3.3� allows us to express
P�nT� in terms of P�0� which is the equilibrium probability
of finding the channel in state 1 in the absence of external
voltage, P�0�=k2

0 / �k1
0+k2

0�. Eventually we obtain

P�nT� = �n k2
�0�

k1
�0� + k2

�0� +
1 − � n

1 − �
a0. �3.6�

Expressions in Eqs. �3.2� and �3.6� give the probability
P�t� at any t. As n→� the probability P�nT� approaches its
asymptotic value,

lim
n→�

P�nT� =
a0

1 − �
. �3.7�

Substituting this into Eq. �3.2� we find the asymptotic long-
time behavior of the probability P�t�, which will be denoted
by P��t�,

P��t� = lim
n→�

P�t�n� =
a�t�

1 − �
, �3.8�

where function a�t� is given by

a�t� = �
t

t+T

k2�t2�exp	− �
t2

t+T

k�t1�dt1
dt2. �3.9�

One can see that a�0�=a0. Function a�t� is periodic,
a�t+T�=a�t�. As a consequence, P��t� is also periodic,
P��t+T�= P��t�. Transient behavior of P�t� from P�0� to
P��t� is illustrated in Fig. 1.

The expression for P��t� in Eq. �3.8� is used in the next
section to study the area of the hysteresis loop. Expressions
in Eqs. �3.8� and �3.9� show that P��t� is prehistory depen-
dent. This dependence disappears in the limiting cases of
very slow and very fast variation of the voltage �Fig. 2�. In
these limiting cases P��t� takes the form

P��t� =
k2�t�
k�t�

for slow V�t� �3.10�

and

P��t� =
�k2�
�k�

for fast V�t� , �3.11�

where the angular brackets denote averaging over the period
of a periodic function f�t�,

FIG. 1. Transition of the probability P�t� from its equilibrium value in the
absence of voltage, P�0�=0.5, to its long-time asymptotic form P��t� given
in Eqs. �3.8� and �3.9�. Symmetric periodic external voltage of unit ampli-
tude is switched on at t=0. The voltage protocol is shown in panel �a�. It is
taken that ki

�0�=1, �i=1. Transient behavior �dashed curves� was found using
Eqs. �3.2� and �3.4�–�3.6� for T=3.16 �panel �b�� and T=0.40 �panel �c��.
Solid curves give P��t�. The shorter is the period, the more cycles it takes
for the system to reach P��t� and the smaller the deviations of P�t� from its
equilibrium value P�0�=0.5 are.
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�f� =
1

T
�

0

T

f�t�dt . �3.12�

Thus, in the latter limiting case, P��t� is independent of time.
As soon as P��t� becomes independent of the prehistory, the
loop area vanishes since the loop collapses to a single line
�Fig. 2�.

IV. THE LOOP AREA

In this section we analyze the loop area assuming that

VT�t� = �V�T�t� , �4.1�

where �V is the amplitude of the external voltage, �V�0,
and �T�t� is a periodic function of time of period T,
�T�t+T�=�T�t�, which varies between unity and minus unity.
It will be assumed that �T�t� reaches its maximum and
minimum values at t=0 and t= ±T /2, respectively, i.e.,
�T�0�=1 and �T�±T /2�=−1. In addition, we assume that
�T�t� is symmetric, i.e., �T�t�=�T�−t� and �T�t�=−�T

�T /2− t�, the latter holds for 0	 t	T /4. As an example, in
Fig. 3 we show

�T�t� = 1 −
4�t�
T

, −
T

2
	 t 	

T

2
�4.2�

and the corresponding P��t�.
The hysteresis loop area for the probability of finding the

channel in state 1 is given by

A�T� = �
0

T/2

P��t��V̇T�t��dt − �
−T/2

0

P��t��V̇T�t��dt , �4.3�

where we have used the dot above VT�t� as a notation for the
derivative with respect to time. Using VT�t� in Eq. �4.1� we
can write the loop area A�T� as

