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Among the most important issues in the design of a clinical trial is the selection of the primary

endpoint.  Fleming et al. (1998) provided two criteria to govern its selection: the endpoint should

be (i) sensitive to treatment effects, and (ii) clinically relevant.  Endpoints that directly reflect

how a patient feels, functions, or survives have clear clinical relevance; we refer to these as true

clinical endpoints. The cost in time and resources associated with the choice of such endpoints

has led to consideration of whether measures of biologic activity if of a treatment, or biomarkers,

can be appropriate as surrogates for clinical endpoints. We use the term "surrogate endpoint" to

describe biomarkers intended to substitute for a clinical endpoint in a clinical trial. While use of

such endpoints in early phase trials is well accepted, their use in Phase III clinical trials--trials

intended to define the role of a therapy in standard clinical practice is more controversial. 

Fleming and DeMets (1996) reviewed previous experience with use of surrogate endpoints in a

variety of disease settings to underscore the difficulties in developing and using such endpoints. 

Evaluation of the utility of a surrogate endpoint requires consideration of the extent to which

treatment effects on the surrogate  assure comparable treatment effects on endpoints with more

direct clinical relevance.  A major goal of this workshop is to consider different ways of

formulating this evaluation as a statistical problem, and to consider analytic approaches for its

solution.  Other important goals include defining the information needed for such analyses and

exploring ways to investigate their reliability.  What follows is a brief discussion of some

published articles regarding surrogate endpoints, and of some new work to be presented at the

Workshop.  This statement is by no means intended to be a thorough review, but simply to

provide some focus for Workshop discussion by describing connections among different

approaches to this problem.
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Prentice (1989) developed a statistical definition of a surrogate as “a response variable for which

a test of the null hypothesis of no relationship to the treatment groups under comparison is also a

valid test of the corresponding null hypothesis based on the true endpoint''.  His approach to

validation involved two criteria that provide guidance about analyses for assessment of markers: 

1. the surrogate endpoint must be correlated with the true clinical endpoint and;

2. the surrogate should fully capture the treatments “net effect” on the clinical endpoint, where

the net effect is the aggregate effect resulting from all mechanisms of action.

This restrictive second condition implies that if a marker is a good surrogate for T, a true

time-to-failure, clinical endpoint, then the hazard of T should be independent of treatment,

conditional on the surrogate marker i.e., all the beneficial effect of treatment is mediated through 

the marker. Much of the investigation of surrogate endpoints in medical research has focused on

assessment of whether this condition is met.  In Prentice's formulation, the notion that the

surrogate S(t) could capture the dependence of T, a true  is expressed as:  

.

Freedman, Graubard, and Schatzkin (1992)  implemented Prentice's criterion by examining

whether an effect of an intervention on a true clinical endpoint, adjusted for the intermediate or

surrogate endpoint, is reduced to zero. For this assessment, they considered the proportion of the

treatment effect that can be accounted for by the marker. They discussed the case of a binary

endpoint and assumed a linear logistic regression model relating this endpoint to the marker and

the surrogate.  Using this model, they proposed the following metric, which we refer to as

“proportion of treatment effect explained” or PTE: 

op = −1 α
β
β

where the β refers to the net treatment effect (logistic regression parameter relating treatment to

clinical endpoint) and βa  refers to the treatment effect after inclusion of the surrogate in the

model (the unexplained portion of the treatment effect).  For consideration of a true endpoint that
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is a failure-time endpoint, a number of authors, including  Choi et al. (1993),  O'Brien et al.

(1996), and Lin et al. (1997), assumed a proportional hazards model for the effects of both the

treatment and the surrogate.  These authors considered estimation of a quantity analogous to the

PTE of Freedman et al.; Lin et al. also propose an estimator for its variance. 

Tsiatis et al. (1995) and De Gruttola et al. (1993 ) considered an alternative approach to

estimating PTE.  They use a mixed effect model for the surrogate endpoint process and assume a

proportional hazard relationship to the time of true clinical endpoint, T. From this model, they

predicted what the benefit of experimental treatment on survival would have been (compared to

placebo), had all of the benefit of treatment resulted from improvement in the surrogate.  

