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Diffusion in multilayer media: Transient behavior of the lateral
diffusion coefficient
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A general formalism for treating lateral diffusion in a multilayer medium is developed. The
formalism is based on the relation between the lateral diffusion and the distribution of the
cumulative residence time, which the diffusing particle spends in different layers. We exploit this
fact to derive general expressions which give the global and local time-dependent diffusion
coefficients in terms of the average cumulative times spent by the particle in different layers and the
probabilities of finding the particle in different layers, respectively. These expressions are used to
generalize two recently obtained results: �a� A solution for the short-time behavior of the lateral
diffusion coefficient in two layers separated by a permeable membrane obtained by a perturbation
theory is extended to the entire range of time. �b� A solution for the time-dependent diffusion
coefficient of a ligand, which repeatedly dissociates and rebinds to sites on a planar surface,
obtained under the assumption that the medium above the surface is infinite, is generalized to allow
for the medium layer of finite thickness. For the latter problem we derive an expression for the
Fourier-Laplace transform of the propagator in terms of the double Laplace transform of the
probability density of the cumulative residence time spent by the ligand in the medium layer.
�DOI: 10.1063/1.2188394�
I. INTRODUCTION

In the present paper we analyze the lateral diffusion of a
particle in a multilayer medium whose geometry is as shown
in Fig. 1. The diffusion coefficient in this system will be
assumed to be a function of the particle z coordinate only,
D�z�, and independent of its lateral coordinate x. The particle
transfers between layers due to its motion along the z coor-
dinate. As a result, its lateral diffusion coefficient changes at
random times which are determined by the z-coordinate mo-
tion. In consequence, the diffusion coefficient varies as a
function of time from its value in the initial layer in which
the particle is found to its final long-time asymptotic value
given by the equilibrium average of D�z�.

The present analysis is devoted to a study of the transient
behavior of the lateral diffusion coefficient. Our approach to
the problem is based on the relation between the lateral dif-
fusion and the distribution of the cumulative residence times,
which the diffusing particle spends in different layers. We
utilize the fact that particle motion along the z coordinate is
assumed to be unaffected by its lateral diffusion. Because of
this, the problem of lateral diffusion can be reduced to that of
deriving probabilities for finding the particle in different lay-
ers at time t, a one-dimensional problem which can be solved
with relative ease.

Our interest in lateral diffusion was stimulated by recent
papers published by Sen1 and Lieto et al.2 The first, among
other interesting results, derives the short-time behavior of
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the mean-squared displacement in the lateral direction in a
two-layer system separated by a permeable membrane as a
function of membrane permeability. The second deals with
the lateral diffusion of a ligand which repeatedly dissociates
and rebinds to sites on a planar surface. The authors derived
an expression for the time-dependent lateral diffusion coef-
ficient as a function of the concentration of the binding sites
on the surface and the rate constants that characterize ligand
binding and dissociation of the ligand-site complexes.

Other motivating factors for the present analysis are re-
cent experiments on morphogen transport in development,
where locally secreted growth factors spread through the tis-
sue and activate cell surface receptors to control gene expres-
sion in target cells as discussed by Vincent and Dubois.3 In
particular, recent experimental studies of pattern formation in
the Drosophila wing imaginal disk suggested the mechanism
in which secreted ligand moves by a combination of extra-
cellular diffusion and cell surface transport mediated by cell
surface molecules4 �proteoglycans�. The simplest model of
this mechanism leads to the problem considered in this pa-
per.

In the next section we develop a general formalism al-
lowing us to express the mean-squared displacement and
time-dependent diffusion coefficient in terms of the prob-
abilities of finding the particle in different layers, and the
average cumulative residence times spent by the particle in
these layers. This formalism is used to generalize the results
obtained in Refs. 1 and 2 in Secs. III and IV. In Sec. III we
generalize the short-time solution for the lateral diffusion
coefficient obtained by Sen1 using the perturbation theory.

Our solution allows one to find the behavior of the time-
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dependent diffusion coefficient over the entire range of time
by inverting a Laplace transform. In Sec. IV we generalize
the solution obtained by Lieto et al.2 assuming that the layer
of the medium above the surface is infinite. We give a solu-
tion for the case of an arbitrary layer thickness. The final
section generalizes the formalism to express the propagator
in the system studied in Ref. 2 in terms of the probability
density of the cumulative residence time, which the diffusing
ligand spends in the bulk layer of the medium.

