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Abstract

Interior-point methods possess strong theoretical properties and have been suc-
cessfully applied to a wide variety of linear and nonlinear programming ap-
plications. This paper presents a class of algorithms, based on interior-point
methodology, for performing regularized maximum likelihood reconstructions
on 3-D emission tomography data. The algorithms solve a sequence of sub-
problems that converge to the regularized maximum likelihood solution from
the interior of the feasible region (the non-negative orthant). We propose two
methods, a primal method which updates only the primal image variables and a
primal-dual method which simultaneously updates the primal variables and the
Lagrange multipliers. Termination to a solution of desired accuracy is based
on well-defined convergence measures. We demonstrate the rapid convergence
of the interior-point methods using both data from a small animal scanner and
Monte Carlo simulated data. We present a parallel implementation that per-
mits the interior-point methods to scale to very large reconstruction problems.



1 Introduction

Positron emission tomography (PET) images can be reconstructed by an it-
erative process whereby the iterates maximize a Poisson likelihood objective
function. Maximum likelihood (ML) reconstructions have been reported to
improve both variance [71] and resolution [44] compared with filtered back pro-
jection reconstructions, in studies characterized by poor counting statistics. In
transmission tomography for example, where the scan duration is often short
and the count rate is therefore low, ML reconstructions based on a Poisson
model of the observations have significantly improved the resulting attenuation
maps [18, 52, 61]. However, since image reconstruction from projections is
an ill-posed problem, ML estimates tend to overfit the data [1], resulting in in-
creased noise and edge artifacts in later iterates of the expectation maximization
(EM) algorithm [67].

One approach to treating the problem of noisy solutions is to terminate the
EM algorithm early by using either a stopping heuristic (such as 50 iterations
[22, 68, 72]) or an early termination criterion [50, 26, 70]. This approach re-
quires either an arbitrarily defined stopping point (in the case of the heuristic)
or a criterion which may or may not be well suited to the particular reconstruc-
tion problem. Another potential disadvantage of this approach is that early
termination of the EM algorithm biases the solution towards the starting point,
which is often a uniform field [1]. Moreover, Herman and Odhner have re-
ported that later iterates of the EM algorithm may actually possess improved
structural accuracy over early terminated solutions [30], and Miller and Wallis
have reported improved contrast recovery in later iterates [51].

Alternatively, one can regularize the ML solution. This can be done either
by post-filtering, by using the method of sieves [67], or by introducing a regu-
larization term in the objective function. These methods reduce the “checker-
board” noise effect and edge artifact of the converged maximum likelihood so-
lution at the expense of some resolution. The latter of the three approaches,
commonly referred to as penalized maximum likelihood [16] or maximum a pos-
teriori (MAP) reconstruction [49], has generated the most interest because, in
addition to improving the noise properties of the converged solution, inclusion
of a regularization term in the objective function also leads to faster convergence
[47].

PET reconstructions of small animals are another class of problems char-
acterized by poor counting statistics. Small animal studies require very high
resolution at reasonable noise levels in order to distinguish small features in,
say, a rat brain [65]. Small animal studies are potentially count-limited because
higher tracer doses may cause biochemical saturation in systems of interest, e.g.
receptor systems [45]. Other count-limiting factors include the need for rea-
sonable scan durations and limitations on the sensitivity of the scanner [63, 64].
The low-count nature of small animal studies necessitates 3-D reconstructions
to improve sensitivity [35]. The increased proportion of scattered events in
3-D, so prevalent in clinical 3-D PET reconstructions, is not significant in the
small animal case because the small size of the object being imaged implies low
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attenuation and hence a low proportion of scattered events. The low count
rate also motivates the use of a Poisson model in conjunction with a maximum
likelihood objective function for the reconstructions [35].

In recent years, much has been accomplished in improving the convergence of
unregularized maximum likelihood reconstructions using ‘block-iterative’ meth-
ods. Hudson and Larkin’s ordered subset EM (OSEM) [33] and Byrne’s block-
iterative algorithm [4] generate iterates that, at k iterations, very closely re-
semble the corresponding EM iterate at k · r iterations, where r is the number
of subsets [36]. These algorithms do not converge to the maximum likelihood
solution, however [3]. Another approach is based on row-action mathods [5].
Browne and DePierro [3] developed a row-action method , similar to the Al-
gebraic Reconstruction Technique (ART) of Herman and Meyer [31], that con-
verges to the maximum likelihood solution. This method, which Browne and
DePierro dubbed the Row Action Maximum Likelihood Algorithm (RAMLA),
can be implemented as a slight modification of OSEM and enjoys the apparent
rapid convergence of OSEM. RAMLA does not, however, generalize to include
a regularization term in the objective function.

There has also been significant recent activity in developing algorithms for
improving the convergence of MAP and penalized maximum likelihood recon-
structions. Mumcuoglu et al. introduced a quadratic penalty function to
impose non-negativity (but did not follow a trajectory as we shall discuss) and
maximized the MAP objective function via a nonlinear conjugate gradient with
a line search [52]. Lalush and Tsui investigated a preconditioned nonlinear con-
jugate gradient method [42]. In a separate paper, Mumcuoglu investigated an
active set method for MAP reconstruction [53]. These methods have resulted
in only modest convergence acceleration.

Coordinate ascent and grouped coordinate ascent methods have recently
been reported to significantly improve convergence over MAP-EM [29, 2, 17,
18, 62]. Using a Fourier domain analysis to study the convergence properties of
coordinate ascent, Sauer and Bauman [62] have shown that coordinate ascent
iterates converge faster in higher frequencies than MAP-EM. Fessler et al.
have shown that a carefully selected grouped update strategy corresponds to
choosing hidden data spaces with reduced Fisher information, thereby leading
to asymptotically faster convergence[17, 18]. The grouped coordinate ascent
methods can be parallelized, unlike the single coordinate ascent methods. We
shall consider these methods again in Section 6.

In this paper we introduce a class of algorithms for performing large-scale
(3-D) ML and MAP reconstructions. These algorithms depart entirely from
the EM philosophy; rather, they are based on interior-point methodology from
nonlinear optimization theory [60]. Particular attention is devoted in this pa-
per to computational issues including per-iteration costs and parallel computer
implementation issues. Computational tests are presented on actual data from
a small-animal scanner and Monte Carlo simulated data. We approach the
problem of reconstructing a PET image from a constrained optimization per-
spective and demonstrate that interior-point methods can significantly improve
the convergence to the fully converged MAP reconstruction problem, compared
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with MAP-EM, and can improve convergence to a less accurate solution as well.
We demonstrate that the interior point methods are suitable for even the largest
of 3-D problems.

The paper is organized as follows. In Section 2 we review the principles of
ML reconstruction (including regularized ML), with an emphasis on understand-
ing the objective function, and briefly summarize the EM algorithm. Section 3
presents a parallel implementation of the EM algorithm that can also be applied
to the interior point methods. Two interior point methods for regularized ML
reconstruction are proposed in Section 4. The first of these methods is a classical
method that imposes the non-negativity constraints through a logarithmic bar-
rier function. The barrier method is a primal method in that it only solves for
the primal image variables. The second algorithm we propose is a primal-dual
method that simultaneously updates both the primal variables and Lagrange
multipliers (dual variables). Much of the material developed in Section 4.1 for
the barrier method also applies to the primal-dual method in Section 4.2. A
special implementation of the interior-point algorithms that exploits sparsity in
the observation data is discussed in Section 4.3. Large-scale 3-D computational
studies using the interior-point algorithms and a comparison with MAP-EM re-
sults are presented in Section 5. Some concluding remarks are made in Section
6.

2 Maximum Likelihood Reconstructions

The goal of ML estimation, as applied to emission tomography, is to find the
estimates of the expected number of emission events that maximize the proba-
bility of the set of observations yj , j = 1, . . . , N. As is customary, we form a
finite parameter space by imposing a grid of boxes or pixels over the emitting
object [28]. Given our set of observations or projections we seek to estimate
θi = E {xi} , i = 1, . . . n, the expected number of counts emitted from pixel
i. The number of radioactive events emitted from pixel i are assumed to
be Poisson-distributed random variables with means θi. By a Bernoulli thin-
ning process with probability Ci,j , the number of events emitted from pixel i
and detected in projection line j, Xij = xiCi,j are also independent Poisson
variables (the realizations Xij are the complete but unobservable data set in
EM [13]). The observations yj are realizations of sums of independent Poisson
variables yj =

∑
i Ci,jXi,j that can also be assumed to be Poisson distributed.

The system matrix C ∈ <n×N of the probabilities Ci,j can be computed based
on geometric considerations and the spatially-variant resolution function of the
scanner.

The projections yj are thus assumed to be realizations of independent Pois-
son variables with means mj =

∑
i Ci,jθi. A more accurate model of the obser-

vations would be
mj =

∑
i

Bi,jθi + rj + sj

where rj and sj are known values for random and scatter coincidences, and
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Bi,j = AjCi,j where Aj are known attenuation coefficients. In small-animal
studies, the emitting object is small enough that attenuation, and therefore ran-
dom and scattered coincidences, do not significantly corrupt the simple model
of Poisson observations. For example, the reconstruction of a uniform cylinder
in Figure 1(d) (in Section 5) demonstrates relatively uniform activity in the
cylinder despite the absence of attenuation correction.

Given our simplified Poisson model, the likelihood may be written as

P {y|θ} =
∏
j

e−mjm
yj

j

yj !
=
∏
j

e−
∑

i
Ci,jθi (

∑
i Ci,jθi)

yj

yj !
.