Comparison with the actual effect of treatment allowed for graphical display of the PTE.  Buyse

and Molenberghs (1998) considered replacing PTE with other measures to assess the quality of a

surrogate.  The first one, termed relative effect, is the effect of the treatment on the true endpoint

relative to that on the surrogate endpoint.  The second one is the adjusted association between

both endpoints, after accounting for the effect of treatment.  

 

In addition to the approaches described above, some authors have considered estimating the 

effect of treatment on the true clinical endpoint, T, from data on the surrogate  S.  We first

discuss surrogates that do not vary with time, and consider the case where interest lies in

estimating the distributions [T|X=1] and [T|X=2] for the new treatment X=1 and the control

treatment X=2.  We assume that available data include complete observations on 

[T ,S |X], as well as incomplete observations on [S | X].  If we have models for the joint

distributions [T,S|X=1] and [T,S|X=2], then established methods for missing data can be used  to

strengthen inference on [T|X=1] and [T|X=2].  Such methods require further assumptions about

whether the “complete” and “incomplete” observations are representative samples. Surrogates

have been termed “auxiliary outcome data” in this application (Pepe, Reilly and Fleming, 1994). 

In the usual application of surrogates, however, all data on the new treatment is “incomplete”;

that is, only data on  S given  X are available.  In this case, some other information on the

relationships between  T and  S given X are needed to allow estimates of treatment effects on T 

from data on  S.  Meta-analysis of results from previous trials is one possible way of developing

such information. 
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Buyse et al., (1998)  Molenberghs et al., (1998) and Daniels and Hughes (1997) described  meta-

analyses of results from clinical trials to investigate the association between treatment effects on

the surrogate  S and treatment effects on the true clinical endpoint T.  Daniels and Hughes

modeled this association using results from trials of antiretroviral agents, and then assessed the

model’s reliability for predicting the treatment difference on T, given an observed difference on 

S. Their model assumed that a new (N) experimental treatment and its control treatment were

drawn from a class of similar studies, C .  In their model, the impact of treatment on T and on  S

was assumed to be multivariate normal with mean and variance parameters that vary across

studies.  By “borrowing” information from previous studies on the relationship between the

effect of treatment  on T and the effect of treatment on  S, which they assumed to be linear, they

could predict the treatment effect on TN  from data on the surrogate SN. .  To fit their model for

meta-analysis across a range of clinical trials of antiretroviral drugs, Daniels and Hughes used a

Bayesian approach that assumed non-informative prior distributions on the parameters defining

the linear relationship between treatment effects on T and those on S, and they used Markov 

Chain Monte  Carlo techniques.

Buyse, Molenberghs, Buryzynowski, Renard and Geys (BMBRG), in unpublished work to be

discussed at the conference, used a linear mixed model to describe the effects of treatment on S

and on T.  Data from a meta-analysis of previous studies in the class C are used to estimate the

parameters of this model.  Then, given data from the new study N on the surrogate in both treated

and untreated groups, the parameter defining the effect of treatment on T in the new study can be

estimated.  This method differs from that in Daniels and Hughes in several respects, the most

important of which is that BMBRG predict treatment effects on T from data on the separate

responses S in treated and untreated groups, rather than from the estimated treatment effect on S

alone.

In work to be presented at the workshop, Gail considers a meta-analytic model similar to that of

BMBRG and generalizes it to handle more complicated outcomes.  Let  (T1i, S1i,T2i, S2i) be the

vector of sample mean responses in a previous “complete” data experiment, i, in the class  C,

where the subscripts 1 and 2 indicate Z=1 and 2 respectively.  Gail then assumes that the

corresponding population means for experiment i,  µ1ti, µ1si, µ2ti,  and µ2si ,  have a joint normal
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distribution.  Thus, even though (T1i,S1i) and (T2i,S2i) are conditionally independent given these

population means, they are correlated unconditionally.  Gail allows (T1i,S1i) and (T2i,S2i) to have

different covariances, given their population means, unlike BMBRG.  This generalization may be

useful if treatment affects both the mean and variance of the distribution and for applications to

non-linear models.  Analysis of a series of previous studies with complete data permits

estimation of the distribution of  µ1ti, µ1si, µ2ti,  and µ2si  in samples from the class  C .  In general,

the optimal estimate of the difference in the underlying population means of the main endpoint, 

µ1tN -  µ2tN, in the new experiment is obtained by regressing this quantity on both S1N and S2N ,

rather than simply on the difference, S1N - S2N,  that was used by Daniels and Hughes.  In many

cases, however, the latter regression is nearly as efficient as the former.  This analysis shows why

meta-analytic approaches can be very inefficient, however, compared to having data on the main

endpoint.

