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1.  Executive Summary 
 

[0001]  Today a large portion of biomedical information can be accessed electronically. 
However, research articles, technical reports, clinical notes, and many other sources of 
information are stored as free-form text not suited for quantitative analysis. As the 
amount of data grow everyday, it becomes increasingly difficult to make use of the 
wealth of valuable knowledge that is hidden in these documents (¶ 5). This report surveys 
the current capabilities and limitations of biomedical text mining from the perspective of 
knowledge management. Our objective is to identify areas of opportunity where our 
contributions can yield the highest return on investment.  
 

[0002]  Extracting and analyzing information from biomedical text is especially challenging 
because of the complexity and diversity of the field. Natural language processing 
(Section 4.1) plays a major role in text mining as it transforms text into structures that can 
be analyzed statistically. Many machine learning algorithms have been developed to 
automatically generate rules for information extraction, but the accuracy of these systems 
in general is still not up to par (¶ 19). We have found that tremendous progress has been 
made in the development of biomedical ontologies, which aims to formally define 
concepts and their relationships to each other in a specific domain (Section 3). Many text 
mining techniques have incorporated ontologies to take advantage of the existing 
knowledge that they provide (Section 4.2). The World Wide Web has an overwhelmingly 
large collection of information in free text format.  The semantic Web (¶ 15), in which 
ontologies are indispensable resources, is an area of active research to deliver machine-
understandable Web contents. We predict that Web-based applications will become more 
intelligent as a result. As scientists currently spend a significant part of their time to find 
information of real interest, the semantic Web effort will benefit biomedical research 
tremendously. 
 

[0003]  Most of text mining work done in the biomedical field has been geared toward basic 
research. Although tools for clinical practice have been developed, many are limited to 
encoding applications and other basic analyses. These systems can sometimes provide 
decision support by retrieving relevant information and best evidence from published 
literature. Physicians still need to link all the pieces together before a diagnosis can be 
generated. The development of case-based reasoning tools has experienced remarkable 
growth, but few take advantage of the rich knowledge available in electronic medical 
record systems (¶ 23). We believe that there is an opportunity to improve case-based 
decision support software that makes use of the large amount of clinical data available (¶ 
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24-26). Healthcare professionals can draw on the results of these analyses to make more 
accurate diagnosis and in turn provide better treatments. 
 

[0004]  Deriving reliable knowledge requires the consideration of all the related data. Data 
warehouses are built in large organizations to integrate information from different 
independent sources (Section 5). Standardization of data exchange models makes such 
efforts much easier. In addition to clinical records, other data types such as images have 
become increasingly important in patient care (Section 6). We foresee the increase in the 
development of integrated systems to manage different data types. Manual annotations 
are usually coupled with automatically extracted features to facilitate image retrieval. The 
need for expressing image contents with text presents an opportunity for us to develop a 
text mining tool to quantify image annotations. Such work will not only improve image 
retrieval, but also will allow physicians to quantitatively analyze the images along with 
their other data.     
 
2.  Introduction to Clinical Knowledge Management 
 

[0005]  The healthcare knowledge base is expanding at an unprecedented rate. Approximately 
50,000 new records are added annually to the MEDLINE database alone.1 In addition, 
even though published literature has traditionally been the major source for dissemination 
of new scientific understanding of diseases and their management, a significant portion of 
existing knowledge is presented in different tacit forms, from the working knowledge of 
the physicians, to peer discussions, to the clinical notes in patient records.2 The vast 
amount of biomedical information creates a huge challenge for most healthcare 
professionals to provide patients with the highest quality of care that the current 
knowledge base can potentially support.3 The main problem is the lack of a framework to 
discover and manage the knowledge systematically. Without such a framework, it is not 
possible to efficiently deliver all the benefits of the insights and knowledge that have 
already been discovered over the years.  
 