A�T� = 4�VÃ�T� , �4.4�

where the dimensionless loop area Ã�T� is defined by

Ã�T� =
1

4
�

0

T/2

�P��t� − P��− t����̇T�t��dt . �4.5�

One can see that A�T�= Ã�T�=0 when P��t� is independent
of the prehistory, as it must be. Our further analysis is mainly

focused on the dimensionless loop area Ã�T�.
Expressions in Eqs. �3.8� and �4.5� are one of the main

results of the present paper. They allow one to find the loop
area at arbitrary T and �V. We demonstrate how it works for
the protocol in Eq. �4.2� in Sec. IV D. Before that we discuss

limiting behavior of Ã�T� in the low-and high-frequency re-
gimes in Secs. IV B and IV C and give the explicit solution
for the entire frequency range by means of the perturbation
theory in the following subsection.

A. Explicit solution for Ã„T… by perturbation theory

In this subsection we assume that �V is small in the
sense that �i�V
1, i=1,2. Then the rate constants ki�t� are
approximately

k1�t� 
 k1
�0� − �k1�T�t�, k2�t� 
 k2

�0� + �k2�T�t� , �4.6�

where �ki=�i�Vki
�0� are small compared to ki

�0�, �ki
ki
�0�. In

addition, we assume that �k1=�k2. Respectively, for k�t�
=k1�t�+k2�t�, this leads to

k�t� 
 k1
�0� + k2

�0� = k0. �4.7�

We use the above approximations to write a�t� defined in
Eq. �3.9� as

a�t� 

1

k0
�k2

�0��1 − �� + �k2f�t�� , �4.8�

where the function f�t� is defined by

f�t� = k0 exp�− k0�t + T���
t

t+T

�T�t��exp�k0t��dt�, �4.9�

FIG. 2. The hysteresis loops P��t� vs voltage V�t� corresponding to the
periodic voltage that changes linearly in time between 1 and −1 for three
values of the period: T=50.12 �solid curve�, 3.16 �dashed curve�, and 0.10
�dotted curve�. It is taken that ki

�0�=1, �i=1. One can see that the loop area
goes to zero for both very slow and very fast variations of the applied
voltage.

FIG. 3. Time course of probability P��t� �panel �b�� corresponding to the
protocol in Eq. �4.1� with �V=1 and �T�t� given in Eq. �4.2� �panel �a�� for
T=3.16. It is taken that ki

�0�=1, �i=1. The shape of the hysteretic loop is
shown in Fig. 2 by the dashed curve.
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and � defined in Eq. �3.4� is approximately

� 
 exp�− k0T� . �4.10�

Eventually we can write P��t� in Eq. �3.8� as

P��t� 
 Peq
�0�	1 +

�2�V

1 − �
f�t�
 , �4.11�

where Peq
�0�=k2

�0� /k0 is the equilibrium probability of finding
the channel in state 1 in the absence of external voltage, i.e.,
P1�V� in Eq. �2.4� at V=0. Equation �4.11� provides the per-
turbation theory solution for P��t�. Substituting this P��t�
into Eq. �4.5�, we obtain the perturbation theory result for the
dimensionless loop area,

Ã�T� =
�2�VPeq

�0�

4�1 − �� �0

T/2

�f�t� − f�− t����̇T�t��dt . �4.12�

Now we assume that �T�t� is given by Eq. �4.2�. For this
protocol f�t� and, hence, P��t� can be found explicitly. The
result is

f�t� = �1 − ��	1 +
4

k0T
f1�t�
 , �4.13�

where function f1�t� is given by

f1�t� = �1 − k0t −
2 exp�− k0t�

1 + exp�− k0T/2�
, 0 	 t 	

T

2

− 1 + k0t +
2 exp�− k0t�

1 + exp�k0T/2�
, −

T

2
	 t 	 0.�

�4.14�

Eventually we obtain

Ã�T� =
4�2�VPeq

�0�

k0T2 �
0

T/2

�f1�t� − f1�− t��dt

= �2�VPeq
�0�F� k0T

4
� , �4.15�

where function F�x� is

F�x� =
1

x
�1 −

tanh x

x
� . �4.16�

F�x� is a bell-shaped function. Its plot is shown in Fig. 4.
As follows from Eqs. �4.15� and �4.16�, the loop area

