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The authors develop a theory of diffusion-controlled reactions with a site located on the wall of a
cylindrical membrane channel that connects two reservoirs containing diffusing particles which are
trapped by the site at the first contact. An expression for the Laplace transform of the rate
coefficient, k�t�, is derived assuming that the size of the site is small compared to the channel radius.
The expression is used to find the stationary value of the rate coefficient, k���, as a function of the
length and radius of the channel, the radius of the site, and its position inside the channel �distances
from the two ends of the channel� as well as the particle diffusion constants in the bulk and in the
channel. Their derivation is based on the one-dimensional description of the particle motion in the
channel, which is generalized to include binding to the site into consideration. The validity of the
approximate one-dimensional description of diffusion and binding was checked by
three-dimensional Brownian dynamics simulations. They found that the one-dimensional
description works reasonably well when the size of the site does not exceed 0.2 of the channel
radius. © 2006 American Institute of Physics. �DOI: 10.1063/1.2409682�

I. INTRODUCTION

This paper deals with binding of diffusing particles to a
site located on the wall of a membrane channel, as shown in
Fig. 1. The major step of our analysis is mapping of the
three-dimensional problem of the particle diffusion in the
channel onto a one-dimensional one. We assume that the size
of the site is small compared to the channel radius and de-
scribe binding in terms of absorption by a � sink with a
prescribed trapping rate which is a function of both the size
of the site and the channel radius. This approximation is
checked by three-dimensional Brownian dynamics simula-
tion in Sec. III after we formulate the problem in the next
section. Comparison shows that the approximation works
reasonably well when the ratio of the size of the site to the
channel radius is small enough.

We use this approximation in Sec. IV to find the Laplace
transform of the time-dependent rate coefficient, k�t�. This
function characterizes survival probability, S�t�, of the site,
which is assumed to annihilate at the first contact with the
particle,

S�t� = exp�− c�
0

t

k�t��dt�� , �1.1�

where c is the particle concentration in the two reservoirs
separated by the membrane. Our solution shows how the rate
coefficient and, hence, S�t� depend on the geometric param-
eters of the site and of the channel as well as on the location
of the site inside the channel.

Our interest in this problem is motivated by recent
progress in studies of transport through large membrane
channels.1–3 Compared with ion-selective channels of neuro-

physiology large channels seem to serve a different purpose
than just to conduct small ions. These channels are rather
pathways for metabolites and macromolecules such as pro-
teins and nucleic acids, and their function is to regulate me-
tabolite fluxes across the cell and organelle membranes. One
of the new developments in studies of large channels is based
on the idea that by measuring the current carried by small
ions, one can access the transport of larger molecules
through their occlusion of the current.4 These transient oc-
clusions generate measurable excess noise and in many cases
can be resolved as single-molecular events reporting on par-
titioning and dynamics of molecules within the confines of
the channel pores.

One of the mechanisms that affect the occlusion of the
small ion current is binding of the large solutes to their high
affinity sites on the channel wall forming proteins. In the
previous study5 we analyzed the diffusion-controlled binding
assuming that the site is large in the sense that its size is
comparable with the channel radius. In this case a particle
reaching the channel cross section containing the site is
trapped with probability close to unity. Therefore, this cross
section can be considered as a perfectly absorbing boundary
for the diffusing solute. However, recent experiments
complemented by molecular dynamics simulations6 have
demonstrated that the sites can be relatively small, so that the
particle reaching the cross section of the channel where the
site is located has a good chance to avoid contacting the site
and to escape from the channel. A similar situation is realized
for protons that protonate residues lining the channel pore.7

With this in mind, in the present paper we extended the
analysis given in Ref. 5 for large binding sites. Here we
consider a model in which the cross section containing the
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site is not necessarily perfectly absorbing. The trapping rate
in this cross section is now a free parameter of the model.
The solution obtained in Ref. 5 is recovered from the solu-
tion derived below in the limiting case of infinitely high
trapping rate, which corresponds to the perfectly absorbing
cross section.

