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Since 1990, the National Cancer Institute (NCI) has screened more than 60,000 com-
pounds against a panel of 60 human cancer cell lines. The 50-percent growth-inhibitory
concentration (GI50) for any single cell line is simply an index of cytotoxicity or cytostasis,
but the patterns of 60 such GI50 values encode unexpectedly rich, detailed information
on mechanisms of drug action and drug resistance. Each compound’s pattern is like a
fingerprint, essentially unique among the many billions of distinguishable possibilities.
These activity patterns are being used in conjunction with molecular structural features
of the tested agents to explore the NCI’s database of more than 460,000 compounds,
and they are providing insight into potential target molecules and modulators of activity
in the 60 cell lines. For example, the information is being used to search for candidate
anticancer drugs that are not dependent on intact p53 suppressor gene function for their
activity. It remains to be seen how effective this information-intensive strategy will be at
generating new clinically active agents.

Drug discovery is being transformed by
new developments in molecular cell biology
and the information sciences. A case in
point is the drug discovery program con-
ducted by the Developmental Therapeutics
Program (DTP) of the NCI. Before 1985,
the NCI used mice bearing murine leuke-
mia P388 cells to screen new compounds for
anticancer activity. That strategy identified

agents active against leukemias but relative-
ly few that were effective against solid tu-
mors, including the most common human
carcinomas. Hence, the NCI established a
primary screen in which compounds are
tested in vitro for their ability to inhibit
growth of 60 different human cancer cell
lines (1). Included are melanomas, leuke-
mias, and cancers of breast, prostate, lung,

colon, ovary, kidney, and central nervous
system origin. A highly schematic view of
this portion of the NCI drug discovery–
development process is shown in Fig. 1.
Compounds for testing have come princi-
pally from synthetic chemistry and natural
product sources, but combinatorial libraries
and products of biotechnology are also be-
ing screened.

This ‘‘disease-oriented’’ strategy for drug
discovery was based on the hypothesis that
selective activity in vitro against cancer cell
lines from a particular organ would predict
selective activity against corresponding tu-
mors in humans. That concept is being
tested as agents progress through clinical
trials, and the answer is not yet clear. How-
ever, patterns of activity observed in the
screen have proved predictive in an even
more powerful way at the molecular level:
They provide incisive information on the
mechanisms of action of the compounds
tested and on molecular targets and modu-
lators of activity within the cancer cells.
The cell lines are not fully representative of
solid tumors in humans, but their patterns
of pharmacological response are rich in in-
formation. We refer to this test system as a
‘‘screen,’’ but it has also become a way to
‘‘profile’’ or ‘‘fingerprint’’ potential thera-
peutic agents.

The patterns of activity were first ana-
lyzed by the COMPARE algorithm (2).
Given one compound as a ‘‘seed,’’ COM-
PARE searches the database of screened
agents for those most similar to the seed in
their patterns of activity against the panel
of 60 cell lines. Similarity in pattern often
indicates similarity in mechanism of action,
mode of resistance, and molecular structure
(2). This form of analysis has been applied
productively to topoisomerase II inhibitors
(3), pyrimidine biosynthesis inhibitors (4),
and tubulin-active compounds (5), among
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other classes of agents. Back-propagation
neural networks and predictive methods
from classical statistics have also been used
to verify that the patterns of activity could
predict a compound’s mechanism of action
(6). More detailed information on the rela-
tion between pattern and mechanism has
come from additional analyses based on
techniques from statistics and artificial in-
telligence (7, 8). To date, five compounds
(spicamycin analog KRN 5500, flavopiri-
dol, UCN-01, a depsipeptide, and a quino-
carmycin analog) assessed in the screen and
analyzed by the methods described above
have been selected for entry into clinical
trials (9).