[0006]  The relatively new discipline of knowledge management (KM) aims to establish an 
environment, utilizing information technologies, to facilitate better acquisition, 
generation, codification, and transfer of knowledge.4 In the healthcare arena, a lot of 
effort has been focused on computerization, standardization, and automated analysis of 
clinical data. Many hospitals have already started to replace their paper-based record 
systems with computer-based technologies,5 which support more up-to-date, easier-to-
access, and more comprehensive clinical records than the traditional practice. 
Furthermore, the information has to be interoperable among heterogeneous databases, 
possibly across multiple institutions, to maximize its utility. The HL7 Clinical Document 
Architecture standard is a key effort in establishing a well-delineated representational 
model, specifying the structure of a clinical document for data exchange.6  
 

[0007]  In addition to interoperability, data standardization can also address semantic 
compatibility issues by mapping relevant text into standardized concepts in biomedical 
ontologies, such as the Unified Medical Language System7 (UMLS). Ontologies help 
convey the semantics of textual information in a machine-understandable format so that 
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data from different sources can be reliably integrated for more sophisticated analysis.8 As 
one can probably imagine, manual encoding or tagging of the entities to standardized 
concepts is labor intensive. Thus, various natural language processing (NLP) techniques 
have been developed or applied to make such task automatic. Several techniques and 
systems will be introduced later in this survey. 
 

[0008]  The standardized clinical data model provides the necessary foundation to convert data 
into knowledge. Relevant information can be retrieved from published best evidence to 
support decision making.2 In more sophisticated applications, important connections 
between individual elements can be made to generate hypotheses.1 The newly gained 
knowledge can assist in both diagnosis and treatments. A number of text-based data 
analysis methods have actually been implemented for a wide range of clinical and public 
health applications. For example, biosurveillance systems are used to classify patients 
into syndromic categories.9 A significant increase of patients in a category may signal an 
outbreak of a contagious disease or a terrorist biochemical attack. These systems use 
fever detection algorithms for instance, to determine the presence of fever from free-text 
clinical reports.10 Clinical text analysis is also useful in detecting adverse events that may 
be neglected from voluntary reporting.  Melton et al.11 developed a system to identify 
from discharge summaries 45 types of adverse events. The system allows healthcare 
institutions to learn from the events and take necessary actions to reduce the possibility of 
reoccurrence. These and other tools facilitate a systematic approach to manage and make 
use of the massive amounts of potentially useful data. Nonetheless, achieving full 
benefits of clinical KM will require collaborative efforts from all stakeholders, ranging 
from healthcare providers, to industries, to government agencies. To reach that aim, the 
non-profit organization OpenClinical12 was created to promote and coordinate KM 
resources in patient care and clinical research. 
 
3.  Ontologies 
    

[0009]  An ontology links concepts to their interpretations to avoid potential ambiguity of the 
textual terms. For example, within the biomedical context, “cold” is a condition to 
describe the temperature. “Cold” is also an alternate term for “common cold”. In yet 
another meaning, “COLD” is an acronym for “chronic obstructive lung disease”. 
Furthermore, the term “heart attack” is interchangeable for “myocardial infarction”.7 
Therefore, unique identifiers are associated with each concept to handle both polysemy 
(i.e. one name with multiple meanings) and polyonomy (i.e. multiple names for one 
concept) common in natural languages.13 If different databases tag their data elements 
using the same ontology, the identifiers can be used to retrieve associated data in 
individual databases even if the values are not exactly identical. 
 

[0010]  In addition, biomedical knowledge is often hierarchical in nature. Thus, an ontology also 
describes the relationships among different concepts through a set of assertions and 
rules.14 Some of the common relations in a biological ontology include part-of, isa, 
causes and prevents.15 The formal representation of knowledge allows a user to query a 
database for data that is not only directly tied to a specific term, but also uses the 
hierarchy in the ontology to further obtain related data.  
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[0011]  A number of ontologies and coding systems for various biomedical domains have been 

developed in recent years. The UMLS developed by the US National Library of Medicine 
(NLM) is a consolidated repository composed of three main knowledge sources:16 a 
Metathesaurus® of concepts and terms from more than 100 source vocabularies;7 a 
Semantic Network consisting of various semantic types and relationships to provide a 
consistent categorization of every concept in the Metathesaurus; and the SPECIALIST 
Lexicon addressing the high degree of natural language variability of biomedical and 
common words in the English language. Some of the source vocabularies important to 
healthcare include SNOMED CT, ICD, and HL7. These are summarized below:  
 

[0012]  The Systemized Nomenclature of Medicine Clinical Terms (SNOMED CT)17 is a 
clinical terminology developed by the College of American Pathologists. It provides 
comprehensive coverage of diseases, clinical findings, therapies, procedures, and 
outcomes. The terminology of over 366,000 concepts can be used to support 
recording and reporting of a patient’s care in electronic medical record (EMR) 
systems. In 2003, SNOMED CT was recognized by the American National Standards 
Institute (ANSI) as the Health Terminology Structure Standard. The same year an 
agreement was reached to incorporate SNOMED CT into UMLS to encourage the use 
of common medical terminology in the United States.13  
 