II. FORMULATION OF THE PROBLEM

Consider two reservoirs separated by a membrane of
thickness l. Reservoirs contain diffusing particles that can go
from one reservoir to another through a cylindrical channel
of radius R in the separating membrane. On the channel wall
there is a circular binding site of radius a, a�R, which in-
stantly loses its trapping ability �annihilate� when binding the
first particle that reaches the site. This site is located at dis-
tances l1 and l2= l− l1 from the left and right entrances into
the channel, respectively, as shown in Fig. 1. We assume that
when the channel arises at t=0 it is free from the particles
which are uniformly distributed in the two reservoirs. The
survival probability of the site given in Eq. �1.1� is the prob-
ability that no particle has reached the site by time t. Our
goal is to find the rate coefficient k�t� which is a function of
the geometric parameters a, R, l, and l1 as well as the diffu-
sion constants of the particle in the channel, Dch, and in the
bulk, Db.

To begin with, we note that the product ck�t� is a time-
dependent flux of the particles through the perfectly absorb-
ing circular sink of radius a located on the channel wall
exactly like the binding site. To find this flux one has to solve
the three-dimensional diffusion problem in the two reservoirs
and in the channel with absorbing boundary condition on the
sink and to match the solutions at the channel entrances. This
program is too complicated to be carried out. However, an
approximate but quite accurate technique has been found to
handle such problems.8 The idea is to describe the three-
dimensional diffusion in the channel as one-dimensional one
with radiation boundary conditions at the channel ends that

characterize the efficiency of escape from the channel of a
particle approaching the channel boundary. Several prob-
lems, in which diffusion in the channel contacting with a
bulk plays a crucial role, have been studied using this
approach.5,8,9 The results derived on the basis of the one-
dimensional approximation were compared with those ob-
tained in three-dimensional Brownian dynamics simulations.
Excellent agreement was found between theoretically pre-
dicted and numerically obtained results.

Now we generalize the one-dimensional description of
the particle motion in the channel so as to take trapping of
diffusing particles by a small absorbing spot into account.
Let the x axis be directed along the channel and normal to
the membrane and p�x , t� be the one-dimensional density of
the particles at point x of the channel, 0�x� l, at time t. We
assume that this function satisfies the diffusion equation

�p

�t
= Dch

�2p

�x2 − �a��x − l1�p, 0 � x � l , �2.1�

in which the sink term describes absorption of the particles
by the spot. Taking advantage of the fact that the spot is
small compared to the channel radius, a�R, we approximate
the shape of the sink term by the � function. The sink
strength or trapping efficiency, �a, is taken to be equal to

�a =
4Dcha

�R2 . �2.2�

In the next section we demonstrate that this description of
trapping by a small circular absorber leads to the theoretical
predictions which are in good agreement with the results
found in three-dimensional Brownian dynamics simulations.
We explain our choice of �a in Eq. �2.2� after we discuss
boundary conditions imposed at the channel ends.

It has been shown in Ref. 8 that the end points x=0 and
x= l, as viewed from the channel, can be regarded as partially
absorbing boundaries. The efficiency of escape from the
channel of a particle that approaches the boundary is charac-
terized by the trapping rate entering into the boundary con-
ditions �BCs�, �BC, which is given by8

�BC =
4Db

�R
. �2.3�

To write the boundary conditions we introduce fluxes of par-
ticles that enter the channel from the left �L� and right �R�
reservoirs at time t, JL,R�t�. The boundary conditions can be
written as

Dch� �p�x,t�
�x

�
x=0

= �BCp�0,t� + JL�t� , �2.4a�

− Dch� �p�x,t�
�x

�
x=l

= �BCp�l,t� + JR�t� . �2.4b�

It can be shown8 that the boundary conditions more accurate
than Eqs. �2.4� are non-Markovian but reduces to Eqs. �2.4�
on times larger than R2 /Db. In our further analysis we will
neglect details of the kinetics occurring on such times. Then
the fluxes JL,R�t� can be set equal to their stationary value,
4DbRc, which is the stationary flux of the particles to a per-

FIG. 1. Circular binding site of radius a on the wall of the cylindrical
channel of radius R. The channel connects two reservoirs separated by a
membrane of thickness l. The reservoirs contain diffusing particles at con-
centration c. The site is located at distance l1 from the left entrance into the
channel and distance l2= l− l1 from the right entrance.
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fectly absorbing disk of radius R on the otherwise perfectly
reflecting planar wall.10

To explain our choice of the expression for the sink
strength in Eq. �2.2� consider a particle diffusing in the chan-
nel with the absorbing spot on the wall assuming that the
particle cannot escape from the channel because the exits are
closed by reflecting lids. The average lifetime of such a par-
ticle, i.e., its mean first passage time to the spot, is given by11