Bioinformatics: The Structure,
Activity, and Target Databases

Here we describe a general way in which
information on the activity patterns is be-
ing combined with other types of informa-
tion to address problems in drug discovery
and molecular pharmacology. A formula-
tion of this approach in terms of three
databases is shown in Fig. 1: (A) contains
the activity patterns already discussed, (S)
contains molecular structural features of the
tested compounds, and (T) contains possi-
ble targets or modulators of activity in the
cells. Portions of these databases can be
accessed through DTP’s World Wide Web
site (http://epnws1.ncifcrf.gov:2345/dis3d/
DTP.HTML). Links to these and additional
pertinent databases can be found at http://
www.nci.nih.gov/intra/lmp/jnwbio.htm.

These two Web sites will be updated pro-
gressively with additional data and tools of
analysis (10).

The chemical structure (S) database can
be coded in terms of any set of two-dimen-
sional (2D) or 3D molecular structure de-
scriptors. The NCI’s Drug Information Sys-
tem (DIS) contains chemical connectivity
tables for approximately 460,000 molecules,
including the 60,000 tested to date. Three-
dimensional structures have been obtained
for 97% of the DIS compounds, and a set of
588 bit-wise descriptors has been calculated
for each structure by use of the Chem-X
computational chemistry package (Chem-
DBS-3D module, Chemical Design, Oxford,
U.K.) (11). This data set provides the basis
for pharmacophoric searches; if a tested
compound, or set of compounds, is found to
have an interesting pattern of activity, its
structure can be used to search for similar
molecules in the DIS database (12).

In the target (T) database, each row
defines the pattern (across 60 cell lines) of
a measured cell characteristic that may me-
diate, modulate, or otherwise correlate with
the activity of a tested compound. When
the term is used in this general shorthand
sense, a ‘‘target’’ may be the site of action or
part of a pathway involved in a cellular
response. Among the potential targets as-
sessed to date are oncogenes, tumor-sup-
pressor genes, drug resistance–mediating
transporters, heat shock proteins, telomer-
ase, cytokine receptors, molecules of the
cell cycle and apoptotic pathways, DNA
repair enzymes, components of the cytoar-
chitecture, intracellular signaling mole-

cules, and metabolic enzymes (13).
In addition to the targets assessed one at

a time, others have been measured en masse
as part of a protein expression database
generated for the 60 cell lines by 2D poly-
acrylamide gel electrophoresis (2D PAGE)
(14). The aim is to look for molecules that
have not been considered previously as tar-
gets. In the process, a link has been estab-
lished between the molecular pharmacology
of cancer and the growing enterprise of
proteome research (15). The current data-
base consists of 1014 indexed and quanti-
tated protein spots, of which 151 have been
quality controlled over all 60 current cell
lines and incorporated into a primary data
set for analysis (14). Analogous links to
genome research are being established
through analyses of gene amplification and
mRNA expression patterns. Figure 1 indi-
cates approximately 100 targets, but that
number is increasing rapidly.

Relating Molecular Targets to
Drug Activity Patterns

The first target analyzed in detail by the
COMPARE program was the drug-resis-
tance transporter P-glycoprotein (Pgp), en-
coded by multidrug resistance gene MDR-1
(16–18). The result was a list of agents
predicted and then experimentally verified
to be good Pgp substrates. Related strategies
identified Pgp inhibitors (19). We present
here a complementary approach for analysis
and display of these data, the DISCOVERY
program package (20), which maps coher-
ent patterns in the data, rather than treat-
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Fig. 1. Simplified schematic overview of an information-intensive approach to cancer drug discovery
and molecular pharmacology at the NCI. Each row of the activity (A) database represents the pattern of
activity of a particular compound across the 60 cell lines. As described in the text, the A database can
be related to a structure (S) database containing 2D or 3D chemical structure characteristics of the
compounds and a target (T) database containing information on possible molecular targets or modu-
lators of activity within the cells.
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ing the compounds and targets one pair at a
time. Because the S, A, and T databases
contain, in aggregate, many millions of
numbers, the challenge was to compact that
information sufficiently for analysis without
losing or obscuring important local features
of the data. These often contradictory re-

quirements have guided development of
DISCOVERY, which integrates the dispar-
ate types of information on the compounds
and displays them in novel ways suited to
human pattern recognition. The same algo-
rithms can be applied to other types of
databases, including those generated by

screening and profiling systems in which
agents are tested in multiple assays—for
example, against mammalian cells, yeast
mutants, bacteria, or biochemical targets.

