
Performance of Using Oracle XMLDB in the Evaluation of CDISC
ODM for a Clinical Study Informatics System

Shaohua Alex Wanga, Yang Fannb, Huey Cheunga, Frank Pecjaka, Barg Upendera,
Adam Frazina, Raj Lingamb, Sarada Chintalaa, Gladys Wangb, Marc Kellogga,

Robert L. Martinoa, and Calvin A. Johnsona

�����������������	
�����������������
����
������������������
������������
������

�
����
������������������������
������������
������������
����
������������������
�����

�������
�����

Abstract

This paper describes potential strategies for data modeling and implementation as part of
the general architecture of CSIS, a Clinical Study and Informatics System that has been
developed for the National Institute of Neuroscience and Stroke (NINDS). We discuss the
NINDS requirements and how they influenced the system design, with an emphasis on
dynamic form creation. We also evaluate open standards such as “CDISC ODM” and
several database technology choices, namely conventional relational “EAV” tables and the
new “XMLDB” from Oracle. We describe performance test results, which show that it is
feasible to implement CDISC ODM in Oracle XMLDB and the schema-based storage option
for storing XML content is better than “CLOB”-based for applications that require high
numbers of queries for XML fragments. For storage and retrieval of whole XML documents,
CLOB storage is optimal. CSIS implements a hybrid approach of combining CLOB storage
for storing XML documents with relational tables for storing metadata. Due to the complexity
of the CDISC schema and related performance and implementation concerns, we have
decided not to implement CDISC internal storage in our system.

1. Introduction

Promoting clinical research is a major priority in the new strategic plan for the National
Institute of Neurological Disorders and Stroke (NINDS) [1]. The web-based Clinical Study
Informatics System (CSIS) is a major component of an integrated Clinical Informatics and
Management System (CIMS), which is being developed for NINDS intramural clinical
researchers. In addition to CSIS, CIMS contains the Protocol Tracking Management System
(PTMS), which supports protocol submission, approval, and monitoring of the protocol
review process; and a data integration module, which provides data warehousing services to
collect data from a variety of data sources for analysis [2].

CSIS provides supporting tools for conducting clinical studies including patient
recruitment, screening, enrollment, data collection, monitoring, and reporting. Figure 1 shows

Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems (CBMS’04)
1063-7125/04 $ 20.00 © 2004 IEEE

the software architecture design of CSIS.
It is a web-based, three-tiered architecture
that has been deployed on IBM's
WebSphereTM application server. The first
tier, the presentation layer, could be a thin
client such as Microsoft Internet Explorer
or a thick client such as Microsoft
Infopath [3]. The second tier, the business
logic layer, employs J2EE standards-based
technology (including Java Server Page,
and open source packages such as Jakarta
Struts, and Jakarta ObJect-relational
Bridge). The third tier, the persistent data
layer, uses Oracle Corporation's Oracle 9i
(9.2.0.4) database with the XMLDB
package installed.

 Common to all the eleven modules in
the second tier of Figure 1 is the
utilization of electronic forms. Clinical
data were collected by filling out the
electronic form either by patient or by a
caregiver. The forms are created when a principle investigator (PI) creates or amends the
protocol. One of the challenges in designing a process for the dynamic creation of electronic
forms is the complete flexibility that the process must accommodate. In the next section, we
will discuss various database designs to store the form data. In Section 3 we will present the
performance test results of each database design. In Section 4 we will consider design
tradeoff resulting from these performance test. Finally we draw some conclusions affecting
our system design in Section 5.

2. Database design considerations

User and organizational requirements
dictate that the database be generic enough
to allow investigators to create arbitrary
clinical forms without the intervention of a
programmer or database administrator. If a
new entity or attribute is needed, the
appropriate structure must be created
automatically with all necessary relationship
constraints and proper indexing to ensure
data integrity and optimal performance. The
dynamic nature of such a system leads us to
consider a metadata approach to data
management. A metadata approach utilizes a
general structure where only high-level
relationships are defined. Specific
information and relationships are maintained
as row elements rather than column elements in the structure.

