
Developing Web Browser Recording Tools

Using Server-Side Programming Technology

Chris J. Lu Ph.D.
National Library of Medicine

NLM, NIH, Bldg. 38A, Rm. 7N-716, 8600 Rockville Pike
Bethesda, MD 20894, USA

lu@nlm.nih.gov

Anantha Bangalore
National Library of Medicine

NLM, NIH, Bldg. 38A, Rm. 9L-927, 8600 Rockville Pike
Bethesda, MD 20894, USA

bangal@nlm.nih.gov

Tony Tse
National Library of Medicine

NLM, NIH, Bldg. 38A, Rm. 7N-715, 8600 Rockville Pike
Bethesda, MD 20894, USA

tse@nlm.nih.gov

Abstract: It is always a challenge to present Web applications at a facility with no
Internet connection. Traditional presentation methods such as transparencies or slides are
inadequate for demonstrating dynamic Web applications. Currently, virtual-live
demonstrations of Web applications are created with static HTML (Hypertext Markup
Language) files. However, preparing such presentations is tedious and requires much
manual labor for downloading HTML and other files and modifying them for proper
linkages. Demo Server (DS) is a tool that automates this process. Developed using Java
Servlets and Apache Web Server on the Sun Solaris platform, DS records various types
of browsing activities and saves a set of HTML files for presentation automatically. This
paper addresses both system level design concepts and key technical implementation
details.

1. Introduction

Even as the Internet becomes popular in research, commerce, and daily life, many places still do not
have the infrastructure for connecting to the Internet. Presenting Internet applications in such places
becomes challenging. A common work-around is to access a set of static and locally stored HTML files
through a Web browser.

A great deal of work is involved in preparing files for such canned demos. Initially, a scenario is
sketched, the site is browsed, and all pages are downloaded and saved as HTML files. All hyperlinks and
HTML action attributes must be modified and tested in all of the HTML files. Moreover, all image and
JavaScript files need to be downloaded for accurate display. Finally, all URLs (Uniform Resource Locator)
need to be inspected. The entire process must be repeated each time the scenario is modified. Clearly,
such an approach is tedious and not cost-effective.

Demo Server (DS), an Internet browser-recording tool, has been developed to automate the process of
creating interactive demonstrations of Internet applications without a live connection to the Internet. DS
uses server-side programming (Java Servlets), is a Web based browser independent tool.

At the beginning of a session to create a presentation, DS uploads the page at the URL provided by the

user. DS then records all browsing activities, uploading information from each page. Users may stop and
download their recording at any time by clicking on the appropriate links. Each HTML file is named as
Px.html [1], where P0.html is the starting page. To begin the presentation, users simply load P0.html in
their Web browser.

2. System Architecture and Components

Three major components are implemented in DS (Figure 1): a GUI (Graphic User Interface), a proxy
server, and backend modification functions (i.e., parsing functions).

Figure 1: System Architecture and Components of Demo Server.

Users interact with DS through HTML forms via Web browsers. The GUI component provides three
major functions. First, it provides a starting point for users to submit the URL and begin a recording.
Second, a recording screen displays the Web site that users are browsing and provides a stop button. Third,
a final page allows users to save and download recorded files.

The proxy server is the core component linking the GUI component and backend functions with the
Internet. As a user starts a recording, the proxy server reads in the URL given by the user from the GUI
and then establishes a connection to retrieve contents of the Web site. The proxy then examines the
retrieved contents for images or non-embedded JavaScript in the page, automatically downloading the
required files from the site. It also keeps track of the current page number during recording, reads and
writes HTML content from and to the DS server hard drive, and compresses files for users to download.

The backend component is essentially a parser that searches for and replaces certain strings in the

HTML files. In other words, it looks for specific HTML tags and changes the tag’s attributes. Three major
functions, modify-1(), modify-2(), and getImageList(), are implemented in the DS backend
component as described below.

