A Data-Parallel Algorithm for Iterative Tomographic Image Reconstruction *

Calvin A. Johnson Ariela Sofer
Center for Information Technology Operations Research and Engineering Department
National Institutes of Health George Mason University
Bethesda, MD 20892-5624 Fairfax, VA 22030-4444
johnson@mail.nih.gov asofer@gmu.edu
Abstract Reconstruction from projections is amverse problem

where the goal is to invert the forward procésS§} from

In the tomographic imaging problem, images are recon- which the projections were generated in continuously de-
structed from a set of measurpcbjections Iterative recon- fined space [7]. Defining the set of measurements to be the
struction methods are computationally intensive alternatives vectory € R with elementsy;, j = 1,..., N and the
to the more traditional Fourier-based methods. Despite their image solution estimate to be the vectore ™ with el-
high cost, the popularity of these methods is increasing be-ementsz;,« = 1,...,n, the inverse problem attempts to
cause of the advantages they pose. Although numerous itsolvez = T~!{y} in finite-parameter space. Due to imper-
erative methods have been proposed over the years, all ofections in the datg or in the discrete-space model of the
these methods can be shown to have a similar computaforward procesg’{}, the tomographic imaging problem is
tional structure. This paper presents a parallel algorithm ill posed and generally requires regularity conditions on the
that we originally developed for performing the expectation solution estimate of the image in order to obtain useful im-
maximization algorithm in emission tomography. This al- ages[7]. The size of the image and measurement vectors can
gorithm is capable of exploiting the sparsity and symmetries be quite large (especially when working in 3-D), and conse-
of the model in a computationally efficient manner. Our quently the reconstruction problem can be computationally
parallelization scheme is based upon decomposition of theintensive.
measurement-space vectors. We demonstrate that such a The classical approach to the tomographic image re-

parallelization scheme is applicable to the vast majority of construction problem is thitered backprojectiomethod,
iterative reconstruction algorithms proposed to date. which is based on direct Fourier inversion. While filtered
backprojection is relatively fast, it suffers from a number of
limitations. It assumes that the measurements are samples
1. Introduction qf a Radon transform_anql thus ignores the (usue_llly) stoghas-
tic nature of the projection data and the spatially-variant
o measurement uncertainty of the instrument. Scans collected
Tomographic images are reconstructed from measured,er an incomplete range of projection angles do not satisfy
projectionscollected from the scanning instrument. These necessary sampling requirements for Fourier-based methods
projections are essentially a finite set of blurred and noisy g must be reconstructed using iterative techniques. De-
line integrals through the object of interest [11]. Applica- gpite the limitations of Fourier-based reconstruction meth-
tions of the tomographic image reconstruction problem are ods, they remain the predominant mode of image reconstruc-

quite numerous and include x-ray computed tomography tjon in most tomographic applications, largely due to the high
(CT), ultrasound computed tomography, emission tomog- computational cost of the alternatiiterative methods.
raphy (positron emission tomography or PET and single

photon emission computed tomography or SPECT), elec-
tron microscopy, geophysical imaging, diffraction-limited
optics, and radio astronomy [18, 27]. Closely related ap-
plications exist in other fields, e.g. the inverse radiotherapy
planning problem [29].

A major advantage of iterative reconstruction methods is
that they can model the response function of the scanning
instrument via ssystem matrbdC' = [C; ;] € RN, An
accurate model of the spatially variant response function en-
ables iterative reconstruction methods to recover resolution
that had been lost in the projections due to measurement un-
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operationz = C7T#6, whered is the current estimate af. where Z is the vector of expected emission counts, i.e.,
A certain class of the iterative methods attempt to solve & = E {x}. A more realistic model of the measurement
the (generally inconsistent) system of equatigns C” z, vector would include sources of degradation that are beyond
given measuremengsand system matriX’. These meth-  the scope of the present discussion. The goal of the ML
ods are variants of thedgebraic reconstruction technique reconstruction problem is to maximize the log-likelihood
ART. Since a consistent solution generally does not exist andobjective function
C'is either non-square or non-invertible, these methods ac-

tually minimize a least-squares criterion. Other approaches . .
are posed as solution methods for directly minimizing a Farr (9) = Z (=85 +y;logd;), @
least-squares functional such @ — CTOH; Modifica- =t

tions to these methods are often required to achieve a usefulvhere

solution. These modifications include regularization of the 5=079 (2)
least-squares functional and constraining the image vanable
estimates to be non-negative, i#&> 0.