The ML objective function is formed by taking the log likelihood

fML (θ) = logP {y|θ} =
∑

j

(
−
∑

i

Ci,jθi + yj log
∑

i

Ci,jθi − log (yj)!

)
,

that is,
fML (θ) =

∑
j

(
− (CT θ

)
j
+ yj log

(
CT θ

)
j
− const

)
. (1)

Defining q = CeN ∈ <n to be the sum of the columns of C, where eN ∈ <N

is a vector of 1’s, and defining
ŷ = CT θ

to be a forward projection, we can write the gradient and Hessian of the objective
function, respectively, as

∇fML (θ) = −q + C Ŷ −1y, (2)

and

∇2fML (θ) = −C Y Ŷ −2CT . (3)

where Y = diag (yj , j = 1, . . . , N) and Ŷ = diag (ŷj , j = 1, . . . , N) . The Hes-
sian is known to be negative semidefinite for this problem (since yj/ŷj ≥ 0 ∀j)
and the objective function (1) is concave. Thus, any local maximum will also
be a global maximum.

Equation (2) sheds some insight into the computational costs associated with
maximizing the objective function. Given a current (k−th iteration) set of esti-
mates θk, computing the gradient requires first computing a forward projection

ŷk = CT θk and then computing a back projection C
(
Ŷ k
)−1

y from the forward
projection. The costs of forward projecting and back projecting are similar
and together dominate the computation associated with iterative reconstruc-
tion methods, especially in large scale. We shall revisit this computational
structure, which is common to all iterative reconstruction methods.
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Since the underlying activity distribution is non-negative, the ML recon-
struction problem is a constrained optimization problem with lower bound con-
straints:

max fML (θ)
s.t. θ ≥ 0. (4)

2.1 The EM Algorithm

The expectation maximization (EM) method, first presented by Dempster, Laird,
and Rubin [13] for ML estimation, is an iterative algorithm for computing ML
estimates when the observations can be viewed as incomplete data. Shepp and
Vardi [66] and Lange and Carson [46] applied the EM method to emission and
transmission tomography problems, respectively. The EM algorithm has been
proven to converge to the optimal solution of (4) [69].

The EM algorithm of Shepp and Vardi requires a positive initial solution
θ0 > 0 be selected. The E step of the algorithm takes the expectation of the
complete data log likelihood Q

(
θ, θk

)
= E

{
P
[
X|y, θk

]}
. For unregularized

ML, a closed-form solution exists to the M step (maximization of Q
(
θ, θk

)
) :

θk+1
i =

θk
i

qi

N∑
j=1

Ci,jyj

ŷj
. (5)

The M step comprises a separable maximization of a strictly concave function
Q
(
θ, θk

)
that has a unique maximum θk+1 and guarantees a monotonic increase

in fML (θ). Equation (5) may be rewritten as

θk+1
i = θk

i +
θk

i

qi


∑

j

Ci,j
yj

ŷk
j

− qi

 = θk

i +
θk

i

qi

∂fML

(
θk
)

∂θi
, (6)

which may be expressed in vector form as

θk+1 = θk + diag

(
θk

i

qi

)
∇fML

(
θk
)
. (7)

From (7) we see that EM is essentially a preconditioned steepest ascent
method with a unit step length [38, 39]. The diagonal (EM) preconditioner
guarantees that the solution at every iteration resides in the interior of the
feasible region. As such, EM behaves like an interior-point method. It has been
observed that EM converges slowly. The cost of an EM iteration is the cost
of a gradient evaluation, one forward projection plus one back projection. The
observed slow convergence and the high per-iteration cost of the EM algorithm
have limited its usefulness in the clinic.
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2.2 Maximum a Posteriori Reconstruction

Investigators have observed that the EM algorithm can produce noisy solutions
at convergence. This observation has led numerous authors to devise meth-
ods to regularize the maximum likelihood objective function. As previously
discussed, currently the most investigated approach is to introduce a Bayesian
formulation [28, 47]. Given prior probabilities P {θ} and P {y} for the image
and observations, respectively, we define the posterior probability

P {θ|y} =
P {y|θ}P {θ}

P {y} .

The estimate of θ is then obtained by maximizing the posterior probability
P {θ|y}.

A common choice for the image prior is the Gibbs distribution P {θ} =
e−βR(θ), although other priors (Gaussian, gamma) have been investigated [49,
47]. The popularity of Gibbs priors stems in part from their ability capture the
local correlation property of images [27]. The energy function R (θ) is defined
as a sum of neighborhood functions

R (θ) =
1
2

∑
i

∑
l∈Ni

ψi,l (θi, θl) .

where Ni denotes the neighborhood of pixel i. In order to maintain concavity
in the objective function, the potential function ψi,l (θi, θl) should be convex
with continuous first and second derivatives. The potential function is generally
designed to discourage non-smoothness in a neighborhood. For the small animal
studies, we have chosen the potential function ψi,l (θi, θl) = ψ (θi − θl) , where
ψ is defined [48]

ψ (z) = |z| − log (1 + |z|) .
For maximum a-posteriori (MAP) reconstructions, the objective function

(ignoring a constant term) is the log-posterior likelihood

fMAP (θ) = logP {θ|y} = fML (θ)− γR (θ) . (8)

The MAP reconstruction problem may also be posed as a constrained optimiza-
tion problem

max fMAP (θ) (9)
s.t. θ ≥ 0.

We note for future reference the following:

∇fMAP (θ) = ∇fML (θ)− γ∇R (θ) = −q + C Ŷ −1y − γ∇R (θ)
∇2fMAP (θ) = ∇2fML (θ)− γ∇2R (θ) = −C Y Ŷ −2CT − γ∇2R (θ) .

If the energy function is convex, fMAP (θ) is concave, and ∇2fMAP (θ) is neg-
ative semidefinite.
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In MAP-EM, the presence of the regularzing term in (8) precludes a closed
form solution to the M-step. A number of authors have devised generalizations
of EM for MAP. For comparison with our interior-point algorithms, we have
implemented two such approaches: Green’s “one step late” (OSL) algorithm
[24, 25] and DePierro’s generalized EM algorithm for penalized ML [14, 15]. The
OSL algorithm approximates R (θ) with the constant R

(
θk
)
, thereby produc-

ing a closed-form approximated update. OSL converges to the MAP solution for
sufficiently small γ. DePierro’s algorithm generalizes the EM approach to MAP
by defining a strictly concave, separable, and twice continuously differentable
“surrogate function” for the M-step (to include the regularization term). De-
Pierro proved that successive maximizations of this surrogate function converge
to the MAP solution.

Our experience has been that the iterates generated by OSL and the De-
Pierro algorithm are very similar. The per-iteration costs of both algorithms
are also similar. In both cases, a forward projection followed by a back projec-
tion must be performed at each iteration:

ν = CŶ −1y. (10)

The vector ν ∈ <n is then used in the simultaneous update (OSL or DePierro).
The vast majority of the computational expense of a large-scale 3-D MAP-EM
iteration is in performing the forward and back projections. The cost of per-
forming DePierro’s simultaneous update, even to high precision, is insignificant
compared to the forward and back projection costs.

3 Parallel Computing

Large-scale 3-D maximum likelihood PET reconstructions are characterized by
huge vector spaces and by sparsity in the system matrix [6]. The number of
projection lines may be in the millions. The various parameters that affect
the size of the reconstruction problem are listed in Table 1. In “thick-slice”
reconstructions, list-mode data from the small animal scanner are binned into
comparatively wide axial rings, whereas in the much larger “thin-slice” recon-
structions, the list-mode data are binned into much narrower slices, resulting in
nearly cubic voxels. Even in the thick-slice reconstructions, the full size of the
system matrix is prohibitive. Storage of the system matrix thus requires the
exploitation of its sparsity and symmetries. For every projection index j, only a
narrow chord of pixels, representing just the region of support of projection line
blurring, are nonzero. We typically define the boundary of the chords’ region of
support at 5% of maximum, resulting in cross sections of size 7× 5 (thick-slice)
and 7× 7 (thin-slice), although we have also used more accurate (larger) cross
sections. As indicated in the line marked ‘nonzeros in C’ in Table 1, incorporat-
ing sparsity in the storage of the system matrix, alone, is not enough to reduce
the storage cost sufficiently; we must also take advantage of symmetries in the
system matrix. These symmetries, which include rotation and reflection in the
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thick-slice thin-slice
image size 128×128× 23 128× 128× 85
axial detector rings 12 43
transverse angles 240 240
rays per angle 155 155
n 376,832 1.40×106

N 5.35×106 6.30×107

elements in C 2.02×1012 8.82×1013

nonzeros in C 1.87×1010 6.14×1011

storage required for C 361 MB 1.36 GB
cost of sparse gradient 3 minutes 10 minutes
cost of full gradient 7 minutes 4 hours

Table 1: Properties affecting computation, memory, and storage costs for two
different-sized reconstruction problems. Gradient evaluation costs are based on
a 2.5M count study on an IBM RS/6000 SP using 10 133-MHz processors.

transverse plane [38, 39], axial reflection [8], and parallel axial redundancies [34],
account for a storage reduction factor of 104 for thick-slice reconstructions and
451 for thick-slice reconstructions.