�3D =
Vch

4Dcha
=

�R2l

4Dcha
, �2.5�

where Vch=�R2l is the volume of the channel and the sub-
script 3D indicates that this estimation of the lifetime is
based on the three-dimensional consideration. We can also
estimate this lifetime in the framework of the one-
dimensional description. When the sink strength is small in
the sense that the average lifetime of the particle is much
greater than the average equilibration time which is of the
order of l2 /Dch, the lifetime is given by

�1D =
l

�a
, �2.6�

where the subscript 1D indicates that this estimation is ob-
tained in the framework of the one-dimensional description.
One can see that our choice of �a in Eq. �2.2� leads to iden-
tity of the lifetimes in Eqs. �2.5� and �2.6�, �3D=�1D.

In Sec. IV we use the one-dimensional description of the
particle diffusion and trapping in the channel to derive the
Laplace transform of the rate coefficient, k�t�. However, first
we discuss the numerical test of the approximate one-
dimensional description in the following section.

III. NUMERICAL TEST OF THE APPROXIMATION

To check the accuracy of our approximate one-
dimensional description of diffusion and binding in the chan-
nel, we ran Brownian dynamics �BD� simulations in the ge-

ometry shown in Fig. 2 and compared the results found in
simulations with those predicted on the basis of the one-
dimensional description. In our simulations particles diffused
in the cylindrical cavity of radius R=1 and length l that
contained a perfectly absorbing circular disk of radius a on
its wall which was otherwise perfectly reflecting. The disk
was located on equal distance from either end of the cylinder,
which was also perfectly absorbing surfaces. Particles were
initially uniformly distributed over the cross section of the
cylinder that passed through the center of the disk perpen-
dicular to the wall. The particle trajectory was terminated at
the moment when it reached the disk or the channel ends for
the first time.

In simulations we ran N=50 000 trajectories and re-
corded whether the trajectory crossed the disk or the channel
ends and the lifetime ti for each trajectory, i=1,2 , . . . ,N. We
used these data to find the fraction of the trajectories trapped
by the disk, fdisk

�BD�, and the average lifetime of the particles,
t̄BD. This was done for l=10,20,30 and a=0.05,
0.10,0.15,0.20, assuming that the particle diffusion coeffi-
cient was equal to one-half, D=1/2. The results are shown in
Tables I and II. As might be expected, the probability that the
particle is trapped by the disk increases with the disk size
and with the length of the cavity. The average lifetime of the
particle increases with the length of the cavity and decreases
when the disk size increases.

We also calculated these quantities in the framework of
the one-dimensional �1D� description in Appendix A, where
we found that

fdisk
�1D� =

1

1 + ��R2/al�
�3.1�

and

t̄1D =
l2

8D�1 + �al/�R2��
. �3.2�

The ratios of the theoretically predicted and numerically ob-
tained values of fdisk and t̄ are given in Tables III and IV.

FIG. 2. Cylindrical cavity of unit radius, R=1, and length l containing a
perfectly absorbing disk of radius a located on the cavity wall at equal
distance from both ends of the cylinder, which are also perfectly absorbing
surfaces, used in our Brownian dynamics simulations. The absorbing sur-
faces are crosshatched in the figure. A special feature of our simulations is
that near the absorbing surfaces we used 100 times smaller time step than in
the rest of the cavity volume. The regions where the smaller time step was
used are thin slabs of thickness of 0.1 near the two absorbing ends of the
cylinder and the rectangular parallelepiped of the height of 0.1 and the
square in the basis of the size 2�a+0.1� surrounding the absorbing disk. The
parallelepiped was located so that the center of its basis touched the wall of
the cylinder just at the point where the center of the disk was located. In
simulations the particle initial positions were uniformly distributed over the
cross section of the cylinder that passed through the center of the disk
perpendicular to the cavity axis.

TABLE I. The fraction of trajectories trapped by the disk, fdisk
�BD�, found in

simulations for several values of the parameters l and a, which are given in
the first row and the first column of the table, respectively.

10 20 30

0.05 0.142 0.245 0.321
0.10 0.2471 0.4105 0.5008
0.15 0.343 0.515 0.616
0.20 0.409 0.591 0.682

TABLE II. The average lifetime of the particle, t̄BD, found in simulations for
several values of the parameters l and a, which are shown in the first row
and the first column of the table, respectively.

