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We analyze the relaxation of the particle number fluctuations in a membrane channel at arbitrary
particle-channel interaction and derive general expressions for the relaxation time and
low-frequency limit of the power spectral density. These expressions simplify significantly when the
channel is symmetric. For a square-well potential of mean force that occupies the entire channel, we
verify the accuracy of the analytical predictions by Brownian dynamics simulations. For such a
channel we show that as the depth of the well increases, the familiar scaling of the relaxation time
with the channel length squared is transformed into a linear dependence on the length. © 2008
American Institute of Physics. �DOI: 10.1063/1.2972981�

I. INTRODUCTION

When a neutral particle enters a wide ion channel the
current through the channel decreases since the particle par-
tially blocks it for ion conduction. A classical example is
blockage of the maltoporin channel by entering sugar
molecules.1 Such a blockage leads to a decrease in the aver-
age current through the channel. Concurrently, because the
number of particles in the channel fluctuates around its av-
erage value, this also leads to current fluctuations. Analyzing
current fluctuations one is able to study the dynamics of
particles in the channel.1–3

Current fluctuations are characterized by the power spec-
tral density S�f�, which is defined as the Fourier transform of
the autocorrelation function of the current fluctuations
��I�t��I�0��, where the angular brackets denote the averag-
ing over realizations,

S�f� = 4�
0

�

��I�t��I�0��cos�2�ft�dt . �1�

The present paper is focused on the power spectral density at
zero frequency S�0�. Our analysis is based on the diffusion
model of the particle dynamics in the channel introduced in
Ref. 4 and studied in detail both analytically and numerically
�see Ref. 5 and references therein�. Below we derive S�0�
under quite general assumptions about the particle-channel
interaction. Earlier we derived S�f� for the entire range of f
using a simplified version of the model in which the particle-
channel interaction was neglected and the channel was de-
scribed as a cylindrical tube.4 Later we generalized this result

by allowing the particle to be reversibly trapped by a binding
site.6 The expression for the spectral density derived in Ref.
6 shows how S�f� transforms from the case of no binding
studied in Ref. 4 to the Lorentzian form corresponding to the
strong-binding limit.7–9 Here we derive S�0� for a much more
general model of the particle intrachannel dynamics.

Our interest to this problem is motivated by experiments
with different macromolecular solutes, which have shown
that the current fluctuations due to fluctuations in the number
of solutes in wide channels, such as alpha-hemolysin, signifi-
cantly exceed the current fluctuations due to the electrolyte
shot noise.10 This opens an opportunity to study channel-
facilitated transport of metabolites and other macromolecules
through biological membranes by measuring current
fluctuations.1–3 One can use noise produced by water-soluble
polymers �poly�-ethylene glycol�s, PEGs, dextranes, etc.� to
study mechanisms of their transport through the channel,
their interactions with the channel-forming proteins, and in-
trachannel diffusion coefficients.10

The outline of this paper is as follows. In the next sec-
tion we briefly summarize a general formalism, which estab-
lishes a relation between S�0� and the relaxation time that
characterizes the decay of fluctuations of the number of par-
ticles in the channel. A general expression for this time is
derived in Sec. III on the basis of the diffusion model of the
particle intrachannel dynamics. In this section we also dem-
onstrate that the general expressions simplify significantly
when the channel is symmetric. In Sec. IV we discuss simple
illustrative examples and some tests of the accuracy of our
analytical predictions by Brownian dynamics simulations.
Some concluding remarks are made in the final section.a�Electronic mail: bezrukos@mail.nih.gov.
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II. GENERAL FORMALISM

Consider the electric current carried by electrolyte ions
through the channel in the absence of nonconducting par-
ticles, I0. We assume that the decrease in the current due to
the presence of the particles in the system is proportional to
the number of the particles in the channel. This assumption
holds true for wide channels and sufficiently low concentra-
tions of the particles. Denoting this number at time t by N�t�
we can write the instantaneous value of the current I�t� as

I�t� = I0�1 − �N�t�� , �2�

where � is a constant. Then the average value of the current,
�I�= �I�t��, is

�I� = I0�1 − �Neq� , �3�

where Neq= �N�t�� is the average number of the particles in
the channel, which can be found from the equilibrium distri-
bution. The current fluctuation, �I�t�= I�t�− �I�, is propor-
tional to the fluctuation of the number of particles in the
channel, �N�t�=N�t�−Neq,

�I�t� = − �I0�N�t� . �4�

From this it follows that S�0� is given by

S�0� = 4�
0

�

��I�t��I�0��dt = 4�2I0
2�

0

�

��N�t��N�0��dt .