Since in large-scale 3-D reconstructions, N � n, a reasonable data decompo-
sition strategy would be to partition projection-space data across the processors.
Indeed, as indicated in Table 1, the cost to memory of storing an 8-bit y vector
and a single-precision ŷ vector is 315 MB for a thin-slice reconstruction, Clearly
then, it is necessary to partition in projection space and decompose the prob-
lem accordingly. In our implementation, the symmetries are indexed primarily
in projection space. We can therefore decompose the problem by projection-
space symmetry and assign each processor certain groups of symmetry-related
projections. Specifically, we define N =

∑m
l=1 bl, where m is the number of

base-symmetry angles, l = 1, . . . ,m is a particular symmetry index, and bl is
the number of symmetry-related projections in symmetry index l. We then
define

y =
[
yT
1 yT

2 : : yT
m

]T
ŷ =

[
ŷT
1 ŷT

2 : : ŷT
m

]T
C =

[
C1 C2 : : Cm

]
Ŷl = diag

(
(ŷl)j

)
where yl, ŷl ∈ <bl and Cl ∈ <n×bl . Image-space vectors such as θ and ν (the
latter being defined by (10)) are replicated on all processors, but during a back
projection operation, these vectors temporarily store information representing
the back projection of particular processor’s portion of projection space. Thus
we introduce ν(d) ∈ <n, d = 1, . . . , D, where D is the number if processors, and
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define a parallel version of the forward back projection operation:
ν(d) = 0
for all l assigned to my processor d

ŷ
(k)
l = CT

l θ

ν(d) = ν(d) + ClŶ
−1
l y

end for

ν =
∑D

d=1 ν(d) (global summation across processors)

Using the update vector ν, we may then apply the appropriate image update
for the EM algorithm being implemented (for example, in ML-EM we would
apply (5).) The DePierro MAP-EM update may also be decomposed in parallel
in image space (the n-dimensional vectors are “image-space” vectors while the
N -dimensional vectors are “projection-space” vectors.) We have found that
DePierro separable maximization is actually quite fast and that computation is
dominated by the forward and back projections. Every EM iteration requires a
full traversal through the columns of the C matrix (the “chords.”) These chords
are read from disk as needed. Storing only the base-symmetry chords saves
some I/O costs but adds to the computational cost since the chord information
must be shuffled about in accordance with the symmetry operators. We noted
earlier that forward projection and back projection operations are common to
all iterative methods, including the new interior-point algorithms presented in
this paper. The parallelization scheme presented herein thus generalizes to our
new methods. For simplicity, we shall henceforth drop the partitioning notation
and only remark on the parallelization scheme in the context of computational
issues of interest.

4 Interior-Point Methods

Many authors have recognized the need to improve the convergence of the EM
algorithm. The ML-EM algorithm maintains feasibility at every iteration. In
generalizing the EM method to MAP, maximization of separable “surrogate
functions” permits easy enforcement of non-negativity constraints [14]. The
non-negativity property is lost when one departs from an EM framework and
attempts to maximize the objective function directly. Some work has been
done in developing line searches while maintaining feasibility [38, 47]. Others
have considered conjugate gradient techniques [43, 52]. Most of the methods re-
ported to date have been explicitly unconstrained methods with modifications to
maintain feasibility rather than methods intended for constrained optimization.
A significant exception to this is Mumcuoglu, who has attempted to enforce
non-negativity via a quadratic penalty term in the objective function [52] and
has explored active-set methods [53].

In this paper, we shall introduce methods for solving the ML and MAP
reconstruction problems by solving a sequence of subproblems that successively
approach the constraint boundary from the interior of the feasible region and
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are hence known as interior-point methods. We shall develop special algorithms
to converge to the ML or MAP solution in an interior-point framework. These
algorithms carefully exploit the computational features of the objective function
and avoid excessive computation and storage. A widely-held belief is that
Newton’s method is too computationally prohibitive to be applied to large-scale
optimization problems. Our algorithms can be viewed as alternatives based
on Newton’s method that do not require storage or factorization of the Hessian
and do not require storage of anything larger than an image-space vector. The
huge projection-space vectors are partitioned in parallel, permitting the interior-
point methods to be successfully applied to even the largest of the reconstruction
problems.

Before we develop the algorithms, let us define a general objective function
that can be applied to either ML or MAP reconstructions:

f (θ) =
{ −fML (θ) for ML
−fMAP (θ) for MAP.

Thus for convenience of notation we repose the reconstruction problem as a
constrained minimization problem:

min f (θ)
s.t. θ ≥ 0. (11)

Since the ML objective function is simply a specific case of MAP with γ = 0, and
because in general we are more interested in the fully converged MAP solution
than that of ML, we shall henceforth assume that f (θ) = −fMAP (θ). The
necessary conditions for optimality of (11) are existence of Lagrange multipliers
λ so that

∇` (θ, λ) = ∇f (θ)− λ = 0 (12)
λiθi = 0, i = 1, . . . n (13)
λ ≥ 0 (14)

where ` (θ, λ) = f (θ)−λT θ is the Lagrangian function. The Lagrange multipliers
are also termed the dual variables (the variables θi are the primal variables.)

The vector θ is primal feasible if θ ≥ 0. The pair
[
θT , λT

]T
is dual feasible if

∇f (θ)− λ = 0 and λ ≥ 0. The condition λiθi = 0 is known as complementary
slackness. We see therefore that necessary conditions for optimality are primal
feasibility, dual feasibility, and complementary slackness. We shall denote the
optimal solution that satisfies (12-14) as (θ∗, λ∗) .

4.1 The Logarithmic Barrier Method

Barrier methods, developed by Fiacco and McCormick [19], find the so-
lution to a constrained optimization problem by solving a sequence of uncon-
strained optimization subproblems. The unconstrained subproblems involve an
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auxiliary function that penalizes closeness to the constraint boundaries. Bar-
rier methods are strictly feasible methods, i.e. the iterates lie in the interior of
the feasible region (θ > 0). They maintain feasibility by creating a barrier that
keeps the iterates away from the boundary of the feasible region. Barrier meth-
ods were considered for many years to be ineffective because of their potential
for structural ill-conditioning of the Hessian. Recent developments in linear
programming [37, 41] and nonlinear programming [59], however, have revived
interest in barrier methods.

The most widely used auxiliary function is the logarithmic barrier. Let us
define the logarithmic barrier objective function for (11) as

F (θ, µ) = f (θ)− µ
∑

i

log θi.

In so doing, we form a new objective function. We specify a strictly feasible
starting point θ0 > 0 and solve a sequence of unconstrained subproblems based
on the logarithmic barrier objective function

minF (θ, µk) (15)

for a decreasing sequence of barrier parameters µk > 0. The solution to each
subproblem resides in the interior of the feasible region, and for this reason the
logarithmic barrier method is an interior-point method.

Consider the point θ (µ) that is a minimizer of F (θ, µ). Since the gradient
of the barrier function at this point is zero,

∇F (θ (µ) , µ) = ∇f (θ (µ))− µΘ−1en = 0,

where en ∈ <n and Θ is a diagonal matrix with diagonal elements θi (µ) . Defin-
ing

λi (µ) =
µ

θi (µ)
i = 1, . . . , n, (16)

we note that

∇F (θ (µ) , µ) = ∇f (θ (µ))− λ (µ) = ∇` (θ (µ) , λ (µ)) = 0.

Thus, the solution to each subproblem satisfies a perturbed version of the
first-order necessary conditions for optimality:

∇f (θ (µ))− λ (µ) = 0 (17)
λi (µ) θi (µ) = µ, i = 1, . . . , n (18)

λ (µ) ≥ 0. (19)

(In practice we do not solve the subproblems exactly but rather set a termination
criterion based on the minimum multiplier estimate and ‖∇F (θ, µ)‖ .) Under
mild conditions, it can be proven [19] that as µ→ 0, θ (µ)→ θ∗, and λ (µ)→ λ∗,
where (θ∗, λ∗) is the optimal solution to the constrained problem (11).
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4.1.1 Solving the Unconstrained Subproblem

Most successful algorithms for unconstrained optimization are motivated by
Newton’s method. In the minimization of an unconstrained objective function
F (θ) , Newton’s method iteratively updates the set of estimates via

θ ← θ + p,

where the Newton direction p is found by solving

∇2F (θ) · p = −∇F (θ) . (20)

The most important advantage of Newton’s method is that when started suf-
ficiently close to the solution, the method has a quadratic rate of convergence.
In its “pure form” however, Newton’s method has some drawbacks. First, a
step size must be found to guarantee descent. Next, safeguards must be incor-
porated in the event of non-convexity (although this drawback does not apply
to the present problem). Finally, for many large problems, including ML PET
reconstructions, forming or factorizing the Hessian is prohibitive due to the size
of the problem and the amount of computation that would be required.

An important convergence theorem states that, in order for an unconstrained
optimization method to achieve superlinear convergence, its search directions
must approach the Newton direction in the limit as the solution is approached
[60]. Thus we are motived to use a method that approximates the Newton
direction without incurring the heavy computational costs and potential diffi-
culties of the pure Newton method. A robust method that approximates the
Newton direction, requires little storage, is computationally efficient (and thus
is suitable for very large problems), and can safeguard against non-convexity
is the truncated-Newton [12] method. It consists of an outer iteration and an
inner iteration. The outer iteration computes a step size α and updates the
solution estimate

θ ← θ + αp.

The search direction, computed by an inner iteration, is an approximate or
truncated solution to the Newton equations [56],[58]

∇2F (θ) p ≈ −∇F (θ) . (21)

A linear conjugate gradient method [32] is commonly used to solve for (21); the
method is truncated before the exact solution has been found, hence the name
“truncated-Newton.”