Figure 2 shows a color-coded DISCOV-
ERY pattern map relating a T database of
113 target vectors to an A database of 3989
nonconfidential compounds deemed suffi-
ciently interesting in the initial screen to be
tested more than once. This map was ob-
tained by an algorithm we term ‘‘clustered
correlation’’ (ClusCor). Each database was
treated as a mathematical matrix, and the
following four steps were applied: (i) each
row of A and T was normalized by its mean
and standard deviation; (ii) the two matri-
ces were multiplied to obtain AzT*, where
the prime symbol indicates the matrix
transpose; (iii) each entry was divided by
n 2 1, where n (560) is the number of cell
lines, producing a matrix of Pearson corre-
lation coefficients relating activity and tar-
get patterns; and (iv) the rows and columns
of the product matrix were rearranged into
‘‘cluster order.’’ Only with this last step did
patterns emerge.

The 3989 compounds were cluster-or-
dered (21) along the ordinate on the basis
of their activity patterns across the 60 cell
lines. Thus, compounds with the most near-
ly identical patterns appear side by side.
Because this clustering of compounds was
done independently of targets, the coherent
patterns observed as patches of color vali-
date the hypothesis that the activity pat-
terns and targets are related. The possibility
that these patterns were created spuriously
by the clustering process is ruled out by the
lack of pattern features in Fig. 5A. Figure
5A shows the result when the 60 activity
values for each drug were randomly permut-
ed before the calculation and clustering al-
gorithm that had produced Fig. 2 were ap-
plied. The 113 targets were cluster-ordered
along the abscissa in Fig. 2 on the basis of
their apparent effect on activities of com-
pounds in the database. Thus, targets with
the most similar columns of correlation co-
efficients appear side by side.

To illustrate the result of the clustering
process, the right-hand side of Fig. 2 shows
one small 61-leaf ‘‘twig’’ of the overall
3989-leaf cluster tree. Compounds similar
in mechanism of action cluster together.
Among the classes that are organized in a
coherent way elsewhere in Fig. 2 are the
Taxol (paclitaxel) analogs (taxanes): 34 of
the 37 taxanes in the database appear side
by side (compounds 620 to 653), and the
other 3 are found on nearby twigs (com-
pounds 655, 658, and 701). The largest
chemically coherent set of compounds is a
set of 72 thiosemicarbazones (compounds
1491 to 1579, with small gaps occupied by
phenylhydrazones) (22). Most of the tin-
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Fig. 2. ‘‘Clustered correlation’’ (ClusCor) map of the relation between compounds tested andmolecular
targets in the cells. This normalized AzT* product matrix (where the prime symbol indicates the matrix
transpose) correlates target patterns across the 60 cell lines with patterns of growth inhibition for an
important set of 3989 compounds. A red or orange point (high positive Pearson correlation coefficient)
indicates that the agent tends to be selectively active against cell lines that express the target in large
amounts (or in functional form). A dark blue point (high negative correlation) indicates the opposite
tendency (selective potency against cell lines that have less target or function). The 113 columns
correspond to 76 distinct target molecules or functions, some represented multiple times in different
mathematical transformations. Compounds and targets are cluster-ordered as explained in the text. To
the right is shown one 61-leaf ‘‘twig’’ of the overall 3989-leaf cluster tree of compounds. Symbols for
mechanisms of action (6, 8) are as follows: T1, topoisomerase 1 inhibitors; T2, topoisomerase 2
inhibitors; A, alkylating agents; Pt, platinum compounds (of the cisplatin-carboplatin family); Pt-Si,
platinum agents containing a silane moiety; ?, mechanism unknown; PCNA, proliferating cell nuclear
antigen determined from 2D gels (column 16) (14); p53 seq, p53 sequence, wild-type versus mutant
(30); p53 fu., p53 function in a yeast-based assay (30); p53 prot., p53 protein expression by protein
immunoblot (columns 29 and 30) (30); hsp, heat shock–related proteins (Hsp60, Hsc70, Hsp90, Grp75,
Grp78) from 2D gels (columns 40 to 45) (14); gadd45, mdm2, and p21, GADD45, MDM2, and
p21CIP1/WAF1 mRNA induction in response to g-irradiation (columns 54 to 57, 60, and 61 to 64,
respectively) (30); G1, G1 arrest in response to g-irradiation, assessed by flow cytometry (columns 65 to
69) (30); mrp,mRNA expression levels for theMRPmultidrug resistance transporter (columns 75 and 76)
(18); mdr,MDR-1mRNA (16) and function in terms of rhodamine efflux (columns 81 to 88) (17); TGF-aR,
transforming growth factor–a receptor mRNA (columns 89 to 91); EGFR, epidermal growth factor
receptor (column 92) (37); and Ras, RAS sequence, wild-type versus mutant (38).
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containing molecules in the database are
contiguous (compounds 2034 to 2062). The
closely related clinical agents cisplatin and
carboplatin fall side by side (compounds
3260 and 3261) within one cluster of 11
structurally related platinum analogs,

