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Abstract

We have implemented the EM reconstruction algorithm for
volume acquisition from current generation retracted-septa
PET scanners.  Although the software was designed for a GE
Advance scanner, it is easily adaptable to other 3D scanners.
The reconstruction software was written for an Intel
iPSC/860 parallel computer with 128 compute nodes.
Running on 32 processors, the algorithm requires
approximately 55 minutes per iteration to reconstruct a 128×
128×35 image.  No projection data compression schemes or
other approximations were used in the implementation.
Extensive use of EM system matrix (Cij) symmetries
(including the 8-fold in-plane symmetries, 2-fold axial
symmetries, and axial parallel line redundancies) reduces the
storage cost by a factor of 188.  The parallel algorithm
operates on distributed projection data which are decomposed
by base-symmetry angles.  Symmetry operators copy and
index the Cij chord to the form required for the particular
symmetry. The use of asynchronous reads, lookup tables, and
optimized image indexing improves computational
performance.

I. INTRODUCTION

The expectation maximization (EM) method for
reconstructing PET data is an iterative solution based on a
maximum likelihood criterion.  The EM algorithm is known
in principle to yield more accurate reconstructions than
filtered backprojection [1].  EM can incorporate the reso-
lution limitations of the detection system into the
reconstruction model and thereby remove the partial volume
effect inherent in filtered backprojection [2].  New generation
PET scanners allow for the retraction of the lead septa shields
that prevent coincidence events from being detected outside
the axial plane of emission.  Retracting the septa increases the
angle over which coincidence events can be accepted and
consequently improves the scanner's sensitivity [3].  However,
retracted-septa reconstructions are not separable into multiple
2D reconstructions.  Consequently, the size of the recon-
struction problem grows geometrically when using the EM
algorithm for these wider acceptance angles.  In a 3D EM
reconstruction for a  typical scanner geometry, the number of
projection elements increases by an order of magnitude, and

the size of the system matrix Cij, which is used throughout
the reconstruction, can grow by four orders of magnitude or
more from that of the 2D problem.

Kaufman [4,5] has investigated redundancies in the system
matrix and has proposed solutions to the EM problem that
take advantage of a vector computer architecture.  Chen et. al.
have proposed solutions to the EM problem on a message
passing parallel computer.  Their solutions incorporate
Kaufman's in-plane symmetries as well as 2-fold axial
symmetries [6,7].

 In this work, we present a system for EM reconstruction
from volume acquisition on current generation retracted-septa
PET scanners.  The reconstruction software was written for
the Intel iPSC/860 parallel computer with 128 processor
elements (PEs).  Although the software was designed for a
GE Advance scanner, it is easily adaptable to other 3D
scanners. No projection data compression schemes or other
approximations (as for example in [8]) were used in the
implementation, since this work is intended as a "baseline"
for future studies.  Our 3D reconstruction system includes a
spatially-variant resolution model but does not currently
include corrections for attenuation, normalization, randoms,
or scatter [9].  We demonstrate the feasibility of using the EM
algorithm to reconstruct simulated and actual volume PET
data and show initial results from a comparison of the
convergence properties of the 3D algorithm to that of 2D.

II. METHODS

The iterative solution of the EM algorithm is [1,10]
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where Yi is the ith projection of coincidence events, λ j
n( )  is the

jth element of the reconstructed volume at the nth iteration,
and Ci,j is the probability of an event in voxel j being detected
by detector pair i (the i,j element of system matrix C).  The
parallel implementation decomposes the problem by parti-
tioning the projection space among the PEs.  The projections
Y and the system matrix C are distributed across the PEs.  As
such, this implementation is similar to the "partition by tube"



(i.e., partition in projection space) approach of Chen et. al.
[6,7]  The image objects are replicated on all PEs.

A. Problem Size

Computationally, the primary difference between 2D and
3D EM reconstructions is the size of the problem.  The
incorporation of out-of-plane information imposes severe
requirements on storing the Cij and on subsequently
performing forward- and back-projections with the Cij.  Table
1 lists the characteristics of the GE Advance scanner that
relate to problem size.  Table 2 lists the object size-dependent
parameters related to the Cij matrix.  Although the full size of
the sparse Cij is listed, in practice only the nonzero elements
of Cij are stored in "chords" as shall be described in Section
B.  The use of symmetry-related redundancies in Cij reduces
the storage requirement (but not the computational
requirement) by a factor of 188 as shall be described in
Section C.  The actual cost of storing only the base-symmetry
chords is listed in the bottom row of Table 2.  Because of the
extremely heavy computational and storage costs associated
with reconstructing a full-FOV object, we have not yet
attempted such a large reconstruction.