[1] x starts from 0 and increments by one for each page recorded. For example, if four web pages are recorded, there
will be the following four HTML files: P0.html, P1.html, P2.html, and P3.html.

lu
X starts from 0 to the last page of recording. For example, there will be 4 files, H0.html, H1.html, H2.html, and H3.html, for a 4 pages recording.

modify-1() is called when the proxy server gets Web site content from the Internet and displays it
to users in the GUI component. Its main purpose is to modify hyperlinks and forms attributes so that
retrieved page will access the DS proxy when users click a hyperlink or submit a form. In addition, source
attributes of images and non-embedded JavaScripts are modified by this function. Please refer to Section 4
for technical details.

modify-2() is called at the end of the recording session and changes the href and action

attributes of hyperlinks and HMTL forms in all saved pages to reference itself for all links and forms not
clicked or the next page for those that are clicked/submitted [2]. Furthermore, modify-2() changes
URLs of all images and non-embedded JavaScript files to reference the appropriate directory.

Another function in the backend component is getImageList(), which retrieves src attributes
from image and script tags in all HTML files and saves them into a list. DS calls this function to
download images and JavaScript files from the Internet after modify-1() is done.

3. Software Logical Procedures

There are two procedures for operating DS: start and stop recording. Users start recording their Web
browsing activities by submitting the starting URL. DS displays the content of the starting page in a
separate frame in the lower half of the browser (see Figure 2). However, all subsequent requests go through
the proxy component. Users then move to a new page by clicking on a hyperlink or submitting a form
while browsing the Web in the lower half of the GUI component. DS repeats the process for every new
page (i.e., downloads files from the Internet and modifies them). When users click on the stop button, all
modified pages are downloaded from DS to their local computers. The logical steps are summarized
below. See Figure 3 for a schematic diagram of the start-recording process.

• Logical steps for start-recording:

1. Users type in the first URL to start the recording.
2. DS sends out a request to the first Web page. At the same time, DS keeps track of all requests for

final modifications.
3. DS downloads the content of a designated Web site, including images and non-embedded

JavaScript files from the Internet.
4. DS calls modify-1() to process the HTML content.
5. DS saves the modified file to its hard drive. Each downloaded file is named Px.html where x is the

current page number.
6. DS displays the modified HTML file in the browser.
7. Users move to a new page by clicking a hyperlink or submitting a form on the current page.

Repeat steps 2 to 7.

The logical steps are summarized below and a schematic diagram of stop recording is shown in Figure

4.
• Logical steps for stop-recording:

1. Users send a stop command to DS by clicking on a stop link.
2. DS calls modify-2() to perform the final modification on all saved HTML files.
3. modify-2() reads files from the DS hard drive and modifies them.
4. DS saves all modified files and compresses (tar) the entire directory.
5. The compressed files are downloaded to a user's computer upon the user’s request.

[2] The proxy server component keeps track of URLs of clicked hyperlinks and submitted forms in all pages. At the
end of recording, this information is passed back to function modify-2() for final modification.

Figure 2: An illustration diagram for Demo Server.

Figure 3: Schematic diagram for start-recording procedures.

Figure 4: Schematic diagram for stop-recording procedures.

4. Examples and Technical Details

A server-side programming technique, Java Servlets, is used for implementing DS. The Java classes,
HttpURLConnection and URL, are used to get contents from a given URL and download image and
JavaScript files. After the first page is displayed, users move from one page to another by either clicking on
a hyperlink or submitting a form request. Thus, the key design issues of this tool are handling 1) image and
JavaScript files; 2) hyperlinks, and 3) HTML forms. In examples given below, “dsUrl” and “realUrl”
represent the URL of the DS and that of Web site destinations on the Internet, respectively.