Another class of iterative methods is based on a maxi-
mum likelihood (ML) criterion. The exact nature of these
methods depends on the physical model of the imaging pro- max  far, (0)
cess and the statistical model used for the measurements. st. 6>0. ®)
One of the tomographic imaging problems that has received
considerable attention is the Poisson-likelihood reconstruc- ~ The ML-EM algorithm for emission tomography was first
tion problem in emission and transmission tomography. ThePresented by Shepp and Vardi [28]. It requires a strictly
use of a Poisson model has been shown to |mprove |magé)OS|tlve initial SOIUtlom > 0 and consists of the f0||0W|ng
quality significantly in low-count scanning situations [8, 14]. update equation:

The Poisson ML reconstruction problem is generally solved L N
using a regularized ML functional and non-negativity con- g+l — 07 Z Cigyj i=1 n (4)
straints on the image variables. ‘ ¢ gr T

The emphasis of this paper is on the computational struc-
ture of the various methods and their parallel implementa- whereaf is the current §-th iteration) image estimate”
tions. We believe that having an efficient parallel imple- s the current forward-projection vector, and= Cey is a
mentation of a tomographic reconstruction method is criti- constanimage-space&ector (we shall refer to vectors with
cal, since the computational expense of an iterative methodn, elements as “image-space” vectors) whetec R is a
can be substantial if not prohibitive. Many important issues vector of ones irprojection spacgwe shall refer to vectors
are omitted from the present discussion, including the theo-with N elements as “projection-space” vectors.) Succes-
retical limit properties of the algorithms and the suitability sive application of the EM update equation (4) produce a
of the various methods for particular applications. Such dis- sequences of iterates that converges in the limit to the opti-
cussions can be found in the cited references. Here we shalial solution of (3). The implementation of a single EM
demonstrate that a parallelization scheme that we originallyiteration (4) requires first a forward projectighl = C76*
developed for the expectation maximization (EM) algorithm followed by aback projection
in emission tomography can be applied to almost any tomo-

Z

is aforward-projectionvector and’ is our current estimate
of &, subject to non-negativity constraints on the image vari-
ables. Thus the constrained optimization problem is

j=1

graphic reconstruction method. For this reason, we begin VP = oYy, ©)
our discussion with the expectation maximization (EM) al- . _ .
gorithm for ML reconstruction in emission tomography. ~ WhereY;, = diag {y}, j = 1,...,N'}. The costof an EM

iteration is in fact dominated by the cost of forward and back
. o projecting, since (4) can be rewritten as
2. ML-EM Algorithm for Emission Tomogra-

phy g _OE ©6)
’ qi 7 7

Since the radioactive decay process is known to obeyand the cost of the element-wise vector update (6) is compar-
Poisson counting statistics, in emission tomography theatively insignificant. A similar Poisson-likelihood problem
measurement vectay can be considered a realization of exists in transmission tomography, and ML reconstruction
a Poisson-distributed random vecgowith mean value methods for that problem (including an EM algorithm [20])

roughly parallel the methods presented here for the emission
El{y} =074, case.



2.1 Exploiting Sparsity in the Measurement Data
Table 1. Properties affecting the size of the

ML reconstructions have been shown to yield improved  problem.
image quality (over filtered backprojection) when the count-

ing statistics are poor, i.e., when the total number of detection thick-slice thin-slice
events is low [8, 14]. In low-count scanning situations, the || image size in voxels 1287 x 23 1282 x 85
measurement vectay may be 50% sparse or higher (and || variablesy 376,882  1.40 x 10°
sometimes much higher), especially in 3-D when the detec-| measurementsy 5.36 x 106 6.30 x 107
tor sampling is fine. Itis interesting to discover that we can || elements irC 2.02 x 10'2  8.82 x 10'3
exploit the sparsity of the measurement data to substantially| density ofC .93% .35%
reduce the computational cost of performing ML reconstruc- || nonzeros irC 1.87 x 1019 3.11 x 101!
tions. symmetry reduction factor 96 436

A full forward- or back-projection operation traverses || base-symmetry chords, 55,800 144,150
through the entirety of projection space, i.e., through all mea-|| storage required faf' 390 MB 1.42GB

surements. For most computational operations, however, it
is not necessary to “visit” every measurement. Consider
the computation of*, as specified by (5). If; = 0, the forward-projection vector per iteration (these are known as
value Ofg];-“ is irrelevant to the computation, and thus the block-iterativemethods). In non-simultaneous algorithms,

termC;;y; /g? can be completely ignored. Thus, (5) can be the forward- and back-projection operations also effectively

rewritten dominate the computation, but they are not implemented
in the simultaneous-update manner of (2) and (5). In

z/f _ Z % @) this section we introduce a parallel implementation of the

iy, 20 yf forward- and back-projection operations for simultaneous

update methods. In Sections 4.3, 4.4, and 5.1 we shall
show how our parallelization scheme can be applied to non-
simultaneous methods.

The presence o§; in the numerator obviates the need for
visits to the “unoccupied” coincidence lines. In the func-
tion evaluation, the zero-valued subspace @fan also be
ignored:

fmr <9k> =—q"0" + Z y;log g}

Jiy; #0 Iterative tomographic reconstructions are characterized
by huge vector spaces and sparsity in the system matrix,
especially when working in 3-D. These concepts are il-

in ML reconstruction methods. As such, the valuegpin lustrated in Table 1 for two reasonably representative 3-D
the zero-valued subspaceyafieed never be computed. The problem sizes that we have worked with in PET. The larger

subsequent computational savings should be similar to thenin_gjice” reconstructions cover the same axial (i.e., verti-
proportion of density of. This principle does not extend, .4 extent as the smaller “thin-slice” reconstructions, but the

however, to reconstruction methods based on least-squaresg,ais are nearly cubic in the larger problem. As such, the