�5�

Note that since S�0� is proportional to �2, the power spectral
density does not change even when � is negative so that the
current through the channel, Eq. �2�, increases due to the
particle entrance.

We define the conditional average of �N�t�, ��N�t��cond,
as the fluctuation of the number of particles in the channel at
time t on condition that the fluctuation at t=0 was �N�0� and
the particles were distributed in the channel according to the
Boltzmann law. Assuming that the particles inside the chan-
nel do not interact with each other we can write ��N�t��cond

in terms of the single-particle relaxation function R�t� as

��N�t��cond = �N�0�R�t� . �6�

Then we have

��N�t��N�0�� = NeqR�t� , �7�

where we have used the fact that the equilibrium distribution
of the number of noninteracting particles in the channel is
the Poisson one and, hence, ��N2�=Neq. Eventually we can
write S�0� in Eq. �5� as

S�0� = 4�2I0
2Neq�rel, �8�

where we have introduced the relaxation time �rel defined by

�rel = �
0

�

R�t�dt . �9�

In what follows we derive an expression for �rel in the frame-
work of the diffusion model of the particle dynamics in the
channel mentioned above.

III. RELAXATION TIME

The diffusion model describes particle motion in the
channel as one-dimensional diffusion along the channel axis
coinciding with the x-axis of the coordinate system. Diffu-
sion occurs in the potential of mean force U�x� with a
position-dependent diffusion coefficient Dch�x�, which are
assumed to be independent of the number of particles in the
channel. The particle propagator G�x , t �x0� satisfies the
Smoluchowski equation

�G

�t
=

�

�x
	Dch�x�peq�x�

�

�x
�peq

−1�x�G�
, xL � x � xR,

�10�

where xL and xR are positions of the left and right boundaries
of the channel and peq�x� is the intrachannel Boltzmann dis-
tribution,

peq�x� =
exp�− U�x�/�kBT��

�xL

xR exp�− U�y�/�kBT��dy
, xL � x � xR, �11�

with the standard notations, kB and T, for the Boltzmann
constant and absolute temperature. The propagator reduces to
the delta function at t=0, G�x ,0 �x0�=��x−x0�, xL�x0�xR,
and satisfies radiation boundary conditions at the channel
ends,

Dch�xL�peq�xL�� �

�x
peq

−1�x�G��
x=xL

= ��LG�x=xL
,

Dch�xR�peq�xR�� �

�x
peq

−1�x�G��
x=xR

= � − �RG�x=xR
, �12�

where the rate constants �L and �R are given in terms of the
channel radius rch�xL,R� and the particle diffusion coefficient
in the bulk, Db, by4

�L,R =
4Db

�rch�xL,R�
. �13�

The probability of the particle survival in the channel for
time t on condition that the particle starts from x0, S�t �x0�, is
given by

S�t�x0� = �
xL

xR

G�x,t�x0�dx . �14�

The relaxation function R�t� is the equilibrium average of
S�t �x0�,

R�t� = �
xL

xR

S�t�x0�peq�x0�dx0. �15�

Substituting this into Eq. �9� we find that the relaxation time
can be written as

�rel = ���x0��eq = �
xL

xR

��x0�peq�x0�dx0, �16�

where ��x0� is the average lifetime in the channel for a par-
ticle which starts from x0,
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��x0� = �
0