vanishes as T goes to zero and infinity. Asymptotic behavior

of Ã�T� in these two limiting cases is given by

Ã�T� = �2�VPeq
�0��

k0T

12
, k0T 
 1

4

k0T
, k0T � 1.� �4.17�

We will see that the asymptotic T dependences of the loop
area predicted by the perturbation theory hold also for arbi-
trary �V and for the voltage protocol �T�t� which is not
necessarily the one in Eq. �4.2�.

B. Low-frequency regime „T\�…

In the low-frequency regime, when T→�, � defined in
Eq. �3.4� vanishes and P��t� in Eq. �3.8� takes the form

P��t� = a�t� = �
0

T

k2�t − t2�exp	− �
0

t2

k�t − t1�dt1
dt2.

�4.18�

When evaluating P��t� in this regime, it is justified to use the
following approximations:

k2�t − t2� 
 k2�t� − t2k̇2�t�, k�t − t1� 
 k�t� − t1k̇�t� ,

�4.19�

and

exp	− �
0

t2

k�t − t1�dt1
 
 �1 +
1

2
k̇�t�t2

2�exp�− k�t�t2� ,

�4.20�

which exploit the fact that the rate coefficients are slowly
varying functions of time. Neglecting the term proportional

to the product k̇�t�k̇2�t�, after some manipulations we even-
tually obtain

P��t� 
 Peq�t� −
1

k�t�
Ṗeq�t� , �4.21�

where Peq�t�=k2�t� /k�t�.
For our further analysis it is convenient to rewrite Eq.

�4.21� as

FIG. 4. Plot of F�x� in Eq. �4.16�. The inset shows the same plot in double
logarithmic coordinates.
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P��t� 

k2�t�
k�t�

−
k1�t�k̇2�t� − k2�t�k̇1�t�

�k�t��3 . �4.22�

Next we use the relations k1�t�=k1
�0� exp�−�1�V�T�t�� and

k2�t�=k2
�0� exp��2�V�T�t�� to write P��t� in the form

P��t� 

k2�t�
k�t�

− ��1 + �2��V�̇T�t�
k1�t�k2�t�

�k�t��3 . �4.23�

Substituting this into Eq. �4.5� and using the fact that for
symmetric �T�t� the derivatives satisfy �̇T�t�=−�̇T�−t�, we
arrive at

Ã�T� = − 2��1 + �2��V�
0

T/2 k1�t�k2�t�
�k�t��3 �̇T�t���̇T�t��dt .

�4.24�

Function �T�t� and, hence, the rate coefficients k1�t�, k2�t�,
and k�t� are functions of the dimensionless argument t /T.
Therefore, as T→�, the loop area tends to zero as 1/T.

For the protocol in Eq. �4.2� the loop area, Eq. �4.24�, is

Ã�T� =
2

T
��1 + �2�k1

�0�k2
�0�

��
−�V

�V exp���2 − �1�
�d


�k1
�0� exp�− �1
� + k2

�0� exp��2
��3 . �4.25�

When �V→0 the integral simplifies and Ã�T� takes the form

Ã�T� =
4��1 + �2��Vk1

�0�k2
�0�

Tk0
3 . �4.26�

One can check that for �k1=�k2, this is identical to the
perturbation theory result in Eq. �4.17� with k0T�1, as it
must be. The integral in Eq. �4.25� is a monotonic function of
�V. As �V→� the integral tends to its finite upper limit, and

Ã�T� takes the form

Ã�T� =
2

T
��1 + �2�k1

�0�k2
�0�

��
−�

� exp���2 − �1�
�d


�k1
�0� exp�− �1
� + k2

�0� exp��2
��3 . �4.27�

C. High-frequency regime „T\0…

In the high-frequency regime, when T→0, � in Eq. �3.4�
is approximately �=1−T�k�. As a result, Eq. �3.8� takes the
form