criteria. thin-slice images may be visualized from multiple views,
as displayed in Figure 1. The thin-slice problem not only
3. Computing the Projection Operations has a greater number of image variables (i.e., voxetsjn
the thick-slice problem, but is also more severely overdeter-
In this section we generalize to consider the computation mined.
of the forward- and back-projection operations that were in-  The full size of the system matrik, being determined
troduced in Section 2. The ML-EM algorithm is known by the product:V, is so large that raw storage of the ma-
as asimultaneous updatelgorithm since in (2), all ele- trix is simply not possible. Fortunately is quite sparse
ments ofy are simultaneously updated as are all elementsand its sparsity pattern is well structured. Tjtle column
of 6 in (6). All simultaneous update algorithms in to- of C is essentially a discretization of the scanning instru-
mographic imaging (ML or otherwise) are dominated by ment's response function for thgh measurement. Each
forward- and back-projection operations in the manner of measurement is a blurred projection line and thus the re-
(2) and (5). Non-simultaneous algorithms update either sponse function for thgth projection line is indicative of
only a smaller subset of the image variables per iterationline blurring. Beyond a certain truncation point from the
(these are known asoordinate-ascentnethods for a max-  center of the line (5% of maximum in our implementation),
imization problem) or update only a smaller subset of the the value of the response function can be set to zero without

3.1 System-Matrix Sparsity and Symmetries

We assert that this principle is true fall operations involved
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Figure 2. One column of the system matrix
is stored as a 3-D chord which represents the
response function corresponding to a partic-
ular measurement. Each measurement loca-
tion (i.e., column of () is characterized by a
number of physical parameters including az-
imuthal projection angle ¢, polar projection
angle g3, and displacement 7+ between chord
center and center of the scanner’s field of
view (7 = 0 in the figure.)

(b)

plexity analysis based only on multiplications and additions
in (2) and (5).

The three types of symmetries in the system matrix are
illustrated in Figure 3. In-plane symmetriefl7] involve
reflection and rotation aboyt and provide an 8-fold stor-
age reduction. Thaxial symmetry4] involves a reflection

Figure 1. Three views of a “thin-slice” PET re- aboutg and yields a 2-fold symmetry (unless = 0, in
construction of a mouse skull: (a) transverse, which case there is no gain)Axial parallel chord redun-

(b) coronal, (c) sagittal. This image is the re- danciesare the simplest to implement and yield the largest
sult of the OSEM method taken to 10 itera- reduction in a 3-D system. The corresponding reduction is
tions. Ng — s per symmetry-related group, whekg; is the num-

ber of axial sample bins in the 3-D scanner ansithe axial
bin separation of the base-symmetry chord. After account-

affecting the outcome of the reconstruction. Fiecolumn ing for the symmetrie_s, only the base_-_symmet_ry Ch_ords
can thus be stored as a narrow “chord” around the projection”eed to be stored to disk (these quantities are listed in Table
line, as illustrated in Figure 2 for a 3-D tomographic imaging 1).
system.

Manageable storage of the system matrix requires ex-3-2 Parallel Implementation
ploitation of its symmetries as well as its sparsity. If the pro-
jections iny are measured at regularly spaced intervalg(of This section presents a parallelization strategy for com-
3, andr - see Figure 2 for definitions of these symbols), as is puting the dominant operations in tomographic image re-
the case in most commercial PET, SPECT, and CT scannersgonstruction methods. Adopting the notation of Section 2,
then certain symmetry-related columnglotontain redun-  our goal is to compute a forward projection (2) and a back
dant information. The information in a symmetry-related projection (5) efficiently in parallel. The parallel algorithm
chord can be extracted from a base-symmetry chord accordpermits the forward-projection operation for computijfg
ing to a prescribed set of rules. Much of the computational to be performed in the same iteration as the back-projection
expense of performing the forward- and back-projection operation for computing®. Similar algorithms for comput-
operations in large-scale 3-D reconstructions is due to theing forward-only projections and back-only projections are
costs of reading the base-symmetry chords from disk andalso presented.
of reshuffling the chord data to generate symmetry-related Since in most large-scale 3-D reconstructiovis> n,
chords from the base-symmetry chords. These “overhead’a reasonable data decomposition strategy would involve a
costs would seriously compromise the accuracy of a com-partition of projection-space data across the processors. In-



el . — y— whereD is the number of processors, and define a parallel
Y = version of the forward-and-back projection operation.
| | Algorithm 1 forward-and-back project:
+* 4. - - L
@ — (®) m— b vg =0
— — f b for all b assigned to d
: f o =Chyf
N b V(ay = V(a) T Cw)Yip) Yo
f b end for
© b v= EdD:l v (global summation)
== c =—
The parallelization scheme of Algorithm 1 may be re-
Figure 3. The three symmetries in the system stricted to perform forward-only and back-only projections.
matrix: (a) in-plane symmmetries, (b) axial A forward-projection algorithm consists of those rows of
symmetry, (c) axial parallel chord redundan- Algorithm 1 marked with a boldf:” Similarly, a back-
cies. projection algorithm consists of those rows of Algorithm 1

marked with a bold b.” Notice that a global summation
is required for the forward-and-back-projection algorithm
deed, from the data in Table 1, the cost to memory of stor- and the back—projgction a'go”thm but is not requirgd fgr
ing an 8-bity vector and a single-precisignvector is 315 the forwa}rd-prOJectlon algorithm. _The_: global su_mmatlor_l IS
MB for a thin-slice reconstruction. Due to memory con- Fhe only Inter-processor communication operation required
in any of the algorithms. All other operations can be per-

siderations, it may in fact be necessary to partition in pro- ¢ dind dentl th including the 1/0
jection space and decompose the problem accordingly. In ormed independently on the processors, Iincluding the
operations if the processors have local disks.