�

S�t�x0�dt . �17�

This time considered as a function of x0 satisfies the
adjoint Smoluchowski equation,11,12

d

dx0
�Dch�x0�peq�x0�

d��x0�
dx0

� = − peq�x0� , �18�

with the boundary conditions

Dch�xL��d��x0�
dx0

�
x=xL

= �L��xL� ,

Dch�xR��d��x0�
dx0

�
x=xR

= − �R��xR� . �19�

Solving this equation we find

��x0� =
1 + �LFL�x0� + �R�FR�x0� + �L�R�FLR�x0�

�L� + �R� + �L��R��xL

xR
dz

Dch�z�peq�z�

, �20�

where �L,R� =�L,Rpeq�xL,R� and functions FL�x0�, FR�x0�, and
FLR�x0� are given by

FL�x0� = �
xL

x0 dz

Dch�z�peq�z��z

xR

peq�y�dy , �21�

FR�x0� = �
x0

xR dz

Dch�z�peq�z��xL

z

peq�y�dy , �22�

and

FLR�x0� = ��
xL

x0 dz

Dch�z�peq�z��
	 ��

xL

xR dz

Dch�z�peq�z��xL

z

peq�y�dy�
− ��

xL

xR dz

Dch�z�peq�z��
	 ��

xL

x0 dz

Dch�z�peq�z��xL

z

peq�y�dy� . �23�

As Dch�x�→� �fast intrachannel equilibration� ��x0� be-
comes independent of x0 and is given by

��x0� =
1

�L� + �R�
. �24�

In the opposite limit of very slow intrachannel diffusion,
which is equivalent to the limit when �L ,�R→�, ��x0� in Eq.
�20� reduces to the mean first passage time from x0 to the
channel ends, �FP�x0�,

�FP�x0� =
FLR�x0�

�xL

xR
dz

Dch�z�peq�z�

. �25�

Averaging ��x0� in Eq. �20� according to Eq. �16� we
arrive at

�rel = ���x0��eq =
1 + �L�GL + �R�GR + �L��R�GLR�x0�

�L� + �R� + �L��R��xL

xR
dz

Dch�z�peq�z�

, �26�

where

GL = �
xL

xR dz

Dch�z�peq�z���z

xR

peq�y�dy�2

, �27�

GR = �
xL

xR dz

Dch�z�peq�z���xL

z

peq�y�dy�2

, �28�

and

GLR = ��
xL

xR dz

Dch�z�peq�z��z

xR

peq�y�dy�
	 ��

xL

xR dz

Dch�z�peq�z��xL

z

peq�y�dy�
− ��

xL

xR dz

Dch�z�peq�z��
	 	�

xL

xR dz

Dch�z�peq�z���z

xR

peq�y�dy�
	��

xL

z

peq�y�dy�
 . �29�

The expression in Eq. �26�, which gives the relaxation time
at arbitrary particle-channel interaction, is one of the main
results of this paper. Substituting this relaxation time into Eq.
�8� one obtains a general expression for the power spectral
density of fluctuations of the ion current through the channel
at zero frequency, S�0�.

The expression for ��x0�, Eqs. �20�–�23�, significantly
simplifies for a symmetric �sym� channel, i.e., when �L=�R

=� and both U�x� and Dch�x� are symmetric functions of x
about the center of the channel located at x=xc= �xL+xR� /2.
In this case �sym�x0� is given by

�sym�x0� = �FP
�sym��x0� +

1

2��
, �30�

where ��=�peq�xL�=�peq�xR� and �FP
�sym��x0� is the mean first

passage time for the symmetric channel given by

�FP
�sym��x0� = �FP

�sym��xc� − �
xc

x0 dz

Dch�z�peq�z��xc

z

peq�y�dy ,

�31�

with

�FP
�sym��xc� = �

xc

xR,L dz

Dch�z�peq�z��xc

z

peq�y�dy . �32�

Equation �30� shows that �sym�x0� is simply a sum of two
times which correspond to the limits of very fast and very
slow intrachannel equilibration. This is a unique property of
symmetric channel, which does not work in the general case,
Eq. �20�.
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As follows from Eq. �30� the relaxation time for a sym-
metric channel, �rel