Table 1:  GE Advance scanner characteristics [11].
ring diameter 930 mm
detectors per ring 672
transverse field of view 550 mm
axial field of view 153 mm
number of rings 18
maximum axial separation 11 rings
transaxial angles per sinogram 336
sinograms (without collapsing
axial angles)

282

Table 2:  Cij parameters which are object-size specific.
characteristic full-FOV object brain-sized object
object size, mm 550×550×148.75 256×256×148.75
object size, voxels 256×256×35 128×128×35
voxel size, mm 2.15×2.15×4.25 2×2×4.25
rays per angle 283 119
projections per sinogram 95,088 39,984
total projections 26.8⋅106 11.275⋅106

full size of sparse Cij, 6.151⋅1013 elem. 6.425⋅1012 elem.
average size of chord
(see Section 4)

12,600 elements
25,200 bytes

3500 elements
7000 bytes

size of all Cij chords
without symmetries

675.3 Gbytes 78.9 Gbytes

actual storage
requirement

3.592 Gbytes 434 Mbytes

B. System Matrix Generation and Storage

Only the nonzero elements of Cij are stored in "chords",
each of which stores the Cij for a particular detector pair i
over all contributing voxels j.  The chord is stored as a three-
dimensional array, a long and narrow box whose primary
index is along the direction of greatest traversal (x or y) with
respect to the length of the chord box.  An example of a chord
is illustrated in Fig. 1.
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Figure 1:  For a particular detector pair i, the nonzero
elements of Cij are stored as a long, narrow chord with a
leading index along the primary direction.  This diagram
depicts a nearly central-ray tube at azimuthal angle φ and
axial lift angle ψ with maximum traversal along the y
direction.  The darkened portion of the chord represents
where the object contributes; the white portion of the chord is
outside the field of view.

The chord model explicitly includes the spatially-variant
detector resolution in the chord density calculation.  The
secondary widths of the chord (y or x and z) are just large
enough to contain the point spread to 5% of maximum.
Because the point spread is larger at higher transaxial radii,
reconstructions of full-FOV objects require considerably
larger chords.  Specifically, the average chord size for a full-
FOV object is estimated to be 200×9×7, while that for a
brain-sized object is 100×7×5 (assuming the object
dimensions listed in Table 2).

A ray-based approach [10] was selected to compute the
chord values.  The chord is partitioned into an array of lines
that cover the entire spread, i.e., the entire cross-sectional
area of the chord. The distance between these lines is 1/7 the
voxel size in the secondary transverse and axial directions,
respectively.  Thus a brain-sized object reconstruction, for
which the chord cross section is 7×5 voxels, requires a total of
49⋅35=1715 lines per chord.  The sum of the lengths
(weighted by the detector point spread function) of all lines
through voxel j determines the value of Cij.  Only the base-
symmetry chords are calculated and stored; the others are
generated through symmetry operators (Section C).  Due to
the large numbers of lines, computing all chords requires
nearly 2 hours on 32 PEs for brain-sized objects.  The chords
are computed only once and are stored for subsequent use by
EM reconstructions.
C. Symmetry Reductions



Extensive use of redundancies present in the Cij matrix
makes its storage possible.  In-plane symmetries [4,5] reflect
a chord with respect to φ=45o within its sinogram.  The
original chord and its reflection are rotated by φ=90o, 180o,
and 270o within the sinogram (Fig. 2a).  These in-plane
operators provide a factor of 8 reduction.  The axial symmetry
reflects a chord with respect to the plane z=0 [6,7].  For ψ≠0
sinograms, this symmetry operator provides a factor of 2
reduction, but for ψ=0, there is no reduction (Fig. 2b).
Parallel axial chord symmetries are justified under the
assumption that the axial point spread function is invariant to
axial position (Fig. 2c).  This operator provides a reduction
factor of (NR-s), where NR is the number of detector rings,
and s is the ring separation of rays in the sinogram.  The
average reduction over all chords from symmetry operators on
the GE Advance is 188.  The base-symmetry chords are thus
defined by φ<45o, ψ ≥ 0, and include the top ring of the
scanner.

The parallel implementation of the 3D EM reconstruction
partitions the projection space according to base-symmetry
angle.  PEs are each assigned a set of base symmetries, which
they read from separate files.  Chords are grouped into files of
similar base-symmetry angle.  All possible symmetry-related
chords are constructed from the base-symmetry chord and
used for forward- and back-projection before the PE reads a
new chord (ray index) from file.  Constructing the symmetry-
related chords from the base chord generally requires re-
ordering the chord data.    The number of base-symmetry an-
gles is large enough to ensure that efficiency of the parallel
implementation is not compromised.