our implementation, the symmetries are defined in projec-
tion space. We can therefore decompose the problem by

projection-space symmetry and assign each processor ced- Other ML Methods

tain groups of symmetry-related projections. Recalling Ta-

ble 1, there ar@ = 55,800 base-symmetry coincidence

lines in thick-slice mode ang = 144, 150 base-symmetry Inthis section we investigate the applicability of the Algo-
coincidence lines in thin-slice mode. Given these large rithm 1 parallelization scheme to other methods for perform-

values ofp, decomposing the problem by projection-space ing ML reconstructions. We shall assume that the methods

symmetries does not limit the scalability of a parallelization discussed in this section are intended for Poisson-likelihood

scheme based on that data decomposition. reconstruction in 3-D emission tomography, although our
Specifically, we defineV = S°2_ N, (b), wherep is the notation does not explicitly limit the scope of consideration.

number of base-symmetry anglés; 1, ..., pis a particu- Similar ML methods exist for the transmission tomography

lar symmetry index, andV, (b) is the number of symmetry- ~ Problem [8, 21].

related coincidence lines corresponding to base-symmetry

indexb. We then define 4.1 Regularized ML-EM Methods
_ [ yT gl T ]T Due to ill-posedness of the reconstruction problem, the
vo= O 2 objective function often must be regularized in order to ob-
L I N T tain useful images [7]. The regularized ML objective func-
vo= [ Yy Yt Yo ] ’ tion is
C = [Cu Co : : Cyp . Jrvr (0) = farr (0) —vR(0), (8)
Vi = diag <[y wli=1..., N, (p)) where R (6) is a smoothing function that penalizes local
®) ®)5 T ’ roughness in the image, ands a hyperparameter that con-

. Ni(b) X Nu(B) trols the trade-off between agreement with the data (i.e., op-
wherey ), jp) € R andCp) € R - Image-  imization of f,,7, (6)) and agreement with a priori knowl-
space vectors suchéandv are replicated on all processors, edge about the solution (i.e., optimizationB{6)). The

but during a back-projection operation, the vector normally ¢,nstrained optimization problem in regularized ML-EM re-
used forv temporarily stores information representing the ., nstruction is

back projection of a particular processor’s portion of projec- max  frarr (6)
tion space. Thus we introdueg,;) € R",d =1,...,D, st.  0>0. ©)



A number of simultaneous-update algorithms have been
proposed for regularized ML reconstruction under restricted
classes of priors. One such method, which requires an uppe
threshold fory and a finite bound ofV R (6) | ., is Green’s
“One Step Late” (OSL) procedure [10]. One iteration of the
OSL algorithm is computed as

ko k
b;v;

e L L A
" 4tER (9'“)

(10)

wherev* can be computed in parallel in the manner of Algo-
rithm 1. The computation &V R (6’“ does notinvolve any

forward- or back-projection operations and is of negligible
cost for most practical smoothing functions.

4.2 Line Search Acceleration

The EM update equation (4) may be rewritten as a scaled

steepest ascent iteration

O = 0F L WV fars (e’f) ,

where W, diag{@f/qi,izl,...,n} and

VL (9’€) V% — ¢ is the gradient of (1). Like-
wise, the OSL update equation (10) may be rewritten

08t = 0% + WiV frars <9k) ;

whereV fyr (60%) = v¥ — ¢ — yVR (6’“ is the gradi-

ent of (8). It has been observed that as the optimal so-
lution is approached in EM, the distance moved at each
iteration becomes very small [17]. For this reason, line
searches have been proposed to accelerate the convergen
of ML-EM [17] and regularized ML-EM [21]. The regu-
larized ML-EM update can be enhanced with a line search
for the steplengthy; that ensures feasibility and approxi-
mately maximizes the function along the search direction.
(Thus for the OSL updateqiapproximately maximizes

f (9’“ + oW,V frur (9’“)) overa.) The enhanced up-
date is then

0"t = 0% + WiV frarr (9k) . (11)

The cost of the update (11) is dominated by the forward-
and-back projection to computé, sinceV R (9’“) is easy

to compute and the line search can be implemented inexpen
sively for this problem. The computation of can then be

4.3 Block-Iterative ML-EM Algorithms

r
A number of authors have recently proposklbck-

iterative methods to improve the convergence of (unregu-
larized) ML-EM [2,?, 13]. These methods partition the
projection space vectors into (unusually non-overlapping)
blocksS;, [ = 1,...,m. Each iteration requires passes
corresponding to the: blocks, where the entire image is
updated with each pass, but the update is performed only on
the current {th) block of projection space. A popular ex-
ample of this is Hudson and Larkin’s “ordered subsets EM”
(OSEM) algorithm [13], in which théth pass of thekth
iteration consists of the following operations:

kel

n
i > i, jes,

>,

k.l
ei

!
% jes,

Cijy;
N
j

k,l+1
0i»+

1=1,...,n,

where the outer iteration increments after thih pass, i.e.,
9k+1’1 = ek,m-i-l, andql — Z]ESL Oi,j-