An equivalent statement of (21) is we seek to find the direction p that ap-
proximately minimizes the quadratic Q (p) = 1

2p
T∇2F (θ) p + ∇F (θ) p. A

reasonable and effective truncation point for (21), based on the monotonicity of
Q (p) , is proposed in [57]; the conjugate gradient is terminated at subiteration
l if

Q
(
pl
)−Q (pl−1

)
Q (pl)

≤ 1
2l
. (22)
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The truncated-Newton method does not require storage of the Hessian, but
rather only application of Hessian-vector product(s) in the conjugate gradient
subiteration(s). From (3) we have that the Hessian-vector product has the form

∇2fML (θ) v = −C Y Ŷ −2CT v (23)

for arbitrary vector v ∈ <n. Computationally, (23) consists of a forward pro-
jection (CT v) followed by a diagonal scaling (it is reasonable to assume that ŷ
is already available from the computation of ∇f (θ)), followed by a back pro-
jection (premultiplication by C). The computation of ∇2F (θ) v requires only
minimal additional computation, as does the computation of the Hessian-vector
product for MAP. To be explicit, since

∇2F (θ) = ∇2f (θ) + µΘ−2, (24)

then
∇2F (θ) v = C Y Ŷ −2CT v + γ∇2R (θ) v + µΘ−2v,

where ∇2R (θ) v can be computed exactly without incurring significant compu-
tational expense. The forward and back projection operations in (23) dominate
the computational cost of a conjugate gradient iteration. This operation is
computationally similar to computing the gradient, or one EM iteration. The
MAP terms in the objective function, gradient, and Hessian vector product are
readily decomposed in image space and parallelized, further reducing the overall
computation.

4.1.2 Preconditioning

When working in exact arithmetic, the number of iterations required by the
conjugate gradient method to find an exact solution to ∇2F · p = −∇F is
equal to the number of distinct eigenvalues of ∇2F. (Here and elsewhere in
the paper, we use ∇F and ∇2F as a shorthand for ∇F (θ) and ∇2F (θ) respec-
tively.) The conjugate gradient method converges linearly with rate constant(√
κ− 1

)
/
(√
κ+ 1

)
, where κ is the condition number of ∇2F [58]. To acceler-

ate convergence, we would like to find a preconditioner M such that M−1∇2F
has fewer distinct eigenvalues than ∇2F and a condition number closer to 1.
We would then use the conjugate gradient method to solve a preconditioned
system of equations

(
M−1∇2F

)
p ≈ −M−1∇F. (25)

In practice, finding a good preconditioner is important to making the truncated-
Newton method competitive [55]. We prefer to find a preconditioner such that
the cond

(
M−1∇2F

) ≈ 1 and M−1 is easy to apply [23].
For ML and MAP it is possible to find the exact diagonal Hessian precon-

ditioner (the diagonal matrix whose diagonal elements are exactly equal to the
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diagonal elements of the Hessian) at a reasonable cost. For MAP we have for
the diagonal terms of the Hessian (recalling again (3)):

(∇2F
)
i,i

=
∑

j

C2
i,jyj

ŷ2
j

+ γ
∂2R (θ)
∂θ2i

+
µ

θ2i
. (26)

Note that the first right-hand side term in (26) is similar in form to a back
projection, although a bit more expensive due to the squaring operations.

We have found that in MAP reconstruction problems, solving (25) using the
exact diagonal Hessian preconditioner to the tolerance defined in (22) usually
requires fewer than 10 conjugate gradient iterations, regardless of the size of the
problem! In many cases, only 3 or 4 conjugate gradient iterations are required.
The directions produced by (25) with a diagonal Hessian preconditioner are well
scaled (usually allowing step sizes of near 1) and lead to rapid descent. We have
investigated a number of other preconditioners, including FFT-based precon-
ditioners that model the approximately Toeplitz-block-Toeplitz nature of ∇2F
with a circulant-block-circulant approximation [7, 9], high-pass filter approxima-
tions to the FFT-based preconditioner [10], the EM preconditioner diag(θi/qi)
[43], and diagonal Hessian approximations [55]. These other preconditioners
performed poorly in comparison to the exact diagonal Hessian preconditioner.
In fact, the performance of these other preconditioners was only slightly better
than that of the identity matrix (solving (21) without a preconditioner). It
has been reported that block-circulant preconditioners are the most effective
for solving conjugate gradient systems of equations in weighted least squares
reconstructions [9]. We suspect that the observed poor performance of the
block circulant preconditioners may be due to that diagonal barrier terms in
∇2F that further corrupt the approximately Toeplitz-block-Toeplitz nature of
∇2fML. That is, after adding the regularizing and barrier terms to ∇2fML,
the block circulant approximation may no longer be very accurate.

4.1.3 Line Search

A potentially expensive component of the unconstrained minimization
problem is the line search for the determination of the step size α. For ML and
MAP reconstructions, knowledge of the structure of the objective function can
lead to a substantial reduction in the cost of implementing a line search over a
more naive approach. Specifically, after the search direction p has been found,
and once a forward projection ŵ = CT p ∈ <N has been computed, it is possible
to compute the objective function and directional derivative values at the trial
points

(
θk + αp

)
at little additional cost. To see this, note that

ŷk+1 = CT θk+1 = CT
(
θk + αp

)
= ŷk + αŵ.

Since (1) can be rewritten as

fML (θ) = −
∑

j

(
ŷk

j − yj log ŷk
j

)
,
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we have [39] that

f
(
θk + αp

)
=
∑

j

((
ŷk

j + αŵj

)− yj log
(
ŷk

j + αŵj

))
+

1
2
γR
(
θk + αp

)
. (27)

Similar expressions exists for the directional derivatives [52]:

d

dα
f
(
θk + αp

)
=

∑
j

(
wj − yjŵj

ŷk
j + αŵj

)
+ γpT∇θR (θ + αp) (28)

d2

dα2 f
(
θk + αp

)
=

∑
j

(
yjŵ

2
j(

ŷk
j + αŵj

)2
)

+ γpT∇2
θR (θ + αp) p

Using equations (27) and (28), the function and directional derivative along
p for various trial points of α can be evaluated at very little computational
cost. After the initial forward projection to compute ŵ, no further projection
operations are required during the line search. The forward projection ŵ can
be re-used, so that only one back projection is subsequently required to update
the gradient.

The above observations and the well behaved convex nature of the objective
function have permitted us to implement a highly accurate but low-cost Newton
line search. We initialize the search with

α0 = min (1, 0.9995αmax)

where αmax is the maximum step length that does not violate non-negativity.
We then take Newton steps on α :

α← α−
d

dαf
(
θk + αp

)
d2

dα2 f
(
θk + αp

)
until the Wolfe condition∣∣∣pT∇F

(
θk + αp

)∣∣∣ ≤ η ∣∣∣pT∇F
(
θk
)∣∣∣

is met. Due to the low cost of each step we have chosen a relatively strict
Wolfe tolerance of η = 0.05. Since the vectors y, ŷ, and ŵ are distributed across
the processors, the summations in (27) and (28) are readily parallelized, fur-
ther reducing computational expense. The MAP components parallelize easily
through a decomposition in image space. We find this line search technique
to be highly effective and, in no small part, responsible for the positive results
we report. The Wolfe criterion to η = 0.05 is usually satisfied in only a few
steps. Being that the directions are well scaled, the trial point α = 1 satisfies
the Wolfe criterion in many cases, precluding the need for a line search at all
when that occurs.
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4.1.4 Stabilization

A well known property of the logarithmic barrier method is that as µ→ 0,
the Hessian of the barrier objective function becomes increasingly ill conditioned
[54]. This manifests itself as follows. Consider the index set I of binding
constraints (the indices i for which θi = 0) at the optimal solution. Define
N to be the Jacobian matrix of the binding constraints (for non-negativity
constraints, N is simply formed from columns of the identity matrix), N# to be
a left pseudo-inverse of N , and Z to be a basis matrix for the null space of NT .
Recalling (24) and denoting θ = θ (µ), we define ΘI = diag (θi (µ) , i ∈ I) and
ΘJ = diag (θi (µ) , i /∈ I). For lower-bound constraints, we may rewrite (24)
as

∇2F (θ) = H + µNΘ−2
I N# (29)

where
H = ∇2f (θ) + µZΘ−2

J ZT . (30)

As µ→ 0 and the optimal solution is approached, θi → 0, i ∈ I, but θi, i /∈ I
tend away from zero, and thus H remains relatively well conditioned. Thus we
make the observation that as µ→ 0, H remains well conditioned while ∇2F (θ)
becomes increasingly ill conditioned.

Nash and Sofer have developed an approximation to the Newton direction
that avoids this structural ill conditioning [59]. For small µ we can approximate
the Newton direction by p ≈ p1 + µp2, where

p1 = −Z (ZTHZ
)−1

ZT∇F (31)

ζ = N# (Hp1 +∇F ) (32)

p2 = − (N#)T Λ−2
I ζ.

where ΛI = diag (λi (µ) , i ∈ I)and λi (µ) are defined by (16). Equation (31)
can be solved using the conjugate gradient method on the well-conditioned ma-
trix ZTHZ and equation (32) requires one additional Hessian-vector product
of the type previously described. The index set I is based on a prediction of
the set of active constraints at the solution, i ∈ I if θi ≤ 100µ. Nash and
Sofer have proved that, for sufficiently small µ, the vector p computed using
the above approximation yields a descent direction with respect to the logarith-
mic barrier objective function [59]. We have found through empirical evidence
that for MAP reconstructions, a reasonable rule for incorporating stabilization
is µ ≤ 2 · 10−4. This generally corresponds to the last barrier subproblem of
3-D reconstructions.