Figure 1. CSIS software architecture

Figure 2. Database architecture

Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems (CBMS’04)
1063-7125/04 $ 20.00 © 2004 IEEE

Another requirement is easy transport and representation of the data to external systems.
To promote information exchange among researchers and to ease clinical trial data
submission to the Food and Drug Administration (FDA), we have considered the potential of
implementing the standard Operational Data Model (ODM)[4] created by the Clinical Data
Interchange Standards Consortium (CDISC). The XML-based ODM model supports
electronic acquisition, exchange, submission and archiving of clinical trial data and metadata
for medical and biopharmaceutical product development. The model represents study
metadata, study data and administrative data associated with a clinical trial. A potential
disadvantage is that in some cases, large amounts of data will be required to represent some
simple concepts. This is because CDISC is quite generic in nature, having been designed for
use in diverse range of clinical trial situations.

Figure 2 depicts the current data storage model design. Clinical data can be transported to
and from the database via an XML file through the FTP and HTTP protocols. The XML-
based CDISC model fits well with this transport mechanism. The database layer can also be
accessed via SQL statements through direct JDBC or Oracle network services connections.
For the storage structure in this metadata approach, we consider two options: (1) Entity-
attribute-value (EAV), and (2) XML documents stored in Oracle XMLDB.

2.1. Entity-attribute-value (EAV)

In an "EAV" design, the attributes for an entity are not hardwired into the database as table
columns. Rather, they are stored as data, one row for every attribute. This design is often
referred to as “vertical design” or “row modeling”. In addition, metadata describing each data
element are stored in a data library, where the data item definitions can be readily created,
viewed, and edited by the user. The EAV design makes it possible to accommodate new
protocols (with new data items) without the additional programming that would be required
in a “horizontal” database design. One needs only to add a description of each new data
element to the data library. A good example of clinical information system implementing an
EAV design is Yale University’s TrialDB [5]. This design also allows investigator to reuse
and match common entities across forms and protocols.

Oracle XMLDB implements a number of SQL/XML standard based functions enabling us
to query relational data and return XML documents (SQL/XML is an emerging part of
ANSI/ISO SQL standard). We are able to generate the ODM compliant documents for each
patient encounter stored in the EAV tables.

2.2. XML documents stored in Oracle XMLDB

Oracle XMLDB [6] is a set of utilities in Oracle 9i Release 2 that provides native support
for storing and retrieving XML elements from XML documents. It stores information within
the Oracle database and represents underlying data dually both as sets of XML elements
within XML documents and as cells within relational tables. This structure allows for fine-
grained queries on the data contained in the XML document, utilizing the traditional RDBMS
tuning mechanisms (e.g. indexes and partitions), while maintaining DOM fidelity for viewing
the entire document at once. This structure also lends itself to utilizing the CDISC ODM data
format as a metadata definition. In fact, since the ODM structure is already available as an
XML schema, we feel that utilizing the Oracle XMLType is more natural choice than EAV,
provided that the performance of Oracle XMLDB is acceptable. (XMLType is an Oracle
XMLDB defined opaque type for handling XML data. XMLType has predefined member

Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems (CBMS’04)
1063-7125/04 $ 20.00 © 2004 IEEE

functions to extract XML nodes and fragments. One can create columns of XMLType or
tables of XMLType and insert XML documents into them.)

Oracle XMLDB provides two options for storing XML in the database. The first, referred
to as unstructured storage, uses the Character Large Object (CLOB) data type to persist the
XML document as a string of bytes in the database. The second, referred to as structured
storage, involves shredding the XML document and then persisting the content as a set of
SQL objects and tables. Structured storage is only available when the XML conforms to an
XML schema. Oracle XMLDB uses the XML schema to generate the set of SQL objects
required to persist the content of the instance documents. Database administrators and
application developers can tune performance by annotating the XML schema to control how
collections are managed. The naming of tables, SQL objects, SQL attributes, and the mapping
between XML Schema data types and SQL data types among others can also be specified in
the annotation. In our experience, a significant effort was required to annotate CDISC to
make it work. Both storage options also support XPATH queries, with the relational storage
option translating the XPATH into traditional SQL. By default, the underlying storage model
for XML schema-based XMLType columns and tables is structured storage.