II. DEVELOPMENT OF FORMALISM

We consider the lateral diffusion of a particle in the
multilayer medium shown in Fig. 1. The cumulative resi-
dence times spent by the particle in layers 1 ,2 , . . . ,N will be
denoted by �1 ,�2 , . . . ,�N, respectively. By convention the ini-
tial position of the diffusing particle is at x=0. The lateral
propagator of the particle is given by

g�x��1,�2, . . . ,�N� =
1

�4�� j=1

N
Dj� j

�exp�−
x2

4� j=1

N
Dj� j

	 , �2.1�

where x is the value of the lateral coordinate at time t. This
time is obviously related to the �i by

t = �
j=1

N

� j . �2.2�

For a given trajectory of the particle along the z coordinate,
z���, with 0��� t, the lateral propagator can be written in

FIG. 1. Schematic representation of an N-layer system with diffusion con-
stants, D1 , . . . ,DN.
generalized form as
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g�x�t�
z����� =
1

�4��
0

t

D�z����d�

�exp−
x2

4�
0

t

D�z����d�� �2.3�

from which we can immediately infer that �x�t��=0.
The Gaussian form of the propagator implies that the

mean-squared displacement in the lateral direction is

�x2�t�
z����� = 2�
0

t

D�z����d� . �2.4�

Averaging this expression over all possible trajectories of the
particle that start from z�0�=z0 we obtain

��x2�t�z0�� = 2�
0

t

�D�z�����d� , �2.5�

where the average �D�z�t��� is expressed in terms of the
propagator in the z direction, G�z , t �z0�, as

�D�z�t��� =� D�z�G�z,t�z0�dz . �2.6�

The propagator G�z , t �z0� is defined so that G�z , t �z0�dz is the
probability of finding the particle between z and z+dz at time
t conditional on the particle being initially at z=z0. The mo-
tion of the particle along the z coordinate may be described
using different languages, e.g., diffusion, random walk, etc.
Two examples of the z-coordinate motion are considered in
Secs. III and IV. Eventually, we find for the mean-squared
displacement in the x direction

��x2�t�z0�� = 2�
0

t � D�z�G�z,��z0�dzd� . �2.7�

Equation �2.7� is a general expression encompassing
both a continuous variation of the diffusion coefficient and
the discrete layer description when one assumes that D�z� is
piecewise constant as is the case in the representation of the
propagator in Eq. �2.1�. Let the jth layer be defined by the z
coordinates of its boundaries which we denote by
�zj,min ,zj,max�. The probability that the particle is in layer j at
time t can be expressed in terms of the propagator G�z , t �z0�
as

Pj�t�z0� = �
zj,min

zj,max

G�z,t�z0�dz �2.8�

so that, in the case of discrete layers, we can decompose Eq.
�2.7� into the sum

��x2�t�z0�� = 2�
j=1

N

Dj�
0

t

d��
zj,min

zj,max

G�z,��z0�dz

= 2�
j=1

N

Dj�
0

t

Pj���z0�d� . �2.9�
The time integral on the right-hand side of this equation is
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the average cumulative residence time spent by the particle
in layer j, similar to that in Ref. 5,

�̄ j�t�z0� = �
0

t

Pj���z0�d� , �2.10�

so that the expression for ��x2�t �z0�� is a direct and intu-
itively appealing generalization of the relation ��x2�t��
=2Dt as follows:

��x2�t�z0�� = 2�
j=1

N

Dj�̄ j�t�z0� . �2.11�

We now consider the time-dependent diffusion coeffi-
cient. There are two definitions of this function to be referred
to as Dglobal�t �z0� and Dlocal�t �z0�. Their definitions are

Dglobal�t�z0� =
1

2t
��x2�t�z0�� = �

j=1

N

DjP̄j�t�z0� , �2.12�

Dlocal�t�z0� =
1

2

d

dt
��x2�t�z0�� = �

j=1

N

DjPj�t�z0� , �2.13�

where P̄j�t �z0� is the average probability of finding the par-
ticle in layer j,

P̄j�t�z0� =
1

t
�

0

t

Pj���z0�d� =
�̄ j�t�z0�

t
. �2.14�

The two diffusion coefficients, Dglobal�t �z0� and Dlocal�t �z0�,
are related and equal to one another at both short and long
times, but differ at intermediate times. At short times both
are equal to the diffusion constant of the particle in the layer
in which the particle is found initially. At long times the
probabilities Pj�t �z0� tend to their equilibrium values, which
we write as Pj

eq. In consequence, the two diffusion coeffi-
cients approach the asymptotic value Deff given by

Deff = �
j=1

N

DjPj
eq. �2.15�

The two diffusion coefficients in Eqs. �2.12� and �2.13� are
related by

Dglobal�t�z0� =
1

t
�

0

t

Dlocal���z0�d� , �2.16�

from which the identity of their behaviors at short and long
times is immediately evident.

In the following two sections the formalism developed in
the present section will be applied to the problems raised in
Ref. 1 and 2, which are related to two-layer systems. The
present work generalizes some of the results given in those
papers.