• Image and JavaScript files:

Images and JavaScript files are handled similarly. Thus, we use image files as an example to illustrate
the process. An HTML page that includes an image will have the tag
<image src=”http://realUrl/image.gif”>. DS calls function modify-1() to change
it to <image src=”http://dsUrl/image.gif”> and then displays the page. Users are
therefore able to see the image in the DS-modified Web page. After users stop the recording, DS calls
modify-2() which changes this tag to <image src=”image.gif”>. In this implementation,
all image files along with HTML files are stored in the same directory for users to download and
replay.

• Hyperlinks:

As discussed in Section 2, all hyperlinks on a page need to be modified before DS can display the page
since all linking activities go through the DS proxy component during recording. For example, if the
current page number is 2 [3], the tag is changed to
 by modify-1().
With this modification, the DS proxy component is able to parse the content of this hyperlink and
retrieve the current page number and the URL of destination page when users click on this link. A
final modification is performed by the modify-2() function after users stop the recording: The
hyperlink becomes if this link is clicked and if
it is not clicked [4]. Thus, users may move from page 2 to page 3 by clicking on this link during
replay.

[3] DS keeps track of the page number through the Java Servlets Session function.
[4] If the hyperlink is not clicked during the recording, the link points to itself. This implementation provides a nice
feature for users (e.g., incases where a presenter clicks a wrong link by mistake during the presentation).

• HTML Forms:
HTML forms are the most complicated cases that DS must handle. For the same reasons as
hyperlinks, forms need to be modified before DS displays it to users. For example, if the current page
is 2,
<form action=”http://realUrl” method=”POST”> is changed by modify-1() to

<form action=”http://dsUrl” method=”GET”>
<input type=”hidden” name=”realUrl” value=”http://realUrl”>
<input type=”hidden” name=”Page” value=”2”>
<input type=”hidden” name=”isPost” value=”yes”>

With the above modifications, DS is able to retrieve information from the destination Web site from
the Internet, a page number, and a boolean value of isPost [5]. DS reformulates the query and sends a
new request to the URL of the Web site while users submit this form to DS. Finally, DS modifies this
form again by calling modify-2() after users stop the recording. The final modifications is
<form action=”p3.html” method=”GET”> if this form is submitted and
<form action=”p2.html” method=”GET”> if it is not submitted.

5. Summary and Future Work

DS is a powerful, cost effective, and easy-to-use tool for users to record and replay Web browsing
activities during interactive presentations of Internet applications where no connection are available. It is
easy to use and implement. However, there are some issues that need to be addressed to enhance the tool.

DS was originally developed for NLM to present a specific Web site as an interactive “canned”
presentation (“http://clinicaltrials.gov”). All HTML files at this site are automatically
generated by computer and the syntax is thus very consistent. Realistically, many Web sites on the Internet
have inconsistent and even malformed HTML syntax. Currently, DS cannot handle such Web sites. A
more sophisticated parsing algorithm is needed to make DS a more generic tool. Besides, the current
design of DS assumes all image and JavaScript files have different file names. In addition, DS is currently
designed for a single user. Further design modifications are needed to address these issues and incorporate
new features into this tool.

Acknowledgements

This research was supported by National Library of Medicine (NLM) at NIH under task order #G0055-036-04. The
authors would wish to appreciate Dr. Alexa McCray for her support on this task. The authors also wish to thank Mr.
Nick Ide, Dr. Russell Loane, and Ms. Rebecca Crisafulli for sharing their thoughts and discussion.

[5] A Boolean flag, isPost, is used in DS to reformulates (when the value is true) the query by adding variables, such as
Page, realUrl, and isPost, to the original GET request.

	1. Introduction
	2. System Architecture and Components
	3. Software Logical Procedures
	4. Examples and Technical Details
	A server-side programming technique, Java Servlets, is used for implementing DS. The Java classes, HttpURLConnection and URL, are used to get contents from a given URL and downloa

	5. Summary and Future Work
	DS is a powerful, cost effective, and easy-to-use tool for u
	DS was originally developed for NLM to present a specific We

	Acknowledgements