�sym�, is given by

�rel
�sym� = ��FP

�sym��x0��eq +
1

2��
, �33�

where ��FP
�sym��x0��eq is the equilibrium average of �FP

�sym��x0�,

��FP
�sym��x0��eq = �

xL

xR

�FP
�sym��x0�peq�x0�dx0

= �
xL

xR dz

Dch�z�peq�z���xc

z

peq�y�dy�2

. �34�

One can see that the expressions giving the relaxation time
for a symmetric channel, Eqs. �33� and �34�, are much sim-
pler than their counterparts in the general case, Eqs.
�26�–�29�. The result in Eq. �33� was reported earlier in Ref.
4 without a derivation.

IV. ILLUSTRATIVE EXAMPLES

To illustrate general expressions derived in the last sec-
tion, consider a symmetric cylindrical channel of radius rch

and length L in the case when intrachannel potential is a
square well of depth �U that occupies the entire channel
�Fig. 1�. For such a channel

�� =
4Db

�rchL
exp�−

�U

kBT
� . �35�

Assuming that Dch�x� is a constant, Dch�x�=Dch, we use Eq.
�34� to find that ��FP

�sym��x0��eq=L2 / �12Dch�. As a result, the
relaxation time in Eq. �33� takes the form

�rel
�sym� =

L2

12Dch
+

�rchL

8Db
exp��U

kBT
� . �36�

One can see that in the absence of the particle attraction to
the channel, �U=0, the relaxation time for a long channel,
L
rch, is close to the averaged mean first passage time to
the channel ends �the first term on the right-hand side of Eq.
�36��. In the opposite limit, �U
kBT ln�DbL /Dchrch�, the
rate limiting step is the particle escape from the deep poten-

tial well. In this case �rel is close to the second term on the
right-hand side of Eq. �36�.

To check the validity of the analytical results derived in
the framework of the approximate one-dimensional descrip-
tion of the particle intrachannel dynamics, we ran three-
dimensional Brownian dynamics simulations in the geometry
shown in Fig. 1. In our simulations two cubic reservoirs of
the side length of 200 were connected by a cylindrical chan-
nel of radius rch=5.5 and lengths L=25, 50, and 100. The
dimensionless well depth �U / �kBT� of the attractive square-
well potential that occupied the entire channel was taken to
be equal to �U / �kBT�=0, 1, 2, 3, and 4. The particles were
allowed to diffuse freely with the same diffusion coefficient
in the reservoirs and in the channel, Db=Dch=0.125. The
time step was equal to unity. When a trajectory step inter-
sected either of the channel openings from inside, the par-
ticle was randomly allowed to exit the channel with probabil-
ity exp�−�U / �kBT��. With probability 1−exp�−�U / �kBT��
the particle position was left unchanged.

In our numerical experiments all particles, N=1000,
were uniformly distributed in the channel at t=0 while the
reservoirs were empty. In the course of the simulations we
monitored the number of the particles in the channel, N�t�, as
a function of time. Typical curves are shown in Fig. 2. The
curves describe the decay of N�0�=1000 to its equilibrium
value. More precisely, as t→� the curves describe equilib-
rium fluctuations of N�t� around their equilibrium values.
The relaxation curves, examples of which are shown in Fig.
2, were then averaged over five independent simulation runs.
The resulting averaged relaxation curves were used to find
�rel as the area under the curve, Eq. �9�. We compare theo-
retical predictions for �rel to the numerical results in Fig. 3.
One can see an excellent agreement between the two.

Independently we use Brownian dynamics simulations to

FIG. 1. �A� Cylindrical channel connecting two reservoirs. �B� The profile
of the potential of mean force used in Brownian dynamics simulations.