10 20 30

0.05 21.378 75.784 153.199
0.10 18.728 59.319 112.164
0.15 16.182 48.206 86.839
0.20 14.755 40.888 71.175
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One can see that deviations of these ratios from unity are less
than 10% even when the disk size is as large as 0.2.

Another comparison of the prediction based on the one-
dimensional description with the result found in three-
dimensional Brownian dynamics simulations is presented in
Fig. 3, which shows logarithm of the particle survival prob-
ability as a function of time for a=0.05 and l=30. The solid
curve was obtained by inverting numerically the Laplace

transform of the survival probability, Ŝ1D�s�, derived in Ap-
pendix A and given in Eq. �A6�, while the crosses represent
the survival probability SBD�t� found in simulations. One can
see that the two survival probabilities are very close to one
another on times smaller than 900 dimensionless units. The
difference between SBD�t� and S1D�t� on these times is
smaller than 4%. On larger times the difference becomes
significant because of the poor statistics. The point is that the
survival probability at t=900 is less than 2�10−3. Therefore
the number of trajectories with the lifetimes greater than 900
in our simulations was less than 100 that is definitely not
enough for finding a reliable value of the survival probabil-
ity.

To summarize, comparison with three-dimensional
Brownian dynamics simulations discussed in this section
shows that the approximate one-dimensional description of
diffusion and binding in the channel works reasonably well
when the binding site is not too large. This is important since
this approximation allows one to convert unsolvable three-
dimensional problems into one-dimensional ones which can
be solved with relative ease.

IV. RATE COEFFICIENT

In this section we discuss the rate coefficient, k�t�, which
determines the survival probability of the binding site, Eq.
�1.1�. Our analysis is based on the one-dimensional model
formulated in Eqs. �2.1�–�2.4�. It is assumed that when the

channel is formed at t=0, it is free from diffusing particles.
Therefore, we will solve Eq. �2.1� with the initial condition
p�x ,0�=0.

To find the rate coefficient we need to know the flux
through the sink, which is given by �ap�l1 , t�. Then the rate
coefficient can be found by means of the relation

k�t� =
1

c
�ap�l1,t� . �4.1�

As derived in Appendix B the Laplace transform of k�t� can
be written in terms of functions P�x� and Q�x� defined as

P�x� = 	sDch cosh
x	 s

Dch
� + �BC sinh
x	 s

Dch
� ,

�4.2�

Q�x� = 	sDch sinh
x	 s

Dch
� + �BC cosh
x	 s

Dch
� .

�4.3�

The result is

k̂�s� =
4DbR�a�P�l1� + P�l2��

s���a/	sDch�P�l1�P�l2� + P�l1�Q�l2� + P�l2�Q�l1��
.

�4.4�

These expressions together with those in Eqs. �2.2� and �2.3�
determine k̂�s� as a function of the geometric parameters a,
R, l, and l1, as well as the diffusion constants Dch and Db.
This is one of the main results of the present paper. The
Laplace transform in Eq. �4.4� is too complicated to be in-
verted analytically, but it can be easily inverted numerically.
This allows one to find transient behavior of k�t� from zero at

FIG. 3. Logarithm of the particle survival probability in the cylindrical
cavity of unit radius, R=1, and length l=30 containing a perfectly absorbing
disk of radius a=0.05 located on the cavity wall at equal distances from
both ends of the cylinder, which are also perfectly absorbing surfaces, as a
function of the dimensionless time. Crosses represent logarithm of the sur-
vival probability found in simulations, while the solid curve is obtained by
numerically inverting the Laplace transform in Eq. �A6�. In simulations the
particle initial positions were uniformly distributed over the cross section of
the cylinder that passed through the center of the disk perpendicular to the
cavity axis.

TABLE III. The ratio of the theoretically predicted probability of the par-
ticle trapping by the disk, fdisk

�1D� in Eq. �3.5�, to the value of this probability
found in simulations, fdisk

�BD�, for several values of the parameters l and a,
which are given in the first row and the first column of the table, respec-
tively.

10 20 30

0.05 0.97 0.98 1.01
0.10 0.98 0.95 0.98
0.15 0.94 0.95 0.96
0.20 0.95 0.95 0.96

TABLE IV. The ratio of the theoretically predicted average lifetime of the
particle, t̄�1D� in Eq. �3.8�, to the value of this lifetime found in simulations,
t̄BD, for several values of the parameters l and a, which are given in the first
row and the first column of the table, respectively.