3. Oracle XMLDB performance test

In order to test the performance of implementing CDISC ODM in Oracle XMLDB
structures, we have created 10,000 simulated patients and associated "Brief Psychiatric
Rating Scale" (BPRS) [7] electronic forms, which conform to CDISC ODM. These records
were inserted into a CLOB-based table, and an object-relational table, respectively. The
object-relational table along with hundreds of other objects and nested tables were created
automatically when the CDISC ODM schema was registered with Oracle XMLDB. To
compare with the EAV data model, the data contained in these XML documents were
inserted into EAV tables as well. The EAV tables are structured so that a complete CDISC
document can be created with SQL/XML.

Table 1 shows the performance test results of a set of experiments. A comparison of such
performance results allows us to get an appreciation for the most appropriate storage
architecture. The experiments were performed on a 2-GHz dual processor Dell Pentium 4
server equipped with 12GB RAM. The installed operating system and database are Redhat
Linux 9 and Oracle 9i version 9.2.04 respectively. In first test, we loaded 10,000 ODM XML
documents into the database. Each document is about 10KB in size. It took less than 2
minutes to store 10,000 documents into CLOB-based storage and less than 18 minutes into
schema-based storage. Clearly, inserting XML content into a CLOB-based table is faster than
inserting it into the schema-based object-relational tables. Loading an XML document into
schema-based storage is a fairly complex transaction because each XML document that was
loaded had to be parsed, loaded into a SQL object, and inserted into the ODM object table.

Retrieval of 10,000 documents from the two different implementations exhibited the same
characteristics. The unstructured CLOB type storage allows for higher rates of ingestion and
retrieval because it avoids the overhead associated with parsing and recomposition during
storage and retrieval operations. Retrieving XML documents from EAV tables involves a
large number of joins, which slows down its performance. We conducted a full table scan in
the second experiment followed by conditional query and update experiments. Each
experiment is run once for each table. The result shows that transactions against the

Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems (CBMS’04)
1063-7125/04 $ 20.00 © 2004 IEEE

structured storage model are much faster than the CLOB-based storage model, as expected.

Table 1. Database performance test results

Experiment EAV CLOB Structured

Insert 10000 records 5 m 7.00 sec 1 m 56.16 sec 17 m 32.85 sec

Select 10000 records 19 m 5.00 sec 1 m 33.72 sec 14 m 29.00 sec

Select all SubjectKey 0.35 sec 20.76 sec 0.41 sec

Select number of patient 0.16 sec 21.43 sec 3.39 sec

Update SubjectKey 0.01 sec 16.69 sec 0.14 sec

An aggregate mix of database transactions was tested in a throughput test, including
insertion and retrieval of a complete form, updating a field within that form and returning a
list of patients that match a statistical criterion. We used the software “Benchmark Factory for
Oracle” from Quest Software to conduct the throughput benchmark test. A summary of the
test results is shown in Figure 3. We scaled up to 20 simultaneous users, which represented
an upper limit workload. The test database with EAV design was able to support an average
of 24.4 transactions per second. The schema-based structured storage and CLOB-based
storage model yielded an average transaction rate of 10.5 transaction per second and 1.4
transaction per second respectively. The slow update statement in the case of CLOB-based
XML caused a reduction in its overall transaction rate.��

4. Discussion

The timing differences between CLOB-based and structure-based storage are the result of
how Oracle XMLDB accesses the data in these two storage options. The common way of
referencing XML documents is via XPath statements. The Oracle9i XMLType enables the
querying of collections of XML documents through the extract function, which takes an
XPath parameter. When a query is run against CLOB tables, all 10,000 records have to be
brought into the memory, parsed and examined. On the other hand, when the XMLType is
stored in structured storage (object-
relationally) using an XML schema
and queries using XPath are used,
they are rewritten to go directly to
the underlying object-relational
columns. This enables the XPath to
be evaluated against the XML
document without having to ever
construct the XML document in
memory, resulting in a much faster
transaction. To speed up the

transaction even more, we have
annotated the schema so that we can
access the tables directly in the
“select” and “update” statements.
Note that even though transactions against the CLOB-based table are slower than that of
structured-based storage, they are still within acceptable range. Also, function indexing
against CLOB tables may improve performance. Transactions against EAV tables are still the