III. LATERAL DIFFUSION IN TWO LAYERS
SEPARATED BY A MEMBRANE

In this section we analyze lateral diffusion in two layers
of thicknesses L1 and L2, respectively, separated by a mem-
brane of permeability � as shown in Fig. 2. We follow Ref. 1

in assuming that the initial coordinate z0 is uniformly distrib-
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uted over z in the second layer. Our analysis generalizes the
analysis of the lateral diffusion by Sen,1 who, among other
things, derived the short-time behavior of the lateral diffu-
sion coefficient.

In the two-layer system the expression for Dlocal�t �z0� in
Eq. �2.13� takes the form

Dlocal�t�z0� = D1P1�t�z0� + D2P2�t�z0�

= D1 + �D2 − D1�P2�t�z0� . �3.1�

We assume that the separating membrane is located at z=0
and that the particle is initially uniformly distributed in the
layer whose boundaries are z=−L2 and z=0. We will use the
notation

h̄�t� =
1

L2
�

−L2

0

h�t�z0�dz0 �3.2�

to denote the average of an arbitrary function h�t �z0� with
respect to z0. In terms of this notation we can express the
average of Eq. �3.1� as

D̄local�t� = D1 + �D2 − D1�P̄2�t� . �3.3�

Thus, the value of P̄2�t� determines D̄local�t�.
Let P12�t� be the probability that the particle is in layer 1

at time t given that it was at z=0 initially, that is, it was just
slightly below the interface in layer 2 at t=0. In addition, let
�FP�t �z0� be the probability density for the first-passage time
from z0 to the separating membrane at z=0. Using these two
functions we can write the probability P2�t �z0� as

P2�t�z0� = 1 − �
0

t

P12�t − ���FP���z0�d� . �3.4�

Since �̄FP�t� is the averaged value of �FP�t �z0�, it follows that
¯

FIG. 2. A schematic representation of a two-layer system. The layers are
assumed to be separated by an infinitely thin membrane of permeability �.
The initial z coordinate of the particle, z0, is uniformly distributed over z in
the lower layer of thickness L2.
P2�t� satisfies
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P̄2�t� = 1 − �
0

t

P12�t − ���̄FP���d� . �3.5�

The last equation is in convolution form, which suggests
dealing with it by means of Laplace transforms. Denote the

Laplace transform of an arbitrary function h�t� by ĥ�s�, so
that the Laplace transform of Eq. �3.5� is

P̄
ˆ

2�s� =
1

s
− P̂12�s��̂̄FP�s� . �3.6�

The Laplace transform �̂̄FP�s� is derived in Appendix A and
found to be

�̂̄FP�s� = f�L2
2s

D2
� , �3.7�

where the function f��� is

f��� =
tanh����

��
. �3.8�

The function P12�t� can be found in terms of the solution
to the two-state non-Markovian model described by the ki-
netic scheme

1 �
�2�t�

�1�t�

2, �3.9�

where �1�t� and �2�t� are probability densities for individual
sojourn times in layers 1 and 2, respectively, for the particle
entering the corresponding layer. The required Laplace trans-
forms are derived in Appendix B, where they are shown to

be

where the equilibrium probability P2 is found to be
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�̂i�s� =
1

1 + st̄if�Li
2s/Di�

, i = 1,2, �3.10�

where the t̄i=Li /� are the mean sojourn times in each of the
layers. A knowledge of the two Laplace transforms is re-
quired for a derivation of the Laplace transform of P12�t�.

The function P12�t� can be found either by enumerating
all trajectories or else by solving an integral equation satis-
fied by this function. In the second case we observe that the
probability that a sojourn in layer 1 lasts for a time greater
than t is

	1�t� = �
t




�1���d� , �3.11�

whose Laplace transform is 	̂1�s�= �1− �̂1�s�� /s. There are
two possible scenarios in which the particle can be found in
layer 1 at time t, having been just near the separating mem-
brane in layer 2 at t=0. Either the particle enters layer 1 at
time � and remains there through the time t−� or else it
remains in layer 1 for some shorter time before reentering
layer 2, so that the process begins over again. This is de-
scribed by the integral equation

P12�t� = �
0

t �	1�t − �� + �
0

t−�

P12�t − � − ����1����d��	
��2���d� , �3.12�

which can be solved in the Laplace transform domain. That
solution is found to be

P̂12�s� =
�1 − �̂1�s���̂2�s�
s�1 − �̂1�s��̂2�s��

. �3.13�

On substituting the expressions in Eq. �3.10� for the �̂i�s�

into this relation we find
P̂12�s� =
t̄1f�L1

2s/D1�

s�t̄1f�L1
2s/D1� + t̄2f�L2

2s/D2� + st̄1t̄2f�L1
2s/D1�f�L2

2s/D2��
. �3.14�

Since �̂̄FP�s� is known from Eq. �3.7� and P̂12�s� from Eq. �3.14�, the function P̄
ˆ

2�s� can be found from their combination
in Eq. �3.6� as follows:

P̄
ˆ

2�s� =
1

s
�1 −

t̄1f�L1
2s/D1�f�L2

2s/D2�

t̄1f�L1
2s/D1� + t̄2f�L2

2s/D2� + st̄1t̄2f�L1
2s/D1�f�L2

2s/D2�
	 . �3.15�
This enables us to find both the long- and short-time behav-
iors of the probability of interest by passing to the limits s
→0 or s→
, respectively. In the first case we find

P̄
ˆ

2�s� � P2
eq/s, s → 0, �3.16�

eq
P2
eq =

t̄2

t̄1 + t̄2

=
L1

L1 + L2
. �3.17�

¯
Hence it follows that Dlocal�t�→Deff as t→
, where
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Deff =
D1L1 + D2L2

L1 + L2
. �3.18�

Similarly, the large-s behavior of P̄
ˆ

2�s� determines the short-

time behavior of P̄2�t�. Since

P̄
ˆ

2�s� �
1

s
�1 −

�

L2s
�, s → 
 �3.19�

the short-time expression for this probability is

P̄2�t� � 1 −
�t

L2
, t → 0 �3.20�

and therefore

D̄local�t� � D2 + �D1 − D2�
�t

L2
, t → 0, �3.21�

which is the result derived by Sen.1

Equation �3.18� and �3.21� give long- and short-time be-

haviors of the diffusion coefficient. To find D̄ �t� over the
local

upper boundary of the medium layer is chosen to be a re-
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entire range of time one has to use Eq. �3.3� with P̄2�t� as

found by numerically inverting the transform P̄
ˆ

2�s� in Eq.

�3.15�. Furthermore, D̄global�t� can be found from the relation

in Eq. �2.16�. The short-time behavior of D̄global�t� can be

obtained using Eq. �2.16� with the approximation to D̄local�t�
shown in Eq. �3.21�. This leads to

D̄global�t� � D2 + �D1 − D2�
�t

2L2
, t → 0. �3.22�

On comparing the expressions in Eqs. �3.21� and �3.22� one
can see the difference between the two diffusion coefficients
at short times.

To conclude this section we consider the case in which
there is no membrane separating the two layers, correspond-
ing to the limit �→
. The expression for Deff given in Eq.
�3.18� is independent of �, while the short-time behavior in
Eq. �3.20� cannot be correct in the limit �→
. However, if

one passes to that limit in Eq. �3.15� one finds that P̄
ˆ

2�s�
takes the form
P̄
ˆ

2�s� =
1

s�1 −
�D1D2 tanh �L1

2s/D1 tanh �L2
2s/D2

L2
�s��D1 tanh �L1

2s/D1 + �D2 tanh �L2
2s/D2�

	 . �3.23�
At large s this can be approximated by

P̄
ˆ

2�s� �
1

s
�1 −

�D1D2

�sL2��D1 + �D2�
	, s → 
 . �3.24�

From this we infer the short-time limiting behavior

P̄2�t� � 1 −
2�D1D2t

��L2��D1 + �D2�
, t → 0, �3.25�

which means that

D̄local�t� � D2 +
2��D1 − �D2�

��L2

�D1D2t, t → 0. �3.26�

This implies that in the short-time limit D̄local�t�−D2 is pro-
portional to t when there is a separating membrane between
the two layers and to t1/2 in the absence of a membrane.

IV. ALTERNATING SURFACE AND BULK DIFFUSIONS
OF A LIGAND

In this section we generalize the analysis of lateral dif-
fusion of a ligand as originally studied by Lieto et al.2 That
model consists of a ligand which can diffuse either on a
planar surface or in an infinite medium above the surface.
Our formalism will be applied to a situation in which the
infinite medium is replaced by a finite medium of arbitrary
thickness, L. Figure 3 illustrates the resulting system. The
flecting boundary for the diffusing ligands. We will assume,
in agreement with the analysis in Ref. 2, that the ligand is
initially on the surface which contains a concentration B of
binding sites. Ligand-site association and dissociation of the
ligand-site complexes will be described by the rate constants
ka and kd, respectively. Ligand diffusion constants on the
surface and in the bulk will be denoted by D1 and D2, re-
spectively. The corresponding notations in Ref. 2 are DA and
DC.