10 20 30

0.05 1.01 1.00 0.99
0.10 1.01 1.03 1.03
0.15 1.05 1.06 1.07
0.20 1.04 1.08 1.09
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t=0 to its stationary value which is reached as t→�, kst

=k���. The latter can be found from the small-s asymptotic

behavior of k̂�s�,

kst = lim
s→0

sk̂�s� . �4.5�

We use kst found by means of this relation to analyze how the
stationary rate coefficient depends on the geometric and ki-
netic parameters of the problem.

Using the results in Eqs. �4.2� and �4.3� and the relations
in Eqs. �2.2� and �2.3�, we obtain

kst =
4DbR�2 + 	�

�1 + 
	��1 + �1 − 
�	� + ��R2/4al�	�2 + 	�
, �4.6�

where

	 =
4Dbl

�DchR
, 
 =

l1

l
, �4.7�

correspondingly, 1−
= l2 / l. This stationary rate coefficient
can be written in the form that has a transparent interpreta-
tion,

kst = 4DbR�W�l1� + W�l2�� . �4.8�

Here 4DbR is the Hill formula10 for the stationary trapping
rate by a perfectly absorbing circular disk of radius R �en-
trance into the channel� located on the otherwise perfectly
reflecting planar wall, while W�l1� and W�l2� are the prob-
abilities to be trapped by the absorbing spot on the channel
wall for particles entering the channel through the left and
right ends, respectively.

The trapping probabilities W�l1� and W�l2� are given by

W�l1� = Wcs�l1�K, W�l2� = Wcs�l2�K . �4.9�

Here Wcs�x� is the trapping probability found assuming that
the entire cross section �cs� of the channel perpendicular to
its axis and located at distance x from its entrance is perfectly
absorbing,

Wcs�x� = �1 + 
1 −
x

l
��−1

. �4.10�

The factor K in Eq. �4.9� is the probability to be trapped by
the absorbing spot on the channel wall for a particle that
starts from the cross section passing through the center of the
spot perpendicular to the channel axis; the particle starting
position is uniformly distributed over the cross section. The
factor K is given by

K = �1 +
�R2

4al
	�2 + 	�Wcs�l1�Wcs�l2��−1

. �4.11�

Thus, the stationary rate coefficient in Eq. �4.8� can be writ-
ten as

kst = 4DbR�Wcs�l1� + Wcs�l2��K . �4.12�

Putting here K=1 we recover kst derived earlier in Ref. 5
assuming that the entire cross section is perfectly absorbing.

Alternatively, the stationary rate coefficient in Eq. �4.6�
can be written in the Collins-Kimball form,12

kst =
�4Dcha�kcs

4Dcha + kcs
. �4.13�

Here 4Dcha is the Hill formula10 for the small perfectly ab-
sorbing disk on the wall of the channel and kcs is a sum of
two rate coefficients each of which has the Collins-Kimball
form,

kcs = kcs�l1� + kcs�l2� , �4.14�

where kcs�x� is the stationary rate coefficient in situation
when the entire cross section located at distance x from the
channel entrance is perfectly absorbing, given by5

kcs�x� =
�4DbR���R2Dch/x�
4DbR + �R2Dch/x

. �4.15�

Assuming that in Eq. �4.13� 4Dcha�kcs we obtain kst=kcs

and recover the expression for kst derived in Ref. 5.
Expressions in Eqs. �4.8� and �4.13� can be used to write

the stationary flux of the particles into the absorbing spot on
the channel wall, fst, in the two forms,

fst = 4DbR�W�l1� + W�l2��c �4.16�

and

fst =
�4Dcha�kcs

4Dcha + kcs
c , �4.17�

which allow different interpretations. The flux in Eq. �4.16�
is a sum of two fluxes each of which is a product of the
stationary flux to the channel entrance, 4DbRc, and the de-
creasing factor W�li�, i=1,2, due to the fact that the binding
site is hidden in the channel. The expression in Eq. �4.17�
may be interpreted as the Hill formula for the stationary flux
to the absorbing disk on the channel wall, 4Dchaceff, which
contains the effective concentration ceff of the particles,

ceff =
kcs

4Dcha + kcs
c , �4.18�

which is smaller than the particle concentration c in the res-
ervoirs.