[0013]  The International Classification of Diseases (ICD)18 was developed by the World 
Health Organization to promote international comparability in the collection and 
organization of morbidity and mortality statistics. The first three digits of a code 
identify the disease type, and the fourth and fifth digits specify diagnostic 
subcategories. The terminology is revised periodically to reflect changes in the 
medical field and latest version (ICD-10) has been put in use since 1994. Although it 
is not intended to be a terminology for documenting clinical care, ICD has been 
adopted for many health management purposes. In the U.S., ICD is often used to code 
diagnoses on reimbursement forms submitted to insurance companies.19 

 
[0014]  The Health Level 7 (HL7) group,6 which develops the Clinical Document 

Architecture for data exchange, recognizes the importance of vocabulary domain 
specification. Such specification enhances semantic understanding by constraining 
the range of values that are allowed. The purpose of specifying a vocabulary domain 
is to ensure computability of the information in the coded fields,20 so that for instance, 
a field for gender will only accept either Male or Female as its value and not 
something else. Its Vocabulary Technical Committee is responsible to define and 
maintain a vocabulary domain for each coded entry in the HL7 messages.  

 
[0015]  The Open Biological Ontologies (OBO) project is an effort to create a standard format to 

achieve shared use across different ontologies.14 In recent years scientists have also 
investigated methods to represent existing biomedical knowledge in semantic Web 
languages, for information exchange via the Internet protocol.15 The semantic Web,21 
which aims to deliver machine-understandable Web contents, is based on the Resource 
Description Framework (RDF). The data structure represents objects and relations in 
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eXtensible Markup Language (XML) format. When defining in a Web Ontology 
Language (OWL), biomedical ontologies can be made compatible with the architecture 
of the Web. Accessibility is enhanced when information is placed on the Web, making it 
easier to share and integrate knowledge from many different sources. Web-based 
applications will likely become more intelligent as a result of the semantic Web effort. 
Researchers will benefit the most as they now spend a significant part of their time to find 
information of real interest.15   
 
 
4.  Text Mining 
 

[0016]  Knowledge discovery is one of the goals in KM. A large portion of biomedical 
information is available in electronic format. However, research articles, technical 
reports, clinical notes, and many other sources of information are stored as free-form text 
because of the flexibility it offers.22 Natural-language text often conveys rich concepts in 
a fashion that is not readily apparent.23 The string, “Time flies like an arrow”, exemplifies 
the complexity of natural languages. Thus, it is usually difficult to extract new knowledge 
from these documents. The goal of text mining is to identify non-trivial, implicit, 
previously unknown information in text.22 
 
4.1.  Natural Language Processing     
 

[0017]  Text mining has its origin from data mining.24 However, the information in conventional 
data mining is usually highly structured, containing mostly numbers and symbols. Text, 
on the other hand, has minimal structure, governed only by grammatical rules and 
organizational conventions (e.g. paragraphs, indentations).22 Arguably, text mining is a 
much more challenging task. It operates at various levels of granularity, including, but 
not limited to studying the relationships of words in a sentence, identifying the discourse 
of sentences, summarizing a document, and clustering documents based on their features. 
A majority of text mining work involves NLP because what it does essentially is to 
transform the text into structures that can be analyzed by data mining techniques. NLP is 
an interdisciplinary field where the theories of linguistics meet artificial intelligence.  

 
[0018]  The first step of NLP often entails tokenization,25 a process to decompose the text into 

individual sentences, words, or perhaps morphemes. Part-of-speech tags26 are then 
assigned to individual words according to their lexical classes, such as noun, verb, and 
adjective. The words may be transformed into their base forms called lemma. For 
example, ‘take’ is the lemma for ‘takes’, ‘taking’, ‘took’, and ‘taken’. This process is 
known as lemmatization.27 Syntactic processing involves two steps: shallow parsing and 
full parsing.28 In the first step, phrasal elements are determined. Extraction of long and 
complex phases, for instance ‘the Food and Drug Administration headquarters’, can be 
challenging. A syntax tree is subsequently derived to identify the syntactic structure of 
the sentence. The interpretation of semantic content usually requires both general and 
domain-specific knowledge.8 Nevertheless, ontologies can be used to tag entities 
belonging to certain classes in the domain (i.e. named entity recognition) and to even 
extract high-level relationships.  
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[0019]  In conjunction with ontology-based approaches, rule-based techniques with rules 

generated either manually or automatically through induction methods have been 
reported.22 Common machine learning algorithms that biomedical researchers have 
applied include decision trees,29 hidden Markov models.30 support vector machines,31 and 
naïve Bayesian techniques.32 These models are tuned by a large number of pre-classified 
text data, collectively called the training set. A test set of unclassified text is then used to 
determine the actual performance of the model. Regardless of the type of methods used, it 
remains difficult to develop grammar and extraction rules that yield high accuracy.33    
 