The diffusion coefficient Dlocal�t� is again given by the

expression in Eq. �3.3�, where the Laplace transform of P̄2�t�
is that given in Eq. �3.6�. However, because the two-layer
system studied in the previous section now is a single-layer

system, we can set �̂̄FP�s�=1 in Eq. �3.6� and replacing P̄
ˆ

2�s�
by P̂2�s� we can write

FIG. 3. A schematic representation of a bulk medium layer of thickness L
above a surface which reversibly binds ligands with an effective bimolecular

trapping rate �a and a unimolecular dissociation rate kd.
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P̂2�s� =
1

s
− P̂12�s� . �4.1�

The transform P̂12�s� is that given in Eq. �3.13�, where the
value of �̂1�s� is to be taken from Eq. �3.10� with �=�a

=kaB, which is the effective trapping rate of the ligand by the
surface with binding sites. Furthermore, by the assumption
of first-order kinetics for dissociation, �2�t�=kd exp�−kdt�,
the transform �̂2�s� is

�̂2�s� =
kd

kd + s
. �4.2�

Substituting the results just mentioned into the expression for

P̂2�s� in Eq. �4.1� we find

P̂2�s� =
1 + st̄1f�L2s/D1�

s�1 + �s + kd�t̄1f�L2s/D1��

=
1 + ��D1s/�a�tanh��L2s/D1�

s�1 + ��s + kd�/�a��D1/s tanh��L2s/D1��
, �4.3�

where t̄1=L /�a and we have used the formula for f��� given
in Eq. �3.8�.

While Eq. �4.3� cannot be inverted in any simple closed
form, approximations can be found in different limiting
cases. The equilibrium value P2

eq is found by expanding Eq.
�4.3� around s=0 and retaining the term proportional to s−1.
In this way it is found that

P2
eq =

1

1 + kdt̄1

=
ka

ka + kdL
=

B

B + KdL
, �4.4�

where we have introduced the equilibrium dissociation con-
stant Kd=kd /ka. The two diffusion coefficients, Dlocal�t� and
Dglobal�t�, vary from the same initial value, D2, to the
asymptotic value Deff, which is

Deff =
D1KdL + D2B

KdL + B
. �4.5�

As L→
, Peq→0 as seen from Eq. �4.4� and Deff→D1 as
seen from the previous equation.

The Laplace transform in Eq. �4.3� can be inverted in the
two limits, L→0 and L→
. The first of these limits is de-
fined more precisely by the requirement that the characteris-
tic intralayer relaxation time, L2 /D1, is much smaller than
the characteristic association time, t̄1=L /�a. When this con-
dition holds we can approximate f�L2s /D1� by 1 that leads to

P̂2�s� =
1 + st̄1

s�1 + �kd + s�t̄1�
. �4.6�

The corresponding approximation to P2�t� is then found to be

P2�t� = P2
eq + P1

eq exp�− �1 + kdt̄1�
t

t̄1
	 , �4.7�

where P2
eq and P1

eq=1− P2
eq are the equilibrium probabilities

of finding the ligand on the surface and in the layer, respec-
tively. If we substitute this approximation into the result for

Dlocal�t� in Eq. �3.1� we find
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Dlocal�t� = Deff + �D2 − D1�P1
eq exp�− �1 + kdt̄1�

t

t̄1
	

= Deff + �D2 − Deff�exp�− �1 + kdt̄1�
t

t̄1
	 . �4.8�

On making use of the relation between Dglobal�t� and Dlocal�t�
in Eq. �2.16� we also obtain

Dglobal�t� = Deff + �D2 − Deff�

�
t̄1
1 − exp�− �1 + kdt̄1��t/t̄1���

�1 + kdt̄1�t
. �4.9�

Another limit in which the transform in Eq. �4.3� can be
inverted in closed form is L→
, the semi-infinite space ana-
lyzed in Ref. 2. In this limit Eq. �4.3� reduces to the form

P̂2�s� =
��a/�D1� + �s

�s�s + �a
�s/D1 + kd�

. �4.10�

This transform can be inverted by means of relations from
Ref. 6. Using the relation between Dlocal�t� and P2�t� given in
Eq. �3.3� one finds Dlocal�t� which we write in terms of the
notation introduced in Ref. 2. The result for Dlocal�t� can be
written in terms of the function w�i�� defined as

w�i�� = exp��2�erfc��� , �4.11�

where erfc��� is the complementary error function.6 The ex-
pression is

Dlocal�t� = D1 +
D2 − D1

b1 − b2
��b + b1�w�− ib1

�kdt�

− �b + b2�w�− ib2
�kdt�� , �4.12�

where the dimensionless parameters b, b1, and b2 are defined
by

b =
�a

�D1kd

=
B

Kd

� kd

D1
, b1,2 =

1

2
�− b ± �b2 − 4� . �4.13�

By invoking the relation between Dglobal�t� and Dlocal�t� given

in Eq. �2.16� we find
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Dglobal�t� = D1 +
�D2 − D1�

kdt
�2b�kdt

�
− b2 + 1

+
1

�b1 − b2�
���b2 − 1�b2 + b�w�− ib1

�kdt�

− ��b2 − 1�b1 + b�w�− ib2
�kdt��� , �4.14�

which is the result for the time-dependent diffusion coeffi-
cient derived by Lieto et al.2 The values of both Dlocal�t� and
Dglobal�t� given in Eqs. �4.12� and �4.14� vary with time from
D2 to D1 as t varies from 0 to 
.