As might be expected, the stationary rate coefficient
monotonically decreases, as the site moves into the channel,
and reaches its minimum value when l1= l2= l /2, i.e., 

=1/2. One can see this from Eq. �4.6�. The decrease of kst

may be characterized by the ratio �kst�
=1/2 / �kst�
=0 which is
given by

�kst�
=1/2

�kst�
=0
=

1 + 	 + ��R2/4al�	�2 + 	�
1 + 	 + �1/4�	2 + ��R2/4al�	�2 + 	�

, �4.19�

where the ratio is small and the decrease is significant when
	�1. This may be due to either because Dch�Db or because
of L�R, and, of course, both factors may contribute.

V. CONCLUDING REMARKS

The present paper is devoted to kinetics of diffusion-
controlled binding to a small circular site located on the wall
of a cylindrical membrane channel. One of the main results
of our analysis is the expression for the Laplace transform of
the rate coefficient, Eq. �4.4�, which determines the survival
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probability of the binding site, Eq. �1.1�. We use this expres-
sion to find the stationary value of the rate coefficient
reached as t→�. Different representations of this quantity
are given in Eqs. �4.6�, �4.8�, �4.12�, and �4.13�. They show
how the stationary trapping rate depends on the geometric
and kinetic parameters of the system. These parameters are
the length and radius of the channel, the radius of the site,
and the distances from its center to the channel ends, which
determine the location of the site inside the channel, as well
as the diffusion constants of the particles in the channel and
in the bulk outside the channel. Although the theory is de-
veloped assuming that the site radius is much smaller than
the radius of the channel, it turns out that when the radius of
the site formally tends to infinity we recover the result de-
rived for large binding sites in Ref. 5.

Our analysis is based on an approximate one-
dimensional description of the particle motion in the channel
suggested in Ref. 8. To derive the results we have extended
the formalism so as to include trapping of the particles by the
binding site into consideration. To check the accuracy of our
approximate one-dimensional approach we compare theoret-
ical predictions derived in the framework of the one-
dimensional description with the results obtained in three-
dimensional Brownian dynamics simulations. There is a
good agreement between the predicted and simulated results
when the radius of the site does not exceed 0.2 of the channel
radius. This agreement may be considered as a justification
of the approximate one-dimensional approach which has
been used in Sec. IV when finding the solution for the
Laplace transform of the rate coefficient.

The fact that the site is hidden in the membrane channel
leads to a decrease of the binding rate compared to the situ-
ation where the same site is exposed on the membrane sur-
face. For the first time this effect was studied by Samson and
Deutch13 in their theory of diffusion-controlled reactions
with buried active sites. Samson and Deutch analyzed en-
zyme kinetics in situation where the active site of the en-
zyme was a small spherical cap buried inside an inert sphere
that represented the enzyme molecule. In Ref. 5 the result for
the stationary trapping rate derived in that paper for large
binding sites hidden in membrane channels is compared with
the stationary trapping rate given by the Samson-Deutch
theory13 in the corresponding limiting case. A special feature
of kinetics analyzed in the present paper is that the binding
site is small compared to the channel radius. Therefore, the
particle reaching the cross section of the channel containing
the site has a good chance to avoid being trapped and to
escape from the channel.

Finally, we note that the results obtained in the present
paper for circular binding sites can be easily generalized to
the case of noncircular sites. This can be done by prescribing
the noncircular site an effective radius, aeff, given by aeff

= �AP / �2�2��1/3, where A and P are the area and perimeter of
the site. Justification for this prescription is given in Ref. 14.
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APPENDIX A: fdisk AND t̄ FROM 1D DESCRIPTION

The key function of this description is the particle propa-
gator G�x , t � l /2�, which satisfies

�G

�t
= D

�2G

�x2 − ���x − l1�G, 0 � x � l , �A1�

where D is the particle diffusion constant and the sink
strength � is given by Eq. �2.2� in which Dch is replaced by
D. The propagator also satisfies the initial condition
G�x ,0 � l /2�=��x− l /2�, and absorbing boundary conditions
at x=0 and x= l, G�0, t � l /2�=G�l , t � l /2�=0. Solving the
problem by the Laplace transformation method we find that
the Laplace transform of the propagator is given by