4.1.5 Initializing the Barrier Parameter

The choice of the initial barrier parameter may have a substantial effect on
the algorithm. If the parameter is too small, the first subproblem may have
extreme difficulty due to ill conditioning; if the parameter is too large, then
many (unnecessary) subproblems will be required to solve the problem. Proper
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initialization of the barrier parameter µ involves finding the most suitable point
on the barrier trajectory based on the initial solution θo and the observation
data y. Recalling the perturbed optimality conditions in (17), we write

∇F (θ, µ) = q − CŶ −1y + γ∇R (θ)− µΘ−1en = 0.

Post-multiplying by θ we arrive at

qT θ − yT eN + γθT∇R (θ) = nµ,

or
eT

N

(
CT θ − y)+ γθT∇R (θ) = nµ.

This suggests the following rule for initialization, which we find quite effective:

µ0 =
eT
N

(
CT θ0 − y)+ γθ0T∇R (θ0)

n
. (33)

The initial solution we used most frequently was a uniform field, although other
choices may be preferable. An alternative scheme for initializing µ is described
in Section 4.3.

4.1.6 Extrapolation

The set of solutions θ (µ) defines a unique differentiable trajectory. Thus the
solution to the previous subproblems may assist in predicting a solution to the
next subproblem. This prediction can serve as a starting point for the next
subproblem. We have implemented linear, quadratic, and cubic extrapolation
to predict the solutions to subproblems 3, 4, and 5+, respectively. If the
extrapolated solution is infeasible, we move along the direction of extrapola-
tion to the extrapolation θ ← θ + ᾱ∆θ, where ᾱ = 0.98αmax and αmax is the
maximum feasible step size to the constraint boundary. In MAP reconstruc-
tions, extrapolation generally eliminates one to three truncated Newton steps
per subproblem.

4.1.7 Termination

Termination of the logarithmic barrier method should be based on closeness to
the solution defined by the Karush-Kuhn-Tucker (KKT) first-order necessary
conditions in (12-14). (The second-order necessary condition is satisfied au-
tomatically by the known convexity of F (θ).) We therefore need to define
tolerances on the optimality criteria and estimates of the Lagrange multipliers
for the purpose of defining a reasonable termination point. At the optimal
solution, the Lagrange multipliers may be written

λ∗
i =

{
∂f(θ∗)

∂θi
for θ∗

i = 0
0 for θ∗

i > 0
. (34)
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In our implementation, we define four termination rules, two for subproblem
termination and two for final termination. A commonly used rule for subprob-
lem termination is

‖∇F (θ, µk)‖∞ ≤ ε. (35)

We have been able to achieve more consistent results by using∣∣∣F (θ (µ)k
)
− F

(
θ (µ)k−1

)∣∣∣∣∣∣F (θ (µ)k
)∣∣∣ ≤ ε1 (36)

where ε1 = 10−6 for the thick-slice reconstructions. Specifying the accuracy
of a subproblem solution is a tradeoff between time spent in the current sub-
problem and (potentially) time spent in the next. For MAP reconstruction, we
have discovered that the barrier method works best with a relatively accurate
subproblem solution. As such, our implementation of the barrier method is a
“long-step” algorithm. The other requirement for subproblem termination is

min (λi (µ)) ≥ ε2. (37)

Final termination is based on norms of the gradient of the Lagrangian and
complementarity vector. The criteria for final termination are

‖∇θ` (θ, λ)‖∞ ≤ ε3 (38)
max |θiλi| ≤ ε4. (39)

For the logarithmic barrier method, the criteria in (37), (38), and (39) refer to
the estimates of the dual variables at the solution as defined by (34). In prac-
tice, we find it necessary to fix λi = 0 if θi ≥ δ, since some of the nonbinding θi

can be quite large and the ∂f/∂θi never reach exactly zero in finite precision.
The parameter δ should be chosen to reflect the threshold below which variables
are to be considered binding. We have found that for thick-slice 3-D recon-
structions, reasonably accurate solutions are ensured if we choose ε2 = −10−5,
ε3 = .02 and ε4 = .002.

4.2 Primal-Dual Methods

Primal-dual methods are another class of interior point methods. Unlike the
logarithmic barrier method, which estimates only the primal variables, primal-
dual methods simultaneously estimate both the primal variables θ and dual
variables λ. Like the logarithmic barrier method, the primal-dual methods
generate estimates of the variables that lie on a differentiable trajectory, and
the points on this trajectory are characterized by a barrier parameter µ. Solu-
tions at a particular point µ along the barrier trajectory satisfy the perturbed
optimality conditions (17-19). Primal-dual methods have enjoyed great success
in linear programming problems [41] and have very recently been proposed for
nonlinear optimization [11, 20]. These methods maintain primal feasibility and
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dual feasibility to within a specified tolerance while reducing the duality gap in
the complementary slackness as µ is reduced and the optimal primal-dual so-
lution is approached. The primal-dual algorithm for MAP reconstruction that
we present here closely follows the method recently proposed by Conn, Gould,
and Toint [11].

From the perturbed optimality conditions (17) and defining v =
[
θT λT

]T
,

we have

g (v) =
[ ∇f (θ)− λ

ΛΘen − µen

]
= 0. (40)

Taking a linear approximation to (40) and defining p =
[
pT

θ pT
λ

]T
,

g (v + p) ≈ g (v) +∇g (v) p = 0,

we can simultaneously solve the Newton equation for the primal and dual di-
rections: [ ∇2f (θ) , −I

Λ, Θ

] [
pθ

pλ

]
= −

[ ∇f (θ)− λ
ΛΘe− µe

]
.

This yields the system

(∇2f(θ) + Θ−1Λ)pθ = −∇f(θ) + µΘ−1en (41)
pλ = −λ−Θ−1Λpθ + µΘ−1en. (42)

Observe that (41) is very similar in form to (20) and can be approximately
solved using the conjugate gradient method in the same manner as (21). The
formulae presented earlier for computing the Hessian-vector product and exact
diagonal Hessian preconditioner also apply, with very minor modifications, to
the conjugate gradient computation of pθ. From (42), computing the dual direc-
tion vector involves only basic operations on vectors. We then move the primal
and dual solution vectors according to[

θk+1

λk+1

]
=
[
θk + αθpθ

λk + αλpλ

]
.

In this algorithm the primal and dual step sizes may be chosen independently,
provided that certain conditions beyond non-negativity are satisfied for the dual
step.

In primal-dual methods, a merit function that measures the progress of the
algorithm needs to be defined. The primal step size is chosen in such a way
as to maintain primal feasibility and to ensure sufficient decrease in the merit
function. If the merit function is chosen properly, sufficient decrease in the
merit function should permit a reduction in the tolerance of the dual feasibility
condition ‖∇` (θ, µ)‖ = 0. There is a close connection between the primal-dual
method and the logarithmic barrier method in that both methods have the
same perturbed optimality conditions (17) at subproblem solution. This close
connection to the logarithmic barrier method motivates the merit function

19



F (θ, µ) = f (θ)− µ
∑

i

log θi.

Note that F (θ, µ) is simply the logarithmic barrier function and that

∇θF (θ, µ) = ∇f (θ)− µΘ−1en

is identical to the right-hand side of (41). Conn et al. have proved that
pT

θ∇θF (θ, µ) ≤ 0 [11], so pθ is a descent direction for the merit function. Thus
the line search technique developed in Section 4.1.3, which maintains primal
feasibility, applies equally well to finding αθ for the primal-dual method.

The formula for the dual step size αλ is as follows. If λ(k)+pλ lies component-
wise in the interval

λk + pλ ∈ (43)[
.01 min

(
en, λ

k, µkΘ−1
k+1en

)
,max

(
100en, λ

k, 100µ−1
k en, 100µkΘ−1

k+1en

)]

then λk+1 = λk + pλ. Otherwise find 0 < αλ < 1 such that λk+1 = λk + αλpλ

minimizes
‖Λk+1Θk+1en − µken‖ (44)

subject to λ(k+1) being in the interval (43). These conditions on the dual step
might appear at first glance to be overly restrictive but are actually designed to
give maximum flexibility in the choice of λk+1 [21]. In practice we find that both
the primal and dual direction vectors are well scaled in MAP reconstructions,
and that αθ and αλ are typically close to 1. We emphasize that the computa-
tional expense of the dual update is quite small in comparison to the forward
and back projection costs.

Setting the barrier parameter µ is an important consideration in the primal-
dual algorithm. Prior to adjusting µ we must satisfy conditions on complemen-
tary slackness and gradient of the Lagrangian:

(
λk+1

)T

θk+1

n
≤ ϑCµk (45)

and ∥∥∥∇f (θk+1
)
− λk+1

∥∥∥ ≤ ϑDFµk

where ϑC and ϑDF are constant parameters. If the above conditions are satis-
fied, we reduce the barrier parameter according to

µk+1 =

(
λk+1

)T

θk+1

nρ
. (46)
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From empirical evidence in our computational studies, we have found that
a “short-step” algorithm with gradual reduction in µ achieves the fastest con-
vergence to the KKT conditions. Specifically we define ϑC = 1.9, ρ = 2, and
ϑDF = 100. We have also discovered, however, that a trade-off exists whereby
higher values of ρ lead to faster early convergence at the expense of overall con-
vergence. An “rapid early progress” variant of our algorithm thus consists of
defining ϑC = 99, ρ = 100, and ϑDF = 100. In both variants of the algo-
rithm, subproblems usually consist of only one truncated-Newton step, except
for the first subproblem which can often require two steps. Both variants of the
algorithm satisfy Conn, Gould, and Toint’s “µ-critical” subproblem condition,
which is key to their convergence proof [11].