Our results derived to this point allow us to examine the
transient behavior of the diffusion coefficients in the two
limiting cases based on the layer thickness. Equations �4.8�
and �4.9� represent these diffusion coefficients in the thin
layer regime, i.e., L�D1 /�a, while Eqs. �4.12� and �4.14�
give the solutions for Dlocal�t� and Dglobal�t� in the infinite
thickness limit. Intermediate values of L can only be dealt

with by numerically inverting the Laplace transform of P̂2�s�
given in Eq. �4.3�. After that Dlocal�t� can be found by means
of Eq. �3.1� and then used in Eq. �2.16� to obtain the remain-
ing function Dglobal�t�.

Our final comment relates to the equality �a=kaB. When
analyzing ligand binding to the sites on the surface one has
to deal with an unsolvable diffusion problem. The point is
that the boundary conditions on the surface are nonuniform:
partially absorbing on the sites and reflecting on the rest of
the surface. Moreover, the sites are randomly distributed
over the surface. There is an approximation that allows one
to overcome the difficulty. The trick, called boundary ho-
mogenization, is based on the replacement of the nonuniform
boundary condition on the surface by a uniform radiation
boundary condition in which the effective trapping rate is
equal to �a. This converts the original unsolvable diffusion
problem to a solvable one. Boundary homogenization of sur-
faces randomly covered by absorbing disks has been recently
discussed in Ref. 7. As shown in that reference the relation
�a=kaB is a special limiting case of a general formula for �a.
The relation is applicable in the limit when B→0.

V. GENERALIZATIONS

The results obtained in previous sections can also be
derived by other methods. Our formalism demonstrates the
relation between lateral diffusion and the cumulative resi-
dence times spent by the diffusing particle in different layers.
To further illustrate this point we now derive an expression
for the Fourier-Laplace transform of the lateral propagator
for the problem considered in the previous section. We give
the propagator in terms of Laplace transforms of the prob-
ability densities for particle lifetimes in the bulk and on the
surface. The derived expression is then used to find the
effective-medium approximation for the propagator. Finally,
we discuss further generalizations of the formalism.

To initiate our analysis consider particle trajectories that

are initially at x0=0 on the surface and spend a time � out of

Downloaded 18 Sep 2007 to 128.231.88.7. Redistribution subject to 
the total observation time t in the bulk layer. The lateral
propagator based on these trajectories is a special case of the
propagator in Eq. �2.1� and is explicitly

g�x��,t − ��2� =
exp
− x2/4�D1� + D2�t − ����

�4��D1� + D2�t − ���
. �5.1�

The complete lateral propagator is the average of g�x�� , t
−��2� taken over all trajectories that reach the point x at time
t.

It follows from Eq. �5.1� that the average taken with
respect to trajectories is equivalent to an average with respect
to the time spent in the bulk, �. To evaluate the average we
assume that D1D2 and define a probability density f���t�2�,
so that f���t�2�d� is the fraction of trajectories that are origi-
nally on the surface and spend a time between � and �+d�
out of the observation time t in the bulk. This function allows
us to write the propagator as

g�x,t�2� = �
0

t

g�x��,t − ��2�f���t�2�d� . �5.2�

Its Fourier transform with respect to x is given by

g�k,t�2� = �
−





g�x,t�2�eikxdx

= �
0

t

e−k2�D1�+D2�t−���f���t�2�d� . �5.3�

A function which will be needed for our further analysis is
the double Laplace transform of f���t�2� defined as

f̂�����2� = �
0




e−�tdt�
0

t

e−��f���t�2�d� . �5.4�

Having this transform allows us to write the Laplace trans-
form of g�k , t �2� as

ĝ�k,s�2� = �
0




e−stg�k,t�2�dt

= f̂�� = �D1 − D2�k2�� = s + D2k2�2� , �5.5�

where D1D2. This establishes a relation between the
Fourier-Laplace transform of the lateral propagator and the
double Laplace transform of the probability density of the
cumulative residence time in the bulk layer of the medium,
which is one of the main results of the paper.

Now we derive an expression for f̂�����2� in terms of the
Laplace transforms of the probability densities, �i�t�, i
=1,2, which describe the dynamics of the two-state system
shown in Eq. �3.9�. To do this we introduce the probability
density f���t�1� for the time spent in the bulk by a particle
that escapes from the surface at t=0 conditional on the ob-
servation time being equal to t. If we further define the sur-
vival probability in state i, which is the probability that the

duration of a single sojourn in state i lasts longer than t, i.e.,
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	i�t� = �
t




�i����d��, i = 1,2, �5.6�

we can then write a coupled pair of integral equations for
functions f���t�1� and f���t�2� as follows:

f���t�1� = 	1�t���t − �� + �
0

t

�1�t��f�� − t��t − t��2�dt�,

�5.7�

f���t�2� = 	2�t����� + �
0

t

�2�t��f���t − t��1�dt�.