Ĝ�x,s�l/2� = A � sinh
x	 s

D
� , 0 � x �

l

2

sinh
�l − x�	 s

D
� ,

l

2
� x � l ,�

�A2�

where the factor A is

A = �2	sD cosh
 l

2
	 s

D
� + � sinh
 l

2
	 s

D
��−1

. �A3�

We use the Laplace transform of the propagator to find
the fraction of the particle trajectories trapped by the sink,
fdisk

�1D�,

fdisk
�1D� = ��

0

�

G�l/2,t�l/2�dt = �Ĝ�l/2,0�l/2� . �A4�

Using the Laplace transform in Eq. �A2� and the relation �
=4Da / ��R2� we obtain the result in Eq. �3.1�. Survival prob-
ability of the particle, S1D�t�, is given by

S1D�t� = �
0

t

G�x,t�l/2�dx . �A5�

We can find its Laplace transform using the transform in Eq.
�A2�. The result is

Ŝ1D�s� = 2A	D

s
�cosh
 l

2
	 s

D
� − 1� . �A6�

The average lifetime of the particle, t̄1D, is related to the

transform Ŝ1D�s� by the relation t̄1D= Ŝ1D�0�, which leads to
the result in Eq. �3.2�.

APPENDIX B: LAPLACE TRANSFORMS OF k„t…

The one-dimensional density p�x , t� can be written as a
sum of two terms,
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p�x,t� = pL�x,t� + pR�x,t� , �B1�

where pL�x , t� and pR�x , t� are due to the particles entering
the channel through the left and right ends, respectively.
These functions can be written in terms of the particle propa-
gator in the channel, G�x , t �x0�, which satisfies

�G

�t
= Dch

�2G

�x2 − �a��x − l1�G, 0 � x � l , �B2�

with the initial condition G�x ,0 �x0�=��x−x0� and the bound-
ary conditions

��Dch
�G

�x
− �BCG��

x=0
= ��Dch

�G

�x
+ �BCG��

x=l
= 0.

�B3�

The expression for pL�x , t� and pR�x , t� in terms of the propa-
gator and the fluxes entering the channel from the left and
right reservoirs, JL�t� and JR�t�, are

pL�x,t� = �
0

t

G�x,t − t��0�JL�t��dt� �B4�

and

pR�x,t� = �
0

t

G�x,t − t��l�JR�t��dt�. �B5�

Using Eqs. �4.1� and �B1� we can write k�t� as a sum,

k�t� = kL�t� + kR�t� , �B6�

where

kL�t� =
�a

c
pL�l1,t� =

�a

c
�

0

t

G�l1,t − t��0�JL�t��dt� �B7�

and

kR�t� =
�a

c
pR�l1,t� =

�a

c
�

0

t

G�l1,t − t��l�JR�t��dt�. �B8�

Replacing fluxes JL�t� and JR�t� by their stationary value
4DbRc we arrive at

kL�t� = 4DbR�a�
0

t

G�l1,t − t��0�dt� �B9�

and

kR�t� = 4DbR�a�
0

t

G�l1,t − t��l�dt�. �B10�

Eventually the Laplace transforms of the rate coefficients
kL�t� and kR�t� are given by

k̂L�s� =
4DbR�a

s
Ĝ�l1,s�0�, k̂R�s� =

4DbR�a

s
Ĝ�l1,s�l� .

�B11�

The propagator G�x , t �0� satisfies Eq. �B2� with the
boundary conditions in Eq. �B3� and the initial condition

G�x ,0 �0�=��x�. One can find Ĝ�l1 ,s �0� solving this equa-
tion. The result is

Ĝ�l1,s�0� =
P�l2�

��a/	sDch�P�l1�P�l2� + P�l1�Q�l2� + P�l2�Q�l1�
,

�B12�

with P�x� and Q�x� given in Eqs. �4.2� and �4.3�. The propa-
gator G�x , t � l� also satisfies Eq. �B2� with the boundary con-
ditions in Eq. �B3� but the initial condition for this propaga-
tor is G�x ,0 � l�=��x− l�. The Laplace transform of this
propagator at x= l1 is given by

Ĝ�l1,s�l� =
P�l1�

��a/	sDch�P�l1�P�l2� + P�l1�Q�l2� + P�l2�Q�l1�
.

�B13�

Finally, one can obtain the expression for k̂�s� in Eq. �4.4� by
Laplace transforming Eq. �B6� and using the results in Eqs.
�B11�–�B13�.
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