4.2.  Efforts in Text Mining 
 

[0020]  Although not clearly distinguished, three stages of processing can be identified in a text 
mining operation: information retrieval (IR), information extraction (IE), and knowledge 
discovery (KD). IR34 aims to identify those documents that are of interest. Web search 
engines, e.g. Google, are the most popular applications in IR. Keyword matching, 
whereby each document in the search space has been indexed by a set of keywords, is the 
simplest technique. However, the reliability of this technique is questionable. When the 
intention of the query is complicated or the keywords can be manifested in more than one 
form, irrelevant documents are retrieved while important information can be overlooked. 
A better approach that most search engines utilize is the vector-space model, which 
associates each search term with a weight.35 Some more sophisticated IR systems, e.g. 
Ask Jeeves, are able to process natural language queries to better understand users’ 
specific intention. Some can also locate documents, potentially with the assistance of an 
ontology, that are relevant to the search topic even if the keywords themselves do not 
appear in the documents. The search engine developed by Suarez el at.,36 which uses 
UMLS to improve search results on the Web, is an example of such a system. 

 
[0021]  Unless the objective is to identify the number of documents that contain particular 

keywords or character strings, the output from the IR phase is a list of documents that 
still requires filtering to obtain the specific information desired. IE37 is intended to find 
predefined types of entities, relations or events in free text. Co-occurrence of terms is the 
basic means for identifying relationships. When two entities are linked by a verb, there 
exists a type of relationship specified by that verb. However, the task is not as easy as it 
may seem. Obviously, negation has to be considered. Different representations of the 
same entity, e.g. abbreviation and synonym, have to be taken into account as well. In fact, 
most systems are not good at handling anaphora resolution,33 the process of determining 
to what a pronoun is referring. They are not capable of extracting relationships that 
extend over more than a few sentences. An ontology is a tremendous resource for solving 
some IE problems. In the passive use of antologies, the task is to map a term occurring in 
text to a concept in an ontology.8 An example of this application is the automated 
encoding tool38 that maps terms in clinical documents to UMLS codes. However, text 
mining aims to extract information that is novel. In ontology-driven IE, an ontology is 
used to actively guide and constrain analysis.8   
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[0022]  Many basic tasks in IR and IE can be considered as the pre-processing stage for KD. In 
this stage, the text is transformed to suitable representation for analysis. Different 
analyses can be performed to discover new patterns and to formulate hypotheses. 
Methods such as classification, clustering, regression, correlation, and visualization are 
commonly used.22 A number of text mining studies on biomedical literature have led to 
new scientific discoveries.39 A classic example of such was the Swanson study.40 The 
study connected seemingly unrelated articles in the literature and discovered the relation 
between Raynauds disease and fatty acids in fish oil. The finding was later verified by 
other scientific studies.39 Researchers have also recently explored the use of ontologies to 
find new knowledge from text. For example, using the UMLS ontology, the natural-
language processor, MEDSYNDIKATE,41 is able to handle various discourse structure 
phenomena and extract knowledge from medical finding reports.  

 
[0023]  Most of text mining work in the biomedical field is geared toward basic research, 

primarily on genomic analysis. Although tools for clinical practice have been developed, 
many are limited to encoding applications and other basic analyses. A number of projects 
discussed in this survey have suggested the tremendous potential for text mining to 
improve diagnoses and treatments. An area of development where text mining can bring 
contributions is case-based reasoning42 (CBR). In accordance with evidence-based 
medicine, the CBR approach to solving new problems is based on the solutions of similar 
problems in the past. In medicine where decisions can mean life or death, it is especially 
critical to take into account past experience beyond the general knowledge found in 
textbooks. 