These may be solved by means of the double Laplace trans-
form defined in Eq. �5.4�, which transforms the set of equa-
tions above to the following:
the form

Downloaded 18 Sep 2007 to 128.231.88.7. Redistribution subject to 
f̂�����1� = 	̂1�� + �� + �̂1�� + �� f̂�����2� ,

�5.8�
f̂�����2� = 	̂2��� + �̂2��� f̂�����1� .

Since the Laplace transform of 	i�t� is

L
	i�t�� =
1 − �̂i�s�

s
, �5.9�

we can eliminate f̂�����1� and write the complete solution

for f̂�����2� as

f̂�����2� =
� + � − �̂2����� + ��̂1�� + ���
��� + ���1 − �̂2����̂1�� + ���

. �5.10�

This last equation can be used to find ĝ�k ,s �2� in Eq.
�5.5� in terms of Laplace transforms of the � �t� as follows:
i
ĝ�k,s�2� =
s + D1k2 − �̂2�s + D2k2���s + D2k2��̂1�s + D1k2� + �D1 − D2�k2�

�s + D1k2��s + D2k2��1 − �̂1�s + D1k2��̂2�s + D2k2��
. �5.11�
When the Fourier parameter k is set equal to zero,
ĝ�0,s �2�=1/s as required by the conservation of probability.
In the small-s and small-k regime we can introduce the ap-
proximation

�̂i�s + Dik
2� � 1 − t̄i�s + Dik

2� , �5.12�

where t̄1=L /�a as in Eq. �4.3� and t̄2 is the reciprocal of the
dissociation rate, t̄2=1/kd. This approximation is used to find
the effective-medium approximation for the propagator by
expanding Eq. �5.11� and retaining the lowest order terms in
s and k2. In this way we find

ĝEM�k,s�2� =
1

s + Deffk
2 , �5.13�

where Deff is the effective diffusion constant given by

Deff =
D1t̄1 + D2t̄2

t̄1 + t̄2

, �5.14�

which is identical to Deff in Eq. �4.5�. Inverting the transform
in Eq. �5.13� we may write

gEM�x,t�2� =
1

�4�Deff

exp�−
x2

4Defft
� , �5.15�

which describes the lateral diffusion after many transitions
have been made between the bulk layer and the surface.

Finally, we give an explicit formula for the propagator
ĝ�k ,s �2� in the simplest case of a thin bulk layer. Here �1�t�
becomes a single exponential and its Laplace transform takes
�̂1�s� =
1

1 + st̄1

. �5.16�

Using this and the expression for �̂2�s� in Eq. �4.2� we can
find the double transform in Eq. �5.10� as follows:

f̂�����2� =
t̄1 + t̄2 + �� + ��t̄1t̄2

t̄1�� + �� + t̄2� + ��� + ��t̄1t̄2

. �5.17�

Inverting this transform �one can find some details of the
inversion in Ref. 8� we find, for the probability density,

f���t�2� = ����e−t/t̄2 +
1

t̄2
�I0�2���t − ��

t̄1t̄2
�

+��t − ��t̄2

�t̄1

I1�2���t − ��

t̄1t̄2
�	

�e−�/t̄1−�t−��/t̄2H�t − �� , �5.18�

where the In�y� are modified Bessel functions of the first
kind6 of order n and H�y� is the Heaviside step function.

Using �̂1�s� in Eq. �5.16� and �̂2�s� in Eq. �4.2� we can
write the propagator in Eq. �5.11� as

ĝ�k,s�2�

=
t̄1 + t̄2 + �s + D1k2�t̄1t̄2

�s + D1k2�t̄1 + �s + D2k2�t̄2 + �s + D1k2��s + D2k2�t̄1t̄2

.

�5.19�

This transform of the propagator can be used to find the

Laplace transform of the mean-squared displacement
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L
��x2�t��� = − � �2ĝ�k,s�2�
�k2 �

k=0

= 2
D1t̄1 + D2t̄2 + sD2t̄1t̄2

s2�t̄1 + t̄2 + st̄1t̄2�
. �5.20�

This yields for the Laplace transform of Dlocal�t�

D̂local�s� =
s

2
L
��x2�t��� =

D1t̄1 + D2t̄2 + sD2t̄1t̄2

s�t̄1 + t̄2 + st̄1t̄2�
. �5.21�

The inverse of this transform is just the value of Dlocal�t�
given in Eq. �4.8�.

The formalism just developed can be generalized to be
applied to particles which annihilate with the rates �1 and �2

in the bulk layer and on the surface, respectively. The propa-
gator in Eq. �5.1� then is changed to

g�x��,t − ��2�

=
exp
− 
x2/4�D1� + D2�t − ���� − �1� − �2�t − ���

�4��D1� + D2�t − ���
.