The two operations above can be performed in a single
parallelized forward-and-back-projection operation over the
S; block of projection space. The only complication is
that we now have two decompositions of projection space,
one for partitioning the block subsets and the other for the
symmetry-related groups which are assigned to the various
processors. Usually: will be a small number, say 5, and
since the number of base-symmetry projectipnis gen-
erally quite large, the subset of base-symmetry projections
assigned to a particular processor can simply be further de-
composed inton processor-specific blocks for the OSEM
algorithm. This subset-partitioning strategy also attempts to
&hsure an evenly balanced load across the processors within
each OSEM block, although load balancing is more difficult
in a block-update algorithm than in a simultaneous-update
algorithm.

When the number of block subseitss small, one pass of
the OSEM algorithm increaségs, . (9) by nearly the same
amount as one iteration of ML-EM in the first several iter-
ations. Since the cost one pass of the OSEM algorithm is
approximatelyl /m the cost of an EM iteration, the early-
iteration convergence is improved. The OSEM algorithm
does not converge to a solution of (3), but rather to a limit
cycle of N distinct solutions that are within a proximity to
the optimal solution. The “row action maximum likelihood
algorithm” (RAMLA) of Browne and DePierro [2] is com-
putationally similar to OSEM and converges to an optimal

computed in the manner of Algorithm 1. Lange et al. have solution of (3). To our knowledge, no block-iterative algo-
proved that regularized ML-EM algorithms, enhanced with rithm has been proven to converge to the optimal solution of
a line search, converge to the optimal solution of (9) [21]. the regularized problem (9).



4.4 Coordinate-Ascent Methods which can easily be performed in parallel since the partition-
ing of projection-space vectofsand(; is identical.
Coordinate-ascent methods can be considered the “dual” A couple of caveats are in order regarding the use of
of block-iterative methods in that they update only a single a projection-space parallelization scheme for coordinate-
voxel or a group of voxels with each iteration. Coordinate- ascent algorithms. First, every single-coordinate update
ascent algorithms are generally posed as solution methodsequires two scalar global summations, one each for the cal-
for theregularizedML-EM algorithm. Recent papers have culation ofy, andy,. Sincen iterations are required for
shown that carefully designed coordinate-ascent algorithmsa single update of the entire image, every complete update
can result in faster convergence [1, 8]. requires2n scalar global summations. This is in contrast
Here we consider the single-coordinate update algorithmto the lonen-element global summation at the end of every
of Bouman et al. [1]. Defining’ € R to be a vector iteration of a simultaneous-update algorithm. The numer-

with zeros in all elements except tith, for whiche! = 1, ous global summations required by a coordinate-ascent al-
one iteration of the algorithm moves only the single voxel gorithm can incur significant communication latency costs.
indexedi;, = (kmodn) + 1, according to Second, the partitioning of projection space into symmetry-
related groups is much more difficult to implement in a
OF L = 0% + eir AB;, = 0% + e (9?;“1 - Gfk) . coordinate-ascent algorithm.  Incorporation of radially-

symmetric voxel basis functions [22] and on-the-fly com-
The kth iteration attempts to minimize the regularized ML putation of the system matrix may be more appropriate for
objective function over a single varialdg, , or this class of algorithm.

0%+ —areg min oF 4+ ik —Of . DA
in gzo fRML( (5 k)) 4.5 Interior-Point Methods

Taking a one-dimensional Taylor series expansion ofthe ML nterior-point methods are constrained optimization
component off g5, about the poiné;” yields aregularized  methods that maintain strict feasibility (i.¢.,> 0) at ev-

quadratic approximation ery iteration and approach the constraint boundaries only
P A in the limit and from within the interior of the feasible re-
frur (9 et (f - 9%)) ~Q () gion. They avoid the combinatorial difficulties associated
. L\ 2 with other constrained optimization methods such as active-
= ¥ (f - Hik) + ¥ (5 - 9%) + set methods. Although interior-point methods were origi-

nally developed in the 1960’s by Fiacco and McCormick,
recent developments in linear programming [16, 23] and
nonlinear programming [25] have revived interest in them
within the optimization community. In [15], we proposed
two interior-point methods for the regularized ML recon-
struction problem: a specializémharithmic barrier method
and aprimal-dual method

The logarithmic barrier method solves the constrained
problem by solving a sequence of unconstrained subprob-
lems. Each subproblem is parameterized by a barrier pa-
rameter,, and involves minimization of the augmented ob-
jective function

YR (Hk + etk (5 — ka)) + const.

The quadratic) (£) can be minimized via a one-dimensional
Newton method, or approximately minimized by taking a
single Newton step.