P��t� =
1

T�k��t

t+T

k2�t2�dt2 exp	− �
t2

t+T

k�t1�dt1
 . �4.28�

Using the approximation

exp	− �
t2

t+T

k�t1�dt1
 
 1 − �
t2

t+T

k�t1�dt1, �4.29�

we can write P��t� in Eq. �4.28� as

P��t� =
�k2�
�k�

−
1

T�k��t

t+T

k�t1�dt1�
t

t1

k�t2�dt2. �4.30�

Since k�t�=k1�t�+k2�t� and

�
t

t+T

k2�t1�dt1�
t

t1

k2�t2�dt2 =
1

2
T2�k2�2, �4.31�

the expression in Eq. �4.30� reduces to

P��t� =
�k2�
�k�

−
T�k2�2

2�k�
−

1

T�k��t

t+T

k1�t1�dt1�
t

t1

k2�t2�dt2.

�4.32�

The double integral above is proportional to T2. Using the
product �k1��k2� as a scale for the integrand, we eventually
can write P��t� as

P��t� =
�k2�
�k� �1 −

T

4
�2�k2� + �k1�G�t��� , �4.33�

where G�t� is a dimensionless function of the order of unity
defined by

G�t� =
4

T2�k1��k2��t

t+T

k1�t1�dt1�
t

t1

k2�t2�dt2. �4.34�

Substituting P��t� in Eq. �4.33� into Eq. �4.5�, we arrive at

Ã�T� =
T�k1��k2�

16�k� �
0

T/2

�G�− t� − G�t����̇T�t��dt . �4.35�

Since the integral in Eq. �4.35� is independent of T, the loop
area in the high-frequency regime is proportional to T and
vanishes as T→0, as has been mentioned earlier.

For the protocol in Eq. �4.2�, the averaged rate coeffi-
cients are given by

�ki� =
1

T
�

0

T

ki�t�dt =
ki

�0�

�i
sinh��i� , �4.36�

where �i=�i�V, i=1,2. Straightforward integrations allow
one to find function G�t�:

G�t� = �
exp�− �1�T�t�� − exp�− �1�

sinh �1
+

exp��2�T�t�� − exp�− �2�
sinh �2

, 0 	 t 	
T

2

exp��1� − exp�− �1�T�t��
sinh �1

+
exp��2� − exp��2�T�t��

sinh �2
, −

T

2
	 t 	 0.� �4.37�
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Using this G�t� one can find Ã�T� in the high-frequency re-
gime. The result is

Ã�T� =
T�k1��k2�

4�k� 	 1

tanh �1
−

1

�1
+

1

tanh �2
−

1

�2

 .

�4.38�

When �V and, hence, �i tend to zero, the loop area takes the
asymptotic form

Ã�T� =
Tk1

�0�k2
�0�

12k0
��1 + �2��V , �4.39�

which reduces to the perturbation theory result in Eq. �4.17�
for k0T
1 when �k1=�k2, as it must be. In the opposite
limiting case, i.e., when �V, �i→�, Eq. �4.38�reduces to

Ã�T� =
T�k1��k2�

2�k�



Tk1

�0�k2
�0� exp���1 + �2��V�

4�V��2k1
�0� exp��1�V� + �1k2

�0� exp��2�V��
.

�4.40�

D. Numerical results

In this section the general formula for A�T� in Eq. �4.4�
is used to compute the loop area over the entire range of
frequencies. This is done for the protocol VT�t� in Eq. �4.1�
with �T�t� given in Eq. �4.2�. For this special case Eq. �4.4�
takes the form

A�T� = �VÃ�T�, Ã�T� =
1

T
�

0

T/2

�P��t� − P��− t��dt .

�4.41�

In Fig. 5 we show the computed frequency dependences of
A�T� for a symmetric channel with ki

�0�=1 and �i=1. The
dependences were computed for four values of the voltage
amplitude, �V=0.2,0.5,1.0,3.0. The computed dependences
are compared with the asymptotic behavior of A�T� obtained

by using corresponding results for Ã�T� given in Eqs. �4.25�
and �4.38� for low and high frequencies, respectively. One
can see excellent agreement between the theoretical predic-
tions and computed A�T� in the two limiting cases.