4.2.1 Primal-Dual Initialization and Termination

The initialization strategy of equation (33), being motivated by the perturbed
optimality conditions, may also be used in the primal-dual algorithm. We
advise against using (46) for initialization however, since the choices of θ0 and
λ0 are essentially arbitrary and because (46) contains no dependence on the
observation data. For both θ0 and λ0 we use uniform fields, although other
possibilities exist for θ0.

Final termination of the primal-dual algorithm requires only tests of the
gradient of the Lagrangian and complementary slackness. Since the dual line
search ensures that λ > 0 at all times, we need not test that condition. Convex-
ity of the objective function guarantees that the second-order necessary KKT
condition will be satisfied. For the test on the gradient of the Lagrangian we
use (38) with ε3 = .02 as we did with the logarithmic barrier method. In the
primal-dual method, however, ` (θ, λ) is computed with the actual dual variables
rather than an estimate of the Lagrange multipliers at the optimal solution. For
the test on complementary slackness, we drop (39) in favor of

λT θ

n
≤ ε5. (47)

In our tests we have used ε5 = 1.5·10−4, which yields roughly the same tolerance
as using (39) with ε4 = .002.Athough we use (47) as our primal-dual termination
criterion for complementary slackness, in our computational studies we do track
max (λiθi) .

4.2.2 Primal-Dual Stabilization

The stabilization technique of Section 4.1.4 can readily be applied to the com-
putation of the primal direction in the primal-dual algorithm with only minor
modifications. The primary difference is that we are now able to use the actual
dual variables. Defining ΛI = diag (λi, i ∈ I) and ΛJ = diag (λi, i /∈ I), the
matrix in the left-hand side of (41) may be rewritten as

B = G+NΘ−1
I ΛIN#
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where
G = ∇2f (θ) + ZΘ−1

J ΛJZT .

As µ → 0, θi → 0, i ∈ I , and B becomes increasingly ill conditioned while G
avoids the structural ill conditioning. (Note that equations (29) and (30) may
also be written in the above form, since λi (µ) = θi (µ) /µ for the logarithmic
barrier method). We thus define a prediction of the active set at the solution
as we did for the logarithmic Barrier method. For small µ, say µ ≤ 2 · 10−4,
we can approximate the Newton direction by pθ ≈ p1

θ + µp2
θ, where

p1
θ = −Z (ZTGZ

)−1
ZT∇F

ζ = N# (Gp1
θ +∇F )

p2
θ = − (N#)T Θ−1

I ΛIζ,

and −∇F is identical to the right-hand side of (41).
In our experience, the above stabilization technique has been quite effective

in the last two or so primal-dual subproblems. In the absence of stabilization,
near the primal-dual solution, either the primal direction or dual direction can
often be poorly scaled, and the conjugate gradient can take more than 10 subit-
erations. With stabilization, both the primal and dual directions are generally
well scaled near the solution, with a further benefit of a reduction in the cost of
the conjugate gradient.

4.2.3 Primal-Dual Extrapolation

Since the primal-dual method follows a unique trajectory in µ, one may be able
to use the solutions of previous subproblems to predict the next subproblem.
Our experience in MAP reconstructions is that the best results are obtained by
extrapolating the primal solution θnew ← θold + ᾱ4θ, where 4θ is the direction
of extrapolation and ᾱ is used to maintain primal feasibility, and then (in the
manner of (42)) find a dual direction vector according to

∆λ = −λold −Θ−1
oldΛ (ᾱ4θ) + µΘ−1

olden.

The dual vector is then moved according to λnew ← λold+αλ4θ, which requires
another dual line search to minimize (44).

Following extrapolation, a gradient evaluation is required to update the vec-
tor ∇F . Since the primal-dual algorithm requires between 12 and 25 sub-
problems to perform a 3-D MAP reconstruction, extrapolation adds that many
gradient evaluation operations to the computational cost. So extrapolation is
only economical is it reduces the computational burden by at least as much
as it adds. Our experience has been that for some data sets, the cost of ex-
trapolation is well worthwhile but for other data sets the cost of extrapolation
was slightly greater than the savings. Extrapolation thus appears to serve as
somewhat of a safeguard against difficult problems. In an extrapolated primal-
dual reconstruction, the convergence measure max (λiθi) does not decrease as
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monotonically as in a primal dual reconstruction without extrapolation. Cer-
tain extrapolated steps seem to cause the algorithm to “get ahead of itself,” but
this effect is transient. On the studies we’ve performed, the algorithm does
ultimately converge to an accurate solution with extrapolation.

4.3 Sparse Implementation of Interior Point Methods

The largest of the reconstruction problems (the “thin slice” reconstructions
of Table 1) pose a special challenge. Notice in Table 1 that a “full” gradient
evaluation requires 4 hours whereas a “sparse” gradient evaluation requires only
10 minutes for a 2.5 million count study on 10 IBM RS/6000 SP2 processors.
This rather wide disparity is due the sparsity of y. Again referring to Table 1,
a data set with 2.5 million counts will have at most 4% of coincidence lines
occupied in the thin-slice case. This is significant because most computations
do not require a visit to every projection line. For example, the back projection
operation may be implemented as follows to exploit sparsity:

νi =
∑

j:yj 6=0

Cijyj

ŷj
.

The presence of yj in the numerator obviates the need for visits to the unoccu-
pied projection lines.

Similar sparse implementations exist for the Hessian diagonal and Hessian-
vector product calculations, where in both cases yj sits in the numerator. Even
the forward projection operation can be performed on only those ŷj for which
yj 6= 0. The question is, can we perform an interior-point reconstruction
without ever computing those ŷj in the sparse subspace of y? The answer is
yes, but with a few minor modifications to the methods outlined above.

One operation that clearly requires correct values for all ŷj is the objective
function evaluation,

f (θ) =
∑

j

(ŷj − yj log ŷj) .

Objective function values are not necessary for the purpose of performing a
reconstruction. As described in Sections 4.1.7 and 4.2.1, they were used for
defining a termination measure for the barrier subproblem. Clearly, the sparse
implementation cannot use (36) as a subproblem termination rule. Rather, it
uses (35):

‖∇F (θ, µ)‖∞ ≤ ε6
We have found that a reasonable value for ε6 is 0.5.

Another operation that must be modified for thin slice reconstructions is the
initialization procedure defined by (33), which requires the full set of projection
lines. We can consider alternative ways of finding an initial value of µ that is
reasonably close to the point on the barrier trajectory for the initial solution θ0.
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The goal is to find a µ0 such that

∇F (θ0, µ0
)

= ∇f (θ0)− µΘ−1e ≈ 0.

One such initialization rule that produces results similar to those of (33) is [60]

µo =

∥∥∇f (θ0)∥∥2

‖Θ−1e‖2
.

The operation most severely affected by the sparse implementation is the line
search. Although the line search does not require a function evaluation, the
directional first and second derivatives, defined by (28), require ŷj ∀j. In thin
slice reconstructions, however, we forward project onto only the dense subspace
of y. Thus we must replace (28) with

d

dα
f
(
θk + αpθ

)
= −pT∇θfML

(
θk + αpθ

)
+ γpT

θ∇θR
(
θk + αpθ

)
d2

dα2 f
(
θk + αpθ

)
= −pT

θ∇2
θfML

(
θk + αpθ

)
pθ + γpT

θ∇2
θR
(
θk + αpθ

)
pθ.

One Newton step of the sparse implementation of the line search thus requires
one back projection (to compute ∇θfML

(
θk + αpθ

)
from ŷk + αŵ ) and one

Hessian-vector product. Clearly this increases the cost of the line search. To
reduce the computational burden of the line search, we have raised the Wolfe
tolerance of the sparse implementation to η = 0.25. As we mentioned earlier,
the line search converges quickly, and few Newton steps are required in practice.

5 Computational Studies

In order to test the convergence properties of the interior point methods and to
compare the computational requirements of the interior point methods against
MAP-EM, we have performed a number of reconstructions on data acquired
from a small animal scanner and data generated by a Monte Carlo simulation of
the same small animal scanner. The scanner consists of two opposed NaI(Tl)
continuous-slab detector plates, each 50× 50× 4-mm, optically coupled to po-
sition sensitive photomultiplier tubes and separated by 128-mm [63]. This
scanner can accept axial coincidences of up to 21.9o. A small animal rotates
at least one full revolution on a turntable that is centered between the detector
plates. List-mode data from the scanner are binned into “thick-slice” or “thin-
slice” projection sinograms as specified in Table 1. Corrections for redundant
sampling and radioactive decay have been incorporated into the system matrix;
no other physical corrections have been applied.

Reconstructions were performed on six data sets, described below. Four of
the data sets are of actual small animal data; two data sets are from Monte Carlo
simulated data. The Monte Carlo simulation realistically models positron range
and non-colinearity as well as depth of interactions effects and crystal scatter
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study x f∗ npr nit ncg ngr MAP-EM
brain 2,465,770 19 19 110 148 1000
fdg * 2,397,232 16 16 91 139 > 1000
skull 2,269,180 22 22 126 170 990
uniform * 2,752,502 14 16 119 165 > 1000
poi/cyl 2,536,110 26 26 131 183 770
Derenzo 3,660,344 24 24 127 175 > 1000

Table 2: Summary of thick slice primal-dual results and comparison with MAP-
EM. An asterisk in the column marked x indicates that extrapolation was used;
in all cases ρ = 2.

but ignores random coincidences, the effects of attenuation and object scatter,
and spatial non-uniformities in the scanner’s resolution. The resolution model
in the system matrix is a simplified uniform 1.2-mm FHWM in all 3 directions
(radial, tangential, axial) across the entire field of view of the scanner. The
region of support of each reconstruction is a cylinder inscribed in a (50-mm)3

box. Figure 1 depicts central transverse slices of the reconstructed images
(from the primal-dual method) of the data sets described below.