 
[0024]  Although the use of CBR tools has experienced remarkable growth, the wealth of 

knowledge hidden in the free text of EMRs remains largely untapped.43, 44 If such 
knowledge can be capitalized, more advanced case-based decision support software can 
be implemented. In addition to retrieving similar cases, recommendations can be 
generated based on analysis on the EMRs. The value of such software can be 
demonstrated in following hypothetical case study: 
 

[0025]  A text mining system has been developed to identify and encode the symptoms, 
diagnoses, treatments, and outcomes of patient records as they are entered into the 
database. A patient comes to the emergency room with a set of serious but rare 
symptoms. A diagnosis cannot be made based on the patient’s medical history. 
Various tests have been run, but the physicians cannot wait too long for the test 
results to come back because the patient’s condition continues to deteriorate.  The 
hospital is equipped with the text mining system, and in a fraction of time it retrieves 
more than 50 similar cases from around the world. The physicians determine that the 
patient has contracted a deadly virus usually found in Asia. Instead of having to go 
through all of the cases, the physicians are presented with a summary showing what 
the possible treatments are and their associated outcomes. They agree on a therapy 
that is the most appropriate for the current situation. Because of the timely 
intervention, the patient’s life is saved.  
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[0026]  This case study shows that advanced case-based decision support systems can reduce the 
time physicians take to link individual elements together, allowing them to optimally 
solve problems in time-constrained circumstances. It can significantly benefit care 
providers who may not have experience with the presented symptoms and can prevent 
them from overlooking certain aspect of the case. In this case of decision support, the 
implicit knowledge encoded in the medical records may not necessarily be transformed 
into explicit knowledge. Human judgment is still the main component of the decision 
making process.  
 
5.  Data Warehousing 
 

[0027]  For large decentralized organizations, such as the National Institutes of Health (NIH), 
there are usually a large number of independent databases across various labs and 
departments. A data warehouse extracts important data from production systems 
according to a schema.45 It provides a consolidated view of the organization’s data to 
support queries concerning best practices, operational effectiveness, and cost efficiency.46 
The warehouse refreshes its data periodically, ideally when the workload of the systems 
is low to minimize performance impacts. In addition, clients of the data warehouse do not 
have direct access to the data sources, ensuring data integrity of the operational 
databases.47  

 
[0028]  Most data warehousing schemes extract and transform data from many local data sources 

and place them into a physically separate repository for online access, reporting, and data 
mining.45 The task usually requires considerable effort in consolidating inconsistent data 
into one coherent set.47 The standardization of semantics and data-exchange models 
reduces development time and helps ensure data quality.48 However, certain clinical 
applications are still limited from this integrated approach because the data may not be 
up-to-date since last being synchronized with the sources.   

  
[0029]  In addition to aggregating similar data to provide centralized access, composition of 

complementary data from multiple sources may lead to discovery of new knowledge that 
may be difficult to derive from looking at the data separately. For example, a system 
supporting complex queries of a patient’s genomic, proteomic, and clinical data 
facilitates a comprehensive analysis of all information. The detailed knowledge about the 
patient allows for personalized therapy, which can lead to improved outcomes for the 
patient.49 It may, however, be difficult to have a data exchange standard that works across 
such diverse domains. The federated data warehouse approach45 forms a hierarchy of 
warehouses that allows flexibility at the local level and also maintains a view from the 
global perspective. The local warehouses in the federation handle data within a specific 
domain whereas global warehouses store common data. Common data can flow 
downward from these repositories, while important summaries flow upward from the 
bottom of the hierarchy.  

 
[0030]  Data warehousing projects have been conducted at the University of Michigan Health 

System and the Ohio State University Medical Center since 1998 and 2003, 
respectively.46, 50 The warehouses consolidate clinical, financial, employee records as 
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well as information from the literature and other external sources. The projects provide a 
positive return of investment from the knowledge that can be derived from the data 
warehouses and the application of that knowledge to improve communication, education, 
research, and patient care. The success of these projects lies on the convergence of 
people, process, data, and technology. Although both groups have to face a number of 
difficult challenges and failures, the projects have brought about a more robust 
information management infrastructure to manage their ever expanding knowledge 
assets.    
 
6.  Analogy to Image Data Management 
 

[0031]  The medical imaging community is confronted with many barriers in image management 
similar to the text KM challenges discussed thus far. In the 2004 JASON report,51 some 
of the imaging issues being identified were standardization, information extraction, and 
data archiving. These issues arise partly because of the proliferation of the number of 
digital medical images, making the management and access to large image repositories 
increasingly difficult.52 

 
[0032]  With the digital imaging and communications in medicine (DICOM)53 standard, images 

can be exchanged between systems, irrespective of manufacturer. In addition, each 
DICOM file has a header where patient information along with other specifications can 
be stored. It is not unusual that radiologists will compare a set of images to identify 
abnormalities or to evaluate treatment progress. The lack in standardization is a common 
set of metrics for comparing similarities between different images. Calibration, intrinsic 
uncertainty due to the limitation of the modality, and subjective judgment all contribute 
to significant variations in interpretation of imaging data.51 Computer-assisted 
quantitative analysis can provide sets of parameters, enhancing the objectiveness of 
image comparison.  