D. Computational Performance Enhancements

A number of features have been written into the software to
improve computational performance.   These features include
asynchronous reads of the chords to eliminate I/O waits,
lookup tables to check image bounds while traversing chords
during forward- and back-projections, an image indexing
scheme designed to minimize indexing arithmetic, and
precalculation of trigonometric functions.  These and other
measures have reduced the computation time from 113 to 52
minutes per iteration on 32 PEs.

III. FEASIBILITY STUDIES

To demonstrate the feasibility of the 3D EM reconstruction
method, we have performed reconstructions on data simulated
from a CT image and on measured PET data of a uniform
cylinder and point sources.

In the simulation study, PET data were simulated from a
CT image of a dog thorax using the GE Advance scanner
geometry.  The image was forward projected, with 6mm blur-
ring but without additive noise, to create the simulated
sinogram  data.  Four  voxels  from  the  reconstructed image
were chosen for a convergence study (Fig. 3). The number of

iterations taken for the 3D reconstruction was limited due to
the amount of time required.  The 2D reconstruction at 1000
iterations appears to be nearly convergent.  The results of the
convergence study (Fig. 4) indicate that the additional data
acquired in 3D mode may not significantly alter the
convergence rate of the EM algorithm over 2D mode.

(a)

(b)

(c)

Figure 2:  Schematic representations of the symmetry
operators.  (a) In-plane symmetries, shown as an image of a
cross section (top axial slice) of the superposition of the
chords described by {ψ=0, φ=12.6o, ray index = 16}.  (b)
Two-fold axial symmetry.  (c) Parallel axial chord redun-
dancies, shown for a maximum ring separation of 11.

In the uniform cylinder study, we performed a
reconstruction on a 16 cm diameter cylinder filled with a
solution of 18F (130M counts).  The reconstruction shown in
Fig. 5 is of the raw scanner data without correction for the
physical effects.  The voxel intensities of the four points
within the cylinder shown in Fig. 5 are plotted as a function
of iteration in Fig. 6.    Although a spatially-variant
resolution model can be included in the system matrix, for
these reconstructions a FWHM of 6 mm in all directions was
used throughout.
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Figure 3: Two slices from a reconstructed image (194
iterations), where PET data were simulated from CT images.
Four voxels chosen for the convergence study are highlighted.

Figure 4:  Voxel intensity as a function of iteration for the
four voxels highlighted in Fig. 3.  (top)- Retracted-septa (3D)
convergence, vs. (bottom)- septa-in (2D) convergence.
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Figure 5:  Images of the reconstructed  uniform cylinder
phantom, uncorrected for the physical effects of attenuation,
normalization, randoms, and scatter after 140 iterations.
Left- edge slice; right- central slice.

Figure 6:  The four voxels highlighted in Fig. 5 are plotted
against iteration.

Figure 7:  Intensities of the center of four (out of five)
reconstructed point sources as a function of iteration.



In the point source study, data taken from a scan of  five
point sources (2mm×2mm×1mm) located 5 cm below the
center of the gantry were reconstructed.  The points were
spaced 3 cm apart axially.  As shown in Fig. 7,  the points
appear not to have converged after nearly 200 iterations.
This slow convergence may be due in part to the use of  a
spatially invariant 6mm FWHM resolution function, which
excessively deblurred the points.

IV. CONCLUSIONS

The current studies demonstrate that 3D EM reconstruction
is computationally feasible.  The practicality of computing
these reconstructions remains an open question.  We believe
that the brain-sized problem is the largest that can be
attempted on the Intel iPSC/860.  The time per iteration,
memory demands, and storage requirements of the full-FOV
problem are much greater than that of the brain-sized
problem.  We intend to study the larger problem in the future.
At least an order of magnitude in computational performance
improvement will be required to make such a system feasible
in the clinic, thereby requiring advances in parallel computer
technology.  We may also need to consider convergence
acceleration and optimization techniques such as those
offered by Kaufman [4,5].

Should the desired computational performance
improvement be achieved, the problem will likely become I/O
bound.  Reconstructing a brain-sized object requires reading
430 MB of chord data per iteration, while reconstructing a
body-sized object is estimated to require 3.6 Gbytes per
iteration.  To avoid becoming I/O limited, the Cij matrix
would need to be stored in memory.  This would be possible
given enough PEs and sufficient memory per PE.  Predictive
compression techniques may be required to reduce the
dynamic range of the Cij data in order to relax memory
demands.

In the implementation of the 3D EM algorithm, no com-
pression schemes or approximations were made in order to
have a "baseline" for future studies.  Further examination of
the convergence rates of the 3D algorithm compared with
those of the 2D algorithm is planned.  Our future studies will
investigate image quality, resolution recovery, quantitative
accuracy, and variability of the 3D algorithm compared with
the 2D algorithm, as well as with other 3D reconstruction
methods.
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