�5.22�

The Fourier transform of this propagator averaged over � is

g�k,t�2� = �
0

t

exp
− ��D1k2 + �1�� + �D2k2 + �2�

��t − ����f���t�2�d� . �5.23�

This has the same form as Eq. �5.3� provided that Di in that
formula is replaced by Di+�i /k2. The Fourier-Laplace trans-
form now replaces Eq. �5.5� by

ĝ�k,s�2� = f̂�� = �D1 − D2�k2 + �1 − �2�� = s + D2k2

+ �2�2� . �5.24�

The same replacement can be used to generalize the expres-
sion in Eq. �5.11�, which gives ĝ�k ,s �2� in terms of the
Laplace transforms of the probability densities �i�t�, i=1,2.
The generalized expression can be used to find the effective-
medium approximation for the propagator analogous to one
in Eq. �5.13�, inverting which we find

gEM�x,t�2� �
1

�4�Defft
exp�−

x2

4Defft
− �efft� , �5.25�

in which �eff= ��1t̄1+�2t̄2� / �t̄1+ t̄2� is the effective annihila-
tion rate.

The formalism in this section is easily modified so as to
be applicable to problems in photon migration, in which one
wants to estimate the width of one of the layers in a two
phase medium with different optical parameters. This forms
the basis of some applications of optical imaging.9

In summary, our analysis exploits the relation between
the lateral diffusion in a multilayer medium and the distribu-
tion of cumulative residence times spent by the diffusing
particle in different layers. Based on this relation we have
derived general expressions for the global and local time-
dependent lateral diffusion coefficients given in Eqs. �2.12�

and �2.13�. These expressions were then used to generalize
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results for the time-dependent lateral diffusion coefficient re-
cently obtained by Sen1 and Lieto et al.2 In addition, for the
problem considered in Ref. 2 we show that the Fourier-
Laplace transform of the lateral propagator can be expressed
in terms of the double Laplace transform of the probability
density of the residence time.
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APPENDIX A: DERIVATION OF THE LAPLACE
TRANSFORM IN EQUATION „3.7…

Consider a particle diffusing along the z axis on an in-
terval of length L. The interval is terminated by reflecting
and absorbing points located at z=L and z=0, respectively.
Let S�t �z0� be the probability that the particle has not been
absorbed by time t conditional on its being at z0 at t=0. The
probability density for the first-passage time to the absorbing
point is

�FP�t�z0� = −
�S�t�z0�

�t
. �A1�

The survival probability satisfies the backward diffusion
equation

�S�t�z0�
�t

= D
�2S�t�z0�

�z0
2 �A2�

subject to the initial condition S�0 �z0�=1 together with the
boundary conditions

S�t�0� = � �S�t�z0�
�z0

�
z0=L

= 0. �A3�

Solving the problem in the Laplace transform domain one

can find Ŝ�s �z0� and then the transform of �FP�t �z0�. This
leads to

�̂FP�s�z0� =
cosh��s/D�L − z0��

cosh��s/DL�
. �A4�

When this is averaged with respect to a uniform distribution
of z0 according to Eq. �3.2�, one finds the relation in Eq.
�3.7�.

APPENDIX B: DERIVATION OF f„z… IN EQUATION
„3.10…

We analyze a one-dimensional system similar to that in
Appendix A, except that now z=0 is a partially absorbing
point and z=L is fully reflecting. Green’s function of a par-
ticle that starts from the radiation boundary �z=0� at t=0,

G�z , t �0�, satisfies
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�G�z,t�0�
�t

= D
�2G�z,t�0�

�z2 �B1�

together with the initial condition G�z ,0 �0�=��z� and the
boundary conditions

� �G�z,t�0�
�z

�
z=L

= 0, � �G�z,t�0�
�z

�
z=0

=
�

D
G�0,t�0� .

�B2�

The probability density for a sojourn time on the interval,
��t�, is equal to the flux escaping through the partially ab-
sorbing point at t0 conditional on the particle entering the
interval through this point at t=0. That is to say

��t� = �G�0,t�0� . �B3�

The resulting equation for Green’s function in the Laplace
transform domain is again a simple second-order differential
equation, solving which one can eventually find the Laplace
transform of ��t� as follows:

�̂�s� = �1 +
�sD

�
tanh�L� s

D
�	−1

. �B4�

Moments of the sojourn time can be calculated directly from

this formula. The mean sojourn time is found to be
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t̄ = �
0




t��t�dt = − �d�̂�s�
�s

�
s=0

=
L

�
. �B5�

This allows us to write the expression for �̂�s� in the form

�̂�s� = �1 + st̄
tanh�L�s/D�

L�s/D
	−1

, �B6�

which is the formula in Eq. �3.10�.
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