 
[0033]  Various techniques have been developed to extract information in images. However, 

most content-based image retrieval (CBIR) systems only deal with low-level features, 
such as color, size and shape.52 Other than object recognition,49, 54 it remains impossible 
to extract high-level semantics from images. Manual annotations are usually coupled with 
automatically extracted features to facilitate image retrieval.55 A few indexing systems 
have been proposed to extract UMLS concepts from free text in radiology reports.56, 57 
The next step will be to develop a text mining tool to quantify image annotations, such as 
the size and location of a tumor. Such work will not only improve image retrieval, but 
will also allow physicians to quantitatively analyze the images along with other data. In 
addition to feature-based techniques, many systems locate and cluster images based on 
the assumption that there exists a correlation between the characteristics of an image and 
the concepts it depicts.52 Some of these systems use methods that are commonly 
employed in text retrieval (such as the inverted file method,58 which restrict the subspace 
spanned by the search.) 
 
7.  Conclusion 
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[0034]  Clinical KM is more than just technology, since it changes the way knowledge is 
managed. Advances in information technology have enabled systematic processing of 
institutional data, information and knowledge. The shift from paper-based to computer-
based processing has opened up an opportunity for making better use of the available 
information. Through coordinated KM, the information stored in EMRs will no longer be 
used for administrative purposes only, but also for decision support as well as for clinical 
research. Healthcare systems and biomedical knowledge repositories are being integrated 
to form inter-departmental and inter-institutional networks. The vision is to turn tacit and 
implicit knowledge into explicit knowledge that healthcare professionals can access 
whenever and wherever they need it.  

 
[0035]  A majority of the knowledge generated every day is hidden in text. Natural language 

processing techniques are being used for many purposes, from document retrieval, to 
information extraction, to automatically encoding. Computers will undoubtedly play an 
increasing role in knowledge discovery. To alleviate the problem of information 
overload, they have to run more analyses previously done by people and present users 
only with the most relevant information. A requisite for achieving this goal is that 
computers have to be able to understand the concepts in text. Ontologies are being 
developed to formalize the representation of knowledge within a specific domain. In an 
ontology, each concept is unambiguously defined and their relationship with one another 
is established explicitly. Isolated islands of knowledge also have to be integrated to 
derive new knowledge. Therefore, systems must be able to exchange data efficiently. 
Through several initiatives, such as the semantic Web and the Clinical Document 
Architecture, standard communication protocols are formed. Data warehouses are also 
created in large organizations to facilitate best practices and foster collaborations.  

 
[0036]  Information is increasingly presented in different data types other than text. Images share 

a lot of similarities with text. CBIR systems are developed to address some of issues in 
image management. Some of these systems use annotations to supplement visual 
parameters extracted from images automatically. If enough resources are placed in this 
area, it may not be long until case-based decision support tools are integrated with both 
CBIR and EMR systems. When this is realized, an oncologist can ask the system a 
question like “For all patients in the United States who have reported symptoms similar 
to those in this case, give me the records of those patients whose brain MRI scans 
subsequently indicate the presence of a tumor in the visual cortex.” This query may 
require a lot of computational power, but high performance computing can make real-
time processing possible. The wealth of information provided to the physicians greatly 
enhances the quality of their diagnoses and treatments. 
 

[0037]  This survey has identified several areas of opportunities where more research and 
development can lead to significant improvements in KM: 
 

• Incorporating NLP into CBR systems to interpret textual information in EMRs 
and support clinical decision making.  

• Qualifying image annotations to facilitate CBIR and objective image comparison.   
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• Implementing data warehouses with abilities to effectively manage and retrieve 
information from different data types, including text and images. 

  
[0038]  Technology itself cannot realize all the potential benefits that can be supported by 

knowledge scattered across disciplines. People, processes, data and technology are 
matching pieces of the puzzle in KM. However difficult it may be, the four essential 
components have to work together so that the acquisition, generation, codification, and 
transfer of knowledge can be carried out in the most effective way. The consequence of 
effective clinical KM is better scientific research and healthcare beyond the limits of any 
individual or even institution can achieve alone.  
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