Computation of the quadratic coefficieptsandy, dom-
inates the cost of one iteration of this algorithm. Let us
assume that at the start of tt¢h iteration, the forward-
projection vectorj was updated after th@: — 1)st itera-
tion. The coefficientp, is computed via a dot product
between thé,th column ofC and a projection-space vector
(=enx—Yly ie ¢ = CI'¢ The computation of
4 also involves a dot product, although in this case the ele- n
ments of the system matrix and projection-space vector are F0,p,)=f(0)— Z log 6;,
squared. (We shall encounter a similar operation in Section i=1
5.3 with equation (17).) The important point here is that _
our general parallelization scheme fits surprisingly well to Where f (¢) = —fraz (6).  The barrier penalty term
the calculation ofp, andy,. If projection space is parti- >, log 0; enforces strict _feaS|b|I|ty. These supproblems
tioned, every processor can simply compute its portion of € solved for a descending sequence of .barrler' parame-
the dot product and then perform a global summation. Fol- ©€rs0 <, — 0. Each subproblem solution satisfies a
lowing the update of, the forward-projection vectay can perturbed version of the Karush-Kuhn-Tucker (KKT) opti-

be updated with the simple vector addition operation mality conditions [9, 26]. Under mild conditions, it can be
shown that ag. — 0, the subproblem solutions approach

gFr = gk + 9fjlci, the optimal solution to the constrained problem (9) [9]. The



logarithmic barrier method updates only the primal (image) [11, 12]. ART is a fully sequential-update algorithm, mean-

variabless. ing that thekth iteration of ART updates the entire image
The primal-dual method is closely related to the loga- estimate but operates on only thgh measurement. The

rithmic barrier method. In both the logarithmic barrier and ART update is given by

primal-dual methods, a sequence of subproblems parame- Yo o gk

terized by a descending sequetice: u;,, — 0 are solved grtl — gk 4 Uk% .

approximately, and the corresponding subproblem solutions |l Aj, 115

satisfy the same perturbed KKT conditions. In contrast o . ]

to the logarithmic barrier method however, the primal-dual Wherédi,; = C;’Cvj/qi’ Vi, J, Aj, 18 _thej’fth column vector

method actively updates both the primal image variables andof 4 = [4i ;] , 0" is the currentfth iteration) estimate o,

the Lagrangiaaual variables The actively-computed dual ~ 0 iS @ Scalarelaxation parameterand;. is the projection

variables enable the primal-dual method to converge more€lement ofthe currentiteration. The update is usually cyclic,

rapidly than the logarithmic barrier method. sothatj, = (kmod N)+1. Inthe inconsistent case, when
In [15], we demonstrate that interior-point methods de- liml ox = 0, ART converges to a solution of the minimum

veloped for the (regularized or unregularized) ML recon- norm problem

struction problem converge significantly faster than EM al- . N y; — (j],Tg
gorithms and require significantly less computation. Al- mlnz W
though we do not discuss the details of our methods here, j=1 T 112

we feel it worth mentioning that the dominant computational Without relaxation, ART converges to a limit cycle &f
operations are forward-and-back-projection operations thatvectors in a vicinity of the minimum-norm solution.

are readily parallelizable as per Algorithm 1. There are  Unfortunately, the parallelization strategy of Section 3
essentially three operations that dominate the interior pointcannot be applied to a purely sequential-update algorithm
methods: 1) a matrix-vector product that is computed dur- such as ART. Block-iterative variants of ART such as
ing a preconditioned conjugate gradient iteration (in Section the variable-block ARTalgorithm [3], however, are indeed
5.3 we shall discover that this is equivalent to a forward- amenable to our parallelization scheme.

and-back projection); 2) computation of a diagonal matrix

preconditioner in the aforementioned preconditioned con-5.2 Generalized Landweber lterations

jugate gradient (in Section 5.3 we shall show with equation

(17) that this is roughly equivalent to a back-projection), and  The generalized Landweber iteration is a scaled steepest
3) updating the gradient, which is essentially a forward-and- descent method, where each iteration is given by the simul-
back projection. taneous update equation

5. Least-Squares Methods 0t = 0" + MV f (9k) , (12)

The simplified Poisson-measurement model that under-whereV f (9’“) is the gradient of the objective function eval-
lies the ML reconstruction methods may not be accurate in uated at the current poist, and 1M, is a shaping matrix or

certain tomographic 'maging problems. F_or the_se_ p_rob- preconditioner[6, 30]. We shall discuss preconditioners in
lems, a more appropriate iterative approach is to minimize aggion 5.3

. 2 .
least-squares functional such agy — C*6|[, which may A common objective function in such problems is the
or may not be subject to non-negativity constraints. Such aweighted least squardsVLS) objective

formulation is actually applicable @l tomographic imag-

ing problems, since the forward process is always modeled Fwis () = 1 HD,% (y B CTH) Hg 13)
asz = CT0, regardless of the statistical interpretation. We 2 2
shall discover that the least-squares methods are also dom- 1 Tn\T -1 T

= —(y—C"0) D —-C"9),(114
inated by forward- and back-projection operations and that 2 (y ) (y ) /(14)

thg parallelization stratggy presented in Section 3 is also apyynerepn is typically a diagonal weighting matrix with diag-

plicable to the vast majority of least-squares methods. onal elements that correspond to estimates of the noise vari-
ance of the measurements [6]. When the measurement vec-
tor is assumed to be a realization of a Gaussian-distributed

) ) ) ) ) random vector, a solution that minimizég 1.5 (9) is also a
The algebraic reconstruction techniqu@RT) is an it- ML solution. Since the gradient of (13) is given by
erative method that attempts to solve the inconsistent and

generally overdetermined system of equatiéisz = y Viwes (0) =CD™ (CT0—y),

5.1 ART-Family Methods



the cost of one iteration of (12) is equal to that of a for- V2 fy s (8) = CD~*CT (whereD is a diagonal matrix)
ward projectionz = C7T# followed by a backprojection s given by

C (z — y), plus the cost of forming and applying the pre- N o

conditioner. The forward- and back-projection operations (M), = Z %’ i=1,....n (17)
can be decomposed in parallel and computed in the same !
loop, as per Algorithm 1.