• brain2 - FDG study of a rat brain, 1.5M counts.

• FDG2 - FDG study of a (different) rat brain, 2.3M counts.

• skull - F-18 study of a rat skull. Prominent in the displayed section is
the mandible; 1.5M counts.

• uniform - Physical uniform cylinder phantom. Observe the relative radial
uniformity of the reconstructed image, demonstrating the relative lack of
attenuation due to the small size of the object; 1.9M counts.

• poi/cyl - Monte Carlo simulation of point sources in a warm cylinder
background; 5.1M counts.

• Derenzo - Monte Carlo simulation of the Derenzo phantom. The di-
ameters of the capillary tubes, in counter-clockwise order, are 0.6-mm,
0.8-mm, 1.0-mm, 1.2-mm, 1.5-mm, 2.0-mm.

Reconstructions of these six data sets were taken to full convergence. A
prior strength of γ = 3 · 10−4 was used with a 10-pixel neighborhood. This
prior strength was determined by finding the “elbow” of the noise/resolution
curve from 2-D reconstructions and subsequent adjustment based on visual in-
spection of the 3-D reconstructions. The primal-dual method terminated upon
satisfaction of (38) with ε3 = .02 and (5) with ε5 = 1.5 ·10−4. Table 2 compares
the computational expense required by the primal-dual method to reach conver-
gence and compares it to that required of DePierro’s MAP-EM to reach the same
objective function value f∗. Although we generally compare the interior-point
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(a) brain2 (b) FDG2 (c) skull

(d) uniform (e) poi/cyl (f) Derenzo

Figure 1: Central transverse sections of the thick-slice primal-dual reconstruc-
tions.
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results with DePierro’s MAP-EM, we have found that DePierro’s MAP-EM and
OSL produce very similar results, the former being perhaps one iteration ahead
of the latter.

We have devised a metric to measure the cost of an interior point reconstruc-
tion. Define the number of subproblems to be npr, the number of truncated-
Newton iterations nit, the number of conjugate gradient subiterations ncg. The
cost of one conjugate gradient iteration (dominated by the Hessian-vector prod-
uct) is equivalent to the cost of one gradient evaluation or EM iteration. One
truncated-Newton iteration requires, in addition to the ncg operations, one di-
agonal Hessian evaluation plus a forward projection and a back projection. The
exact cost of these operations varies depending on the size of the problem and
number of counts, but we shall approximate the cost one truncated-Newton iter-
ation to be the equivalent of two EM iterations beyond the cost of the conjugate
gradients. Thus in unextrapolated interior-point reconstructions, the total cost
of the reconstruction can be measured in units of equivalent number of gradient
evaluations (or EM iterations):

ngr = 2 · nit+ ncg.

Extrapolation requires an additional gradient evaluation following the extrapo-
lation in order to update the gradient vector. With extrapolation we modify
the formula to

ngr = npr + 2 · nit+ ncg.

In Table 2 the column marked MAP-EM lists the number of MAP-EM itera-
tions required to reach the objective function f∗ that required ngr iterations of
the primal-dual method. Two of the primal-dual results are extrapolated; for
brevity we have not included a complete comparison of extrapolated and unex-
trapolated primal-dual results but in general extrapolation provides some im-
provement. Comparing the last two columns of Table 2, the primal-dual method
clearly offers significant improvement in convergence to the optimal MAP solu-
tion. Table 3 provides a similar comparison between the barrier method and
MAP-EM on the same data sets. Extrapolation was used on all barrier studies.
While still offering significant convergence acceleration over MAP-EM, the bar-
rier method required half again as much work to reach convergence compared
with the primal-dual method. These results are quite consistent across all data
sets.

As a sample test case, we consider the progress of the reconstruction of
the Derenzo phantom from one subproblem to the next. The most relevant
convergence parameters are listed in Tables 4 and 5 for primal-dual and barrier,
respectively. In Table 4, the complementary slackness λT θ/n can be discerned
by µ which was calculated from (46) with ρ = 2. In the barrier method we
reduced the barrier parameter according to µk+1 = µk/ρ with ρ = 10 for all
studies. We have explored other values of ρ for the barrier method as well
as other schemes for setting µ but the results were inconclusive. To conserve
computation, function evaluations were only performed every 10th MAP-EM
iteration. This permitted the use of “sparse” EM iterations (recall from Table
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study f∗ npr nit ncg ngr MAP-EM
brain 2,465,832 5 28 159 218 880
fdg 2,397,199 5 29 198 259 > 1000
skull 2,269,180 5 29 185 246 990
uniform 2,752,499 4 25 207 260 > 1000
poi/cyl 2,536,111 6 40 214 298 780
Derenzo 3,660,351 6 41 214 300 > 1000

Table 3: Summary of thick-slice barrier results and comparison with MAP-EM.
Extrapolation was used on all data sets, and in all cases ρ = 10.

1 that even in thick-slice reconstructions, full gradient evaluations are more
expensive than their sparse equivalents). As such, the number of iterations in
the MAP-EM column of Tables 4 and 5 is specified over a range of 10 rather
than an exact integer. Being a “long-step” algorithm, the barrier method
requires fewer subproblems to reach convergence than primal-dual, but these
subproblems require much more computation, as witnessed by a comparison of
Tables 4 and 5.

As we noted in Section 4.2, for rapid convergence to the optimal primal-dual
solution, the barrier parameter should be reduced gradually. Empirical evidence
to that effect motivated our choice of ρ = 2 for the above studies. We have also
discovered, however, that a more aggressive drop in the barrier parameter using,
say, ρ = 100 can lead to more rapid early progress at the expense of more overall
work to the optimal primal/dual solution. This observation of rapid early
progress is in evidence in Table 6 where the Derenzo phantom was reconstructed
to a less accurate solution using 9 primal-dual steps and ρ = 100. Figure
2 displays central slice reconstructions of the Derenzo phantom reconstructed
to various stopping points of various algorithms. The fully converged MAP-
EM reconstruction is nearly identical to the fully converged MAP primal-dual
reconstruction in Figure 1. The early terminated reconstructions include a
positive bias in the regions between the capillary tubes in a wedge.

As a demonstration of the sparse implementation of the primal-dual method,
we have performed a thin-slice reconstruction of the FDG2 data set. This data
set was selected because of its visual appeal, as evidenced in Figure 3 where
transverse, coronal, and sagittal sections of the reconstruction are displayed.
This reconstruction reveals activity in cortical and subcortical structures of an
intact rat brain. For this reconstruction, we have used an 18-pixel neighborhood
and a prior strength of γ = 8 · 10−5. Although this prior strength is smaller
than that used for the thick-slice reconstructions, the overall strength of the
regularizer is similar or slightly stronger (due to the greater number of variables
and larger neighborhood).

Recall from Table 1 that thin-slice reconstructions involve 1.4M variables
and 63M projection lines. For the sparse small animal data, the sparse imple-
mentation of the primal-dual method avoids the enormous cost of performing
full forward projections. The relevant parameters of this reconstruction are

28



µ f ‖∇`‖ max(λiθi) niter ncg ngr MAP-EM
10.86 4,429,471 4.044 14.538 1 2 4 1-10
5.088 4,039,659 0.273 8.281 2 4 8 1-10
2.617 3,894,986 0.303 3.307 3 6 12 1-10
1.418 3,773,195 0.0973 1.641 4 9 17 1-10
0.731 3,719,320 0.0792 0.874 5 13 23 1-10
0.374 3,692,283 0.0564 0.690 6 17 29 11-20
0.190 3,677,361 0.0521 0.221 7 21 35 21-30
0.0963 3,668,958 0.0314 0.110 8 27 43 41-50
0.0502 3,665,113 0.0410 0.0730 9 32 50 61-70
0.0256 3,662,775 0.0112 0.0290 10 39 59 101-110
0.0131 3,661,724 0.0338 0.0220 11 44 66 151-160
0.00671 3,661,052 0.0158 0.0156 12 51 75 221-230
0.00455 3,660,830 0.0842 0.0106 13 58 84 271-280
0.00311 3,660,686 0.0443 0.0111 14 65 93 331-340
0.00263 3,660,621 0.0197 0.00907 15 74 104 361-370
0.00207 3,660,568 0.0274 0.00703 16 79 111 401-410
0.00161 3,660,517 0.0260 0.00560 17 85 119 451-460
0.00126 3,660,480 0.0166 0.00472 18 91 127 511-520
9.96E-4 3,660,451 0.0135 0.00351 19 97 135 561-570
7.70E-4 3,660,421 0.00413 0.00201 20 105 145 641-650
5.43E-4 3,660,397 0.0116 0.00108 21 109 151 741-750
3.59E-4 3,660,375 0.00911 5.23E-4 22 115 159 881-890
2.08E-4 3,660,356 0.00472 4.57E-4 23 121 167 > 1000
1.07E-4 3,660,344 0.00966 1.33E-4 24 127 175 > 1000

Table 4: Subproblem progress of primal-dual reconstruction of Derenzo phan-
tom, where ρ = 2 for convergence to accurate solution.