Transaction Per Second Graph

0

5

10

15

20

25

30

0 5 10 15 20 25

USERS

T
P

S

EAV

Schema

CLOB

Figure 3. Load testing results. Transactions
normalized among EAV and XPATH queries

Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems (CBMS’04)
1063-7125/04 $ 20.00 © 2004 IEEE

fastest among the three different models. This can be attributed to not having the query-
rewrite overhead as well as the design being optimized for the data at hand.�

Even though CDISC ODM schema can be used to create database structures to collect and
store clinical data, we have decided not to implement CSIS in that way for the following
reasons: (1) We anticipate that ODM schema will change in the near future as a result of
harmonizing with the HL7 reference information model. Schema change will require us to
migrate the data and update the application, which is costly in terms of time and resource. (2)
CDISC ODM contains a comprehensive list of XML tags that were not essential for NINDS
electronic clinical forms. This added complexity makes any XPath query against tables
containing CDISC ODM documents unnecessarily slow. This is true for both CLOB-based
and structure-based storage. (3) We have chosen to use thick client technology such as
Microsoft Infopath and XForm plug-ins for creating and filling the electronic clinical forms
to make the process as user friendly as possible. However, since these clients require that a
schema be bound to each form they create we feel that the CDISC ODM schema is too
general for that purpose. (4) Based on the complexity of the CDISC ODM schema and our
performance test, we speculate that for a simpler schema the performance discrepancy
between CLOB-based and structure-based storage options should be much smaller than the
CDISC ODM schema.

5. Conclusions

We have demonstrated that CDISC ODM schema can be used to collect and store clinical
data into Oracle XMLDB in either structured or CLOB storage. Although there are costs
associated with structured storage, it provides a number of advantages over CLOB storage for
managing XML content as discussed above. For a variety of reasons, most notably the high
likelihood that the CDISC ODM schema may change in the near future, we have decided not
to implement a CDISC ODM schema-based storage system in order to avoid difficult data
migration in the future. Instead we have implemented a hybrid data storage system for CSIS
where content from electronic clinical forms were stored in an XMLType table as CLOB and
metadata were store in relational tables. For reports and data analysis, the form will be parsed
and the data will be brought into a data warehouse that has an EAV type structure.

References
[1] Neuroscience at the New Millennium, Priorities and Plans for the National Institute of Neurological Disorders
and Stroke Fiscal Years 2000-2001, 1999

[2] Huey Cheung, Yang Fann, Shaohua Wang, Barg Upender, Adam Frazin, Raj Lingam, Sarada Chintala, Frank
Pecjak, Gladys Wang, Marc Kellogg, Robert L. Martino, and Calvin Johnson, A Web-Based Protocol Tracking
Management System for Clinical Research. 17th IEEE Symposium on Computer Based Medical Systems, 2004

[3] Thomas Robbins, Programming Microsoft InfoPath. Charles River Media, 2004

[4] Kush R, “A Multidisciplinary Approach to Data Standards for Clinical Development - Progress Update”,
Applied Clinical Trials, April 2002, pp. 35--44.

[5] Nadkarni PM, Brandt C, Frawley S, Sayward F, Einbinder R, Zelterman D, Schacter L, Miller PL: “Managing
attribute-value clinical trials data using the ACT/DB client-server database system”, Journal of the American
Medical Informatics Association, 1998, 5(2):139-151

[6] Oracle9i XML Database Developer's Guide - Oracle XML DB Release 2, Part Number A96620-02, 2000

[7] Ventura, Green, Shaner & Liberman, “Training and quality assurance with the brief psychiatric rating scale:
The drift buster". International Journal of Methods in Psychiatric Research, 1993.

Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems (CBMS’04)
1063-7125/04 $ 20.00 © 2004 IEEE