For illustrative purposes we also computed the fre-
quency dependence of A�T� for an asymmetric channel. This
was done using Eq. �4.41� with P��t� in Eq. �3.8� for a chan-
nel with k1

�0�=1 and k2
�0�=5 assuming that �i=1. The voltage

amplitude was taken to be equal to 0.2. The results are given
in Fig. 6 where we also show the theoretically predicted
asymptotic dependences at low and high frequencies as well
as the loop area for the symmetric channel with k1

�0�=k2
�0�

=1 and �i=1. One can see that excellent agreement between
the theoretical predictions and computed dependences holds
for both symmetric and asymmetric channels.

V. CONCLUDING REMARKS

In the present paper we have analyzed hysteresis in ion
channels on the basis of the two-state model shown in Eq.
�2.2�. We considered both the hysteresis loop area and tran-
sition behavior of the channel after periodic external voltage
was switched on. Our analysis has revealed universal depen-
dences of the loop area on the voltage frequency at low and
high frequencies. The loop area approaches zero in both lim-
iting cases, and its asymptotic behavior is given by

A�T� � �T−1, T → �

T , T → 0.
� �5.1�

For the voltage protocol in Eqs. �4.1� and �4.2�, we can
specify the relations in Eq. �5.1� and indicate the dependence
on the voltage amplitude. Using the results in Eqs. �4.26�,
�4.27�, �4.39�, and �4.40�, we can write

FIG. 5. The loop area A�T� computed using Eq. �4.41� with P��t� in Eq.
�3.8� �solid curves� as a function of the frequency T−1 for four values of the
voltage amplitude, �V=0.2, 0.5, 1.0, 3.0, from bottom to top. It is taken that
ki

�0�=1, �i=1. Dashed straight lines are drawn using asymptotic behavior of

Ã�T� in the low-and high-frequency regimes given in Eqs. �4.25� and �4.38�,
respectively.

FIG. 6. The loop area A�T� for an asymmetric channel �solid curve� as a
function of frequency. The loop area was computed using Eq. �4.41� with
P��t� in Eq. �3.8� taking k1

�0�=1, k2
�0�=5, �i=1, and �V=0.2. Dashed straight

lines show low- and high-frequency behaviors of A�T� obtained by using

Ã�T� given in Eqs. �4.25� and �4.38�, respectively. For the purpose of com-
parison, by the dashed curve we show A�T� for the symmetric channel �the
bottom curve in Fig. 5�.
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A�T� � �
��V�2

T
, �V → 0, T → �

T��V�2, �V → 0, T → 0

�V

T
, �V → � , T → �

Te�V, �V → � , T → 0.

� �5.2�

The frequency dependence of the loop area in the two
limits has been discussed in many publications devoted to
quite different physical problems in which hysteresis takes
place.16–27 It has been found that in the low-frequency re-
gime �T→��, the area approaches zero as T−� with �	1.
The area also vanishes as T→0. Its asymptotic behavior
in this high-frequency regime is given by A�T. Thus, the
two-state model of the ion channel leads to typical
asymptotic behavior of the hysteresis loop area in both limits
with �=1 in the low-frequency regime.

Our analysis is based on the two-state Markovian model
of channel gating,8–11 Eq. �2.2�, with the time-dependent
transition rates controlled by periodic external voltage. Such
a description arises as a special limiting case corresponding
to the semiadiabatic approximation28 of the more general sto-
chastic dynamics in a double-well potential perturbed by a
periodic external force. Semiadiabatic approximation is ap-
plicable when the characteristic intrawell relaxation times are
much shorter than both the period of the external voltage and
the characteristic interwell equilibration time. One can find a
detailed discussion of this and related questions by Talkner
and Luczka in Ref. 29. We believe that semiadiabatic ap-
proximation is highly appropriate to describe the effect of
perturbation of the conformational equilibria of channel-
forming proteins by periodic external voltages.
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