FIG. 2. Relaxation of the particle number in the channel obtained in Brown-
ian dynamics simulations for a channel with L=50 and rch=5.5. The channel
connects two cubic reservoirs of side length of 200. The total number of
particles in the system is 1000. Initially all the particles are uniformly dis-
tributed in the channel. The tracks correspond to the increasing well depths
�U of the square-well potential of mean force �Fig. 1�b��, �U / �kBT�=0, 1,
2, 3, and 4 from left to right, correspondingly. The inset shows a fragment of
the track corresponding to stationary equilibrium fluctuations in the number
of particles at �U / �kBT�=4.
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compute the power spectral density of the equilibrium fluc-
tuations of the number of particles in the channel at zero
frequency, S�N�0�,

S�N�0� = 4�
0

�

��N�t��N�0��dt . �37�

This quantity is related to the relaxation time by the relation-
ship

S�N�0� = 4Neq�rel �38�

as follows from Eq. �8� with �= I0=1. In Fig. 3 we use
circles to show �rel found as the ratio S�N�0� / �4Neq�. One can
see a very good agreement between �rel found by the two
different methods.

When particles entering the channel are polymers, the
decrease in the channel conductance produced by one “par-
ticle” is proportional to the polymer chain length Np,13 i.e., �
in Eq. �2� is proportional to Np. Moreover, both the average
number of the polymers in the channel and the relaxation
time are functions of Np, Neq=Neq�Np� and �rel=�rel�Np�.
Thus, in this case the spectral density in Eq. �8� is also a
function of Np having the form, S�0��Np

2Neq�Np��rel�Np�.
The dependence Neq�Np� approaches zero for sufficiently
large Np as polymers with large Np do not enter the channel.
As a consequence, the product Np

2Neq�Np� is a bell-shaped
function of Np. This leads to a bell-shaped dependence of the
experimentally observed spectral density S�0�,10 in which the
shape and position of the maximum may be significantly
modified by the Np-dependence of the relaxation time.

V. CONCLUDING REMARKS

In the present study we have extended our previous work
on fluctuations in the number of particles in a cylindrical
channel to the case of arbitrary interactions between the par-
ticles and the channel. Although the corresponding power
spectral densities are rather complex and differ from
simple Lorentzian spectra, the low-frequency asymptote
S�0�—sometimes the only part of the spectrum available in
experiment—can be calculated using the potential of mean

force of the particle and its intrachannel diffusion coefficient.
Time-dependent behavior of the fluctuations characterized by
S�0� can be linked to the relaxation: as shown in Eq. �8�, S�0�
is proportional to the relaxation time �rel defined in Eq. �9�.
In the case of a square-well potential occupying the entire
channel, the expression for �rel has a simple form, Eq. �36�,
which shows that as the depth of the potential well increases,
the dependence of the relaxation time on the channel length
undergoes transition from the usual quadratic dependence to
the linear one. We hope that these analytical results will be
useful in interpreting experiments on channel-facilitated par-
ticle transport through biological membranes as well as for
understanding noise phenomena in synthetic nanopores and
nanofluidic devices.14–17

ACKNOWLEDGMENTS

This study was supported by the Intramural Research
Program of the NIH, Center for Information Technology and
Eunice Kennedy Shriver National Institute of Child Health
and Human Development. M.A.P. also thanks Russian Foun-
dation for Basic Research �Project No. 08-02-00314a� and
the State Programs “Quantum Macrophysics,” “Strongly
Correlated Electrons in Metals, Superconductors, Semicon-
ductors and Magnetic Materials,” and “Neutron Studies of
Matter” for partial support.

1 S. Nekolla, C. Andersen, and R. Benz, Biophys. J. 66, 1388 �1994�; C.
Andersen, M. Jordy, and R. Benz, J. Gen. Physiol. 105, 385 �1995�; C.
Andersen, R. Cseh, K. Schulein, and R. Benz, J. Membr. Biol. 164, 263
�1998�.

2 P. Van Gelder, F. Dumas, and M. Winterhalter, Biophys. Chem. 85, 153
�2000�; P. Van Gelder, F. Dumas, I. Bartoldus, N. Saint, A. Prilipov, M.
Winterhalter, Y. F. Wang, A. Philippsen, J. P. Rosenbusch, and T.
Schirmer, J. Bacteriol. 184, 1994 �2002�.