= Di

Equation (17) is similar to the computation ¢f, in the
5.3 Conjugate Gradient Iterations coordinate-ascent algorithm of Section 4.4 and to the com-

putation of the diagonal preconditioner in the interior-point
methods of Section 4.5. All of these operations are essen-
tially implemented with a back-projection operation that is a
bit more expensive than a “standard” back-projection due to

(CD—lcT) §=CTD 1y (15) the squaring of the system-matrix elements. Other precondi-

tioners attempt to exploit the approximately block-Toeplitz
The linear conjugate gradient (CG) method for solving sym- structure of the Hessian of the least-squares objective func-
metric, positive semidefinite systems of equations such astion. Such preconditioners are generally implemented via
(15) [26] has been applied to the WLS reconstruction prob- multidimensional FFT’s [5] or inverse filtering operations
lem [5, 18]. The quality of the estimate féimproves with  [6] which, if sufficiently expensive, may require a paral-
each CG iteration. As such, an inexact solutiontfean be lelization strategy that is outside the framework of Algorithm
obtained from the CG method within (hopefully) a reason- 1.
able number of iterations. The cost of a single CG iteration ~ The solutions that minimize the least-squares objective

The unconstrained WLS objective functifp 1.5 () can
also be minimized by solving theormal equations

is dominated by a matrix-vector product of the form function f1s (¢) and the weighted least-squares objective
function fw s (9) may be noisy due to ill-posedness. As
cD~1cTy, (16) with the ML methods, the remedy here is regularization.

The regularized, weighted least-squares objective function
wherewv is a working vector in the CG algorithm. The s given by friw s 0) = fwrs (@) + yR(#). The
matrix-vector product (16) can be implemented as a paral-unconstrained problem of minimizingizwy s (¢) can be
lelized forward projectior: = CT followed by a paral-  solved via a nonlinear CG iteration [19]. Each iteration
lelized back projectio® D~ "z. Alternatively, (16) canbe  of the nonlinear CG method requires a gradient calculation
implemented in parallel as a forward-and-back projectionin v .., « (0) = Vfwrs (0) + yVR(6), which is domi-
the manner of Algorithm 1. _ nated by the cost o¥ fy-1.s (6). Recalling from Section

When working in exact arithmetic, the CG method con- 5.2 thatV fy 1< (#) is computed by a forward-and-back pro-
vergesim iterations. Ininexactarithmetic, the convergence jection, it is clear that Algorithm 1 can also be used for
rate of the CG method depends upon the condition numberthe nonlinear CG. The convergence rate of most nonlinear
of the matrixC'D~*C™ [26]. The convergence rate of the  CG methods is only marginally better than that of steepest
CG method can be improved through the use of a precon-descent methods. A faster solution of the unconstrained

ditioning matrix M. Specifically, thepreconditioned CG  minimizer of friw g (6) may be obtained via iuncated-
methodsolves the transformed system of equations Newtonmethod (see [24, 26].)

M (CDTICT) 6 = M 'CT D™y 5.4 Interior-Point Methods

The implementation of the preconditioned CG method is
quite similar to that of the “plain” linear CG method, al-
though every iteration of the preconditioned CG method
requires an application of the preconditioner in the form
Mk_lw, wherew is a working vector in the preconditioned
CG algorithm.

Numerous methods have been proposed for precondition
ing the least-squares problem. In generdl, should ei-
ther be easy to invert or products of the foW1Vf (9’“) )
should be easy to apply, and transformation of the system min - frwLs (0) (18)
of equations via the preconditioner should improve con- st 020,
vergence. One such preconditioner is the diagonal of theThe problem (18), being similar in nature to the problem (9),
Hessian of the objective function, which in the case of is also well suited for interior-point methodology. Interior-

Although the least-squares objective functiofis (6),
fwrs (0), and friy s (0) are well defined outside of the
non-negative orthant, negative solutions have no physical
interpretation in most tomographic applications. As such,
negative elements in the solution vector contribute mainly
to image noise. To improve image quality, the regularized
‘weighted least-squared problem (for example) can then be
posed as the constrained minimization problem



point, least-squares reconstructions are also dominated by
forward-and-back projections and back-only projections.
The interested reader is referred to [15]. Once again, the
computational structure of Algorithm 1 is applicable.