µ f ‖∇`‖ max(θiλi) niter ncg ngr MAP-EM
10.0 4,765,608 1.66 ———– 7 15 29 1-10
1.09 3,742,471 0.535 0.254 15 44 74 1-10
0.109 3,669,773 0.109 0.109 21 82 125 41-50
0.0109 3,661,400 0.0114 0.0115 26 118 172 171-180
0.00109 3,660,418 0.00226 0.0228 34 174 245 660-670
1.09E-4 3,660,344 0.00125 0.0105 41 214 300 > 1000

Table 5: Subproblem progress of barrier reconstruction of Derenzo phantom.
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µ f ‖∇`‖ max(λiθi) niter ncg ngr MAP-EM
10.862 4,029,471 3.68 13.2 1 2 4 1-10
0.1018 3,778,157 1.08 5.48 2 4 8 1-10
0.0388 3,738,259 0.669 5.61 3 6 12 1-10
0.0314 3,698,611 0.321 3.44 4 9 17 1-10
0.0163 3,678,343 0.211 1.56 5 12 22 21-30
0.00684 3,667,297 0.107 0.906 6 17 29 51-60
0.00340 3,663,134 0.0737 0.296 7 23 37 91-100
0.00114 3,661,518 0.0527 0.246 8 30 46 161-170
8.53E-4 3,660,855 0.0655 0.222 9 35 53 261-270

Table 6: Subproblem progress of primal-dual method with ρ = 50 for rapid
early progress; Derenzo phantom.

(a) ML-EM 50 (b) MAP-EM 50 (c) MAP-EM 100

(d) MAP-EM 1000 (e) PD 6 (f) PD 7

Figure 2: Central transverse section of Derenzo phantom: (e) and (f) are the
solutions at the 6th and 7th subproblem, respectively, of the primal-dual method
with ρ = 50.
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(a) transverse (b) coronal (c) sagittal

Figure 3: Cross sections of the FDG2 thin-slice study.

listed per subproblem in Table 7. The objective function value is not available
in accordance with the discussion of Section 4.3. As such, we did not perform
a MAP-EM reconstruction for comparison. Recall that in the sparse imple-
mentation, every iteration of the line search requires one back projection to
compute the directional derivative plus one Hessian-vector product to compute
the directional second derivative. Thus we must modify the computational cost
formula (extrapolated case) to include the cost of the line searches:

ngr = npr + 2 · nit+ ncg + 1.5 · nls,
where nls represents the number of line search iterations. This reconstruction
converged in remarkably few conjugate gradient iterations, in part due to the
relative strength of the prior term. Although ρ = 2 was used in this reconstruc-
tion, some of the subproblems involve a decrease in µ of greater than 2. This
is an effect of extrapolation as such behavior is rare in the absence of extrap-
olation. Another effect of extrapolation in primal-dual reconstructions is the
occasional non-monotonicity in the decrease of ‖∇`‖ and max(λiθi) , especially
in the early subproblems.

6 Concluding Remarks

In this paper we present a new class of algorithms to the already crowded field
of emission tomography reconstruction algorithms. Our algorithms draw heav-
ily from long established principles as well as recent developments in linear and
nonlinear programming [60]. Unlike most of the EM method or the methods
that have been proposed to date to improve the convergence of EM, the algo-
rithms presented in this paper treat the reconstruction problem as a constrained
optimization problem. These interior point methods directly maximize fML (θ)
or fMAP (θ) while maintaining feasibility by approximately solving a sequence
of subproblems. The solution to each of these subproblems satisfies a perturbed
version of the optimality conditions, where in each subproblem the duality gap
decreases until the optimal solution is found.
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µ ‖∇`‖ max(λiθi) npr niter ncg nls ngr
2.08 1.68 3.50 1 1 2 1 7
1.64 0.225 5.24 2 2 4 4 16
1.30 0.137 1.39 3 3 6 7 26
0.654 10.3 20.1 4 4 9 11 38
0.271 2.30 15.2 5 5 11 13 46
0.172 0.428 1.48 6 6 13 15 54
0.0877 0.178 3.16 7 7 15 17 62
0.0432 0.0584 0.0801 8 8 19 21 75
0.0184 0.0829 1.50 9 9 22 23 84
0.0117 0.0206 0.277 10 10 28 24 94
0.00638 0.0208 0.319 11 11 34 26 106
0.00263 0.00996 0.489 12 12 40 27 117
0.00196 0.00538 0.0236 13 13 46 28 127
8.54E-4 0.00418 0.0106 14 14 52 29 138
3.54E-4 0.00302 0.00297 15 15 57 31 149
1.90E-4 0.00196 0.00105 16 16 65 32 161
1.29E-4 7.84E-4 1.29E-4 17 17 72 35 176

Table 7: Subproblem progress of thin-slice primal-dual reconstruction of FDG
dataset; ρ = 2. Extrapolation was performed on subproblem solutions.

Interior-point methods have strong theoretical properties, as do search di-
rections that approximate the Newton direction. The results presented in this
paper indicate that interior-point methods converge to the regularized maxi-
mum likelihood solution at a much accelerated rate over the EM method for
MAP reconstruction. In particular, the primal-dual results are especially fa-
vorable. This is consistent with the success of primal-dual techniques in linear
programming. Despite having to update twice as many variables, the primal-
dual method is actually quite economical. The process of actively estimating
the dual variables produces more favorable primal directions and more accurate
placement on the primal-dual trajectory than can be achieved by a primal-only
method. Another advantage of interior-point methods is that they permit the
use of well-defined termination measures based on the KKT optimality condi-
tions. Being a “short-step” algorithm, the primal-dual method gives the user a
great deal of flexibility in selecting the desired accuracy of the solution.

The interior point approach is quite different than the EM approach, which
defines a complete data space and iteratively maximizes a sequence of separable
functions that are defined over the complete data space. However, viewed
from an optimization perspective, the EM algorithm is a scaled steepest ascent
method with unit step size. The same is true of the generalized EM algorithm
for MAP reconstruction that was discussed in Section 2.2. As such, the observed
slow convergence of EM methods is not surprising.

Elements of the interior-point methods that we present in this paper have al-
ready been proposed in the context of the PET reconstruction problem. Kauf-
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man proposed a truncated-Newton approach in conjunction with a bent line
search to impose the non-negativity constraint. Mumcuoglu [52] introduced
a quadratic penalty term into the objective function to penalize violations of
the non-negativity constraint and maximized the resulting unconstrained sub-
problems with a nonlinear conjugate gradient . The quadratic penalty has the
disadvantage of having a discontinuous second derivative; moreover the penalty
parameter was kept constant and did not decrease. The nonlinear conjugate
gradient method usually offers only incremental improvement in convergence
rate over steepest ascent [60]. This is consistent with Mumcuoglu’s claims of
only modest improvement in convergence. Both Kaufman and Mumcuoglu
have contributed significantly to the understanding of the properties of ML and
MAP objective functions.

The improved convergence properties of coordinate ascent and grouped co-
ordinate ascent methods have been attributed to suppression of high frequency
error [62] and reduced Fisher information of hidden (rather than complete) data
spaces [16, 17, 18], respectively. Each grouped coordinate ascent update is a
projected steepest ascent direction of the approximating separable quadratic,
scaled by the inverse diagonal Hessian of the approximating function. While
the results presented in these papers are quite strong, Gauss-Seidel methods are
known to be quite sensitive to the relaxation parameter, and have not performed
well in many applications. Moreover, the grouped coordinate ascent methods
require a parallelization strategy that decomposes the computation in image
space. Such a strategy nearly precludes the distribution of the projection-
space vectors across the processors. For very large 3-D reconstructions such
as the thin-slice reconstructions, these vectors must be partitioned across the
processors. While the coordinates can still be updated in parallel groups if the
projection space vectors are distributed across the processors, such a strategy
can lead to inter-processor communication bottlenecks.

The parallel implementation of the interior point methods presented in this
paper can be readily scaled to the largest reconstruction problems. For large
but sparse thin-slice problems, most of the columns of the C matrix are never
loaded or visited. Ordering the computation primarily in projection space in
accordance with the pseudocode of Section 3 permits the processors to simply
ignore the columns Cj that correspond to the sparse subspace of y. In contrast,
grouped coordinate ascent requires that the forward and back projections be
ordered primarily in image space. As such, the Ci,j must either be loaded as
individual elements (thereby incurring a great deal of I/O latency put permitting
the sparse subspace to be ignored) or loaded in entire rows (thereby incurring a
great deal of I/O traffic). As such we assert that the projection-space parallel
decomposition scheme, which lends itself readily to the interior-point methods,
is preferable for very large reconstructions.

This paper illustrates the application of interior-point methodology to im-
age reconstruction problems by selecting the regularized ML objective function.
The emphasis of this paper, however, is not in the choice of objective func-
tion but rather on the versatility of interior-point methodology. Indeed, the
logarithmic barrier and primal-dual methods could readily be adapted to other
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constrained objective functions, such as weighted least squares with lower-bound
constraints. Much of the computational structure of computing the gradient,
etc., applies to that objective function as well [40]. The truncated-Newton
method for solving an unconstrained minimization problem can readily be ap-
plied to finding the solution of the weighted least squares objective function
without lower bound constraints. Interior-point methodology permits modifi-
cations to the objective function (including the regularizing term) to be made
without requiring a new algorithmic or computational framework.
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