3 S. M. Bezrukov and I. Vodyanoy, Biophys. J. 64, 16 �1993�; S. M.
Bezrukov, I. Vodyanoy, and V. A. Parsegian, Nature �London� 370, 279
�1994�; S. M. Bezrukov, O. V. Krasilnikov, L. N. Yuldasheva, A. M.
Berezhkovskii, and C. G. Rodrigues, Biophys. J. 87, 3162 �2004�; P. A.
Gurnev, A. B. Oppenheim, M. Winterhalter, and S. M. Bezrukov, J. Mol.
Biol. 359, 1447 �2006�.

4 S. M. Bezrukov, A. M. Berezhkovskii, M. A. Pustovoit, and A. Szabo, J.
Chem. Phys. 113, 8206 �2000�.

5 S. M. Bezrukov, A. M. Berezhkovskii, and A. Szabo, J. Chem. Phys.
127, 115101 �2007�; A. M. Berezhkovskii and S. M. Bezrukov, Phys.
Rev. Lett. 100, 038104 �2008�.

6 A. M. Berezhkovskii, M. Pustovoit, and S. M. Bezrukov, J. Chem. Phys.
116, 6216 �2002�.

7 L. J. DeFelice, Introduction to Membrane Noise �Plenum, New York,
1981�.

8 F. Conti and E. Wanke, Q. Rev. Biophys. 8, 451 �1975�.
9 E. Neher and C. F. Stevens, Annu. Rev. Biophys. Bioeng. 6, 345 �1977�.

10 S. M. Bezrukov, I. Vodyanoy, R. A. Brutyan, and J. J. Kasianowicz,
Macromolecules 29, 8517 �1996�; S. M. Bezrukov, Fluct. Noise Lett. 4,
L23 �2004�.

11 A. Szabo, K. Schulten, and Z. Schulten, J. Chem. Phys. 72, 4350 �1980�.
12 S. Redner, A Guide to First-Passage Processes �Cambridge University

Press, Cambridge, 2001�.
13 O. V. Krasilnikov, C. G. Rodrigues, and S. M. Bezrukov, Phys. Rev. Lett.

97, 018301 �2006�.
14 G. Feher and M. Weissman, Proc. Natl. Acad. Sci. U.S.A. 70, 870

�1973�.
15 Z. Siwy and A. Fulinski, Phys. Rev. Lett. 89, 158101 �2002�.
16 I. D. Kosinska and A. Fulinski, Europhys. Lett. 81, 50006 �2008�.
17 R. M. M. Smeets, U. F. Keyser, N. H. Dekker, and C. Dekker, Proc. Natl.

Acad. Sci. U.S.A. 105, 417 �2008�.

FIG. 3. Relaxation time �rel found numerically by two methods as the area
under the relaxation curves �squares� and from the power spectral density
S�N�0� as the ratio S�N�0� / �4Neq� �circles�. The solid curves are �rel predicted
by Eq. �36� with Db=Dch=0.125 and rch=5.5.

095101-5 Particles in a membrane channel J. Chem. Phys. 129, 095101 �2008�

Downloaded 02 Sep 2008 to 128.231.88.6. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1085/jgp.105.3.385
http://dx.doi.org/10.1007/s002329900411
http://dx.doi.org/10.1016/S0301-4622(99)00153-2
http://dx.doi.org/10.1038/370279a0
http://dx.doi.org/10.1063/1.1314862
http://dx.doi.org/10.1063/1.1314862
http://dx.doi.org/10.1063/1.2766720
http://dx.doi.org/10.1103/PhysRevLett.100.038104
http://dx.doi.org/10.1103/PhysRevLett.100.038104
http://dx.doi.org/10.1063/1.1458935
http://dx.doi.org/10.1146/annurev.bb.06.060177.002021
http://dx.doi.org/10.1021/ma960841j
http://dx.doi.org/10.1063/1.439715
http://dx.doi.org/10.1103/PhysRevLett.97.018301
http://dx.doi.org/10.1073/pnas.70.3.870
http://dx.doi.org/10.1103/PhysRevLett.89.158101
http://dx.doi.org/10.1209/0295-5075/81/50006