6. Performance Tests

In this section we report on the results of a number of
computational tests that were designed to measure the per-
formance of Algorithm 1 as applied to a simultaneous-update
method (EM) and a block-iterative method (OSEM). In all
cases, the methods tested exploit the sparsity and symme-
tries in the system matrix as described in Section 3.1. For
all tests reported in this section, a single dataset consisting of
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Figure 4. Cost of one EM iteration (both thick-
slice and thin-slice) and relative efficiency
(thick-slice only) as a function of humber of
processors. Tests performed on a 2.5M-count

2.5M counts collected from a small animal PET scannerwas  study on 66-MHz IBM RISC/6000 SP proces-

used. Reconstructions were performed in “thick-slice” and  sors.
“thin-slice” mode according to the dimensions of Table 1.
Table 2. Cost comparison between full and 1 r —— tickslce | o
sparse EM iterations on 2.5M-count study us- 2
ing 10 120-MHz SP processors. § 10 7 e
é 8 :
thick-slice  thin-slice ol ~
sparse g_radmnt eval. 3.42 min. 7.23 min. L R S
full gradient eval. 6.74 min. 2.9 hrs. 2t
denSIty Ofy 0466 0397 ° 10 number oflpf:ocessors 0 %
sparse/full ratio 0.507 .0415

Figure 5. Cost of global summation at the end
of EM algorithm as a function of number of
processors. Test conditions are identical to
Figure 4.

We first consider the effect of exploiting measurement-
data sparsity in the EM algorithm, as described in Section
2.1. Table 2 compares the cost of the sparse implementation
of Algorithm 1 (as per (7)) with the cost of a “full” implemen-
tation of Algorithm 1. Noting that the sparse implementation
skips the columns af’ corresponding to the zero-valued el-
ements ofy, we would expect the improvement in the sparse
implementation to be similar to the density @f Indeed,  between the cost of a back-only projection and that of a
Table 2 suggests that this is the case. forward-only projection. This disparity is attributable to

The parallel performance of the sparse implementationthe cost of the global summation, which is performed by
of Algorithm 1 is plotted in Figure 4. Since all base- the back-only projections but not the forward-only projec-
symmetry chords must be read from disk every iteration, thetions. In thin-slice reconstructions, this disparity grows as
/0 throughput requirement can be high. On architecturesthe number of processors increases. We thus suspect that
such as the IBM SP2 with fast local disks, the processorsthe relative efficiency of thin-slice implementations of Al-
can act independently until the global summation at the endgorithm 1 is not as strong as in the thick-slice case, due to
of Algorithm 1. As such, the strong performance indicated the higher cost of the global summation. Figure 5 compares
by Figure 4, and in particular, by the thick-slice relative ef- the cost of the global summation operation in thick-slice and
ficiency plot, is not surprising. The favorable efficiency plot thin-slice mode.
also suggests that the sparse implementation of Algorithm  Finally we consider the parallel performance of block-
1 does not seriously degrade the load balance between théerative algorithms such as OSEM. In Figure 6, the compu-
processors. Due to the high per-node memory requirementgational cost and relative efficiency of one thick-slice OSEM
of thin-slice reconstructions, we were unable to perform a iteration is plotted as a function of number of processors.
single-node test in thin-slice mode, and consequently thin-A comparison of the OSEM plot with the earlier EM plot
slice efficiency numbers are not available. (Figure 4) reveals that the performance of OSEM clearly

We have observed that a (usually small) disparity exists
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Figure 6. Cost and relative efficiency of a sin-
gle OSEM iteration consisting of 5 passes
(i.e., 5 subsets) as a function of number of
processors. Tests performed on a 2.5M-count
study in thick-slice mode using 66-MHz IBM
RISC/6000 SP processors.

does not match that of EM. In the present (Figure 6) test,
one OSEM iteration consists of five passes corresponding

to five subsets. After each pass, a global summation is per-
formed, so that the interprocessor communication costs in a

5-subset block-iterative algorithm abdimes the costs of a
simultaneous-update iteration. Another contributing factor
to performance degradation in block-iterative algorithms is
slightly worsened load balance due to the double partitioning
of projection-space vectors.

7. Conclusion

As computer technology continues to advance, the advan-
tages posed by iterative reconstruction methods will make
them more widely used in many applications. On large-
scale 3-D reconstruction problems, iterative methods remain
computationally challenging and are taxing to numerous re-
sources, including CPU, disk, and memory. The motivation
for parallel computing methods for the iterative reconstruc-
tion problem is therefore clear. Over the years, numerous
authors have proposed a multitude of methods, which can
be roughly categorized into three computational categories:

simultaneous update methods, block-iterative methods , and

coordinate ascent methods.

The parallelization scheme of Algorithm 1 is based
upon a data decomposition strategy that partitions the
projection-space vectors. The applicability of Algorithm 1
to simultaneous-update algorithms is straightforward. Since
Algorithm 1 requires no interprocessor communication un-
til the last operation (a global summation) parallel perfor-
mance is understandably strong. Algorithm 1 is capable of
exploiting the sparsity and symmetries present in the system
matrix in a computationally efficient manner. In methods
that optimize a Poisson-likelihood criterion, sparsity of the

measurement vector can be exploited to achieve a significant
improvement in computational performance. With the ex-
ception of sequential update algorithms such as ART, our par-
allelization strategy of partitioning the measurement-space
vectors can be extended to non-simultaneous methods.
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