Gail also presents a generalization useful for more complex models, such as piecewise

exponential survival models and models for repeated measures.  These models need only

describe the marginal distributions of T1ij, S1ij,T2ij, and S2ij, , where j indexes the jth individual in

study i on the active (1) or control (2) treatment.  Gail assumes that the parameters describing

these four marginal distributions come from a multivariate normal population over studies in the

class C, and that conditional on the parameters of a given study, estimates of these parameters are

asymptotically jointly normally distributed, as would usually be the case.  Complete data from

previous studies can be used to estimate the distribution of parameters in repeated sampling of

studies from C.   Hence one can estimate the parameters governing T1ij, and T2ij, in the new study

from estimates of the parameters governing  S1ij, and S2ij in the new study.

Some general issues that may limit the acceptance of the meta-analytic approach include:

defining the class,  C , of  “similar” experiments; developing realistic models for the joint

distributions of T and  S given Z and given underlying population parameters; developing

realistic distributions that govern the sampling of  parameters for a particular experiment;

including covariates to control the between experiment variation; and allowing for other factors,

such as idiosyncratic toxicities, that are not related to the main endpoint.  This last issue affects

conventional studies of main endpoints as well.  
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For settings in where the surrogate, S  is measured repeatedly, models developed for analysis of

longitudinal data with missing, possibly non-ignorable observations (Little and Rubin, 1987),

may be particularly useful for the joint analysis of S and T as functions of covariates X.  Three

broad classes of models have been discussed:  selection models in which [T, S|X]  is decomposed

into [T | S, X][ S | X] (e.g., Diggle and Kenward, 1994; Baker, 1994; Molenberghs

et al, 1996; Fitzmaurice et al, 1996); pattern-mixture models where the decomposition [S | T, X]  

[T | X] is used (eg, Lagakos, 1976; Little, 1993; Hogan and Laird,1997); and latent variable

models where [T, S|X] = f[T, S | η, x] d [η | x]  and η is an unobserved latent variable that

makes the surrogate information S informative about T (eg, Heckman, 1979; Wu and  Carroll,

1988; Wulfsohn and Tsiatis, 1997; and Fawcett and Thomas, 1996). Hogan and Laird (1997)

provide an excellent overview of recent work. 

In the Workshop, Scott Zeger will present approaches based on a latent variable model in which

the relationship between T and S given X  is assumed to come from a latent process η.  This

model assumes that: 1) T and S are conditionally independent given η; and 2) X can affect T

either through η or directly, but that X only affects S through its influence on η.  In this sense, S is

an imperfect measure of η.  These assumptions lead to:

[ T, S  | X] = f [T, S, η | x] [η | x] dη

= f [T | η, X] [S | η ] [ η |X ] dη   .

The formulation is completed by assuming: a regression for S given η and one for T given η and

X; and a model for the underlying process η.

In the study of a surrogate, the quantity of interest is [T | X ] = f[ T  | η, X] d [ η | X ]or some

functional such as the ratio of cumulative hazards for the two treatment groups. These measures

of treatment effect average over the unobserved η and in so doing, make use of the repeated

measures S, which are informative about T when it is censored for an individual. This approach

has also marked possible calculation of predictive distribution, for a patient with a particular
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history S(t) or for a population.  It can also be extended into hierarchal  model for data from a

particular study.

The latent variable formulation is conveniently implemented with a Bayesian approach using

Markov chain Monte  Carlo methods, which facilitate integration over η.  See Fawcett and

Thomas (1996) for an example.

As mentioned above, this statement highlights only a few of the ways to address the problem of

evaluating surrogate endpoints that will be discussed at the Workshop.  A major goal of the

Workshop will be to consider strengths and weaknesses of different approaches, and to discuss

the connections of these approaches among each other and to and to related areas of statistical

research. 
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