whereas the diaminocyclohexyl platinum
compounds, which have very different
pharmacological behavior (23), fall else-
where in the map (compounds 2838 to
2849). Perhaps more important than the
branches with known agents, however, are
those that contain no familiar compounds.
The DISCOVERY program set, as its
name implies, was developed primarily to
explore and organize these new classes of
compounds.

Although some degree of coherent clus-
tering was expected for families of mole-
cules related by chemistry or mechanism,
the precision indicated by the above exam-
ples was unexpected; the a priori probability
that any given pair of compounds would
appear as nearest neighbors along the ordi-
nate in the set of 3989 is only 2 in 3988. An
explanation for the observed coherence is
suggested by a thought experiment in which
the patterns are considered, because of ex-
perimental noise, to be binary; that is, one
is assumed to know only whether a cell line
is more sensitive or less sensitive than the
median. Then each compound would have
one of 60!/(30!30!) 5 1.2 3 1017 possible
patterns (that is, the number of ways of
choosing the 30 out of 60 that fall above
the median). The number would increase to
260 5 1.2 3 1018 for all possible binary
patterns and to 460 5 1.3 3 1036 if four
levels of sensitivity could be reliably distin-
guished. Each compound displays a unique
‘‘fingerprint’’ pattern, defined by a point in
the 60D space (one dimension for each cell
line) of possible patterns. In information
theoretic terms, the transmission capacity
of this communication channel is very
large, even after one allows for experimen-
tal noise and for biological realities that

constrain the compounds to particular re-
gions of the 60D space. Although the ac-
tivity data have been accumulated over a
6-year period, the experiments have been
reproducible enough to generate the pat-
terns of coherence described here (24).

Each patch of color in Fig. 2 suggests a
possible correlation between targets and
compounds. The dark blue patch for com-
pounds 513 to 667 indicates that these
compounds are highly negative in their cor-
relation with targets 81 to 88, which are all
indices of Pgp/Mdr-1 expression and func-
tion (16–18). Several lines of evidence in-
dicate the significance of this observation.
(i) We analyzed cell screen data for a set of
35 compounds of diverse structure and
mechanism that had been reported previ-
ously on the basis of transport assays to be
Mdr-1 substrates (17, 25). Of these, 18
(51%) fell within the blue patch, a percent-
age 13-fold greater than the 4% (155/3989)
expected by chance alone. The probability
(exact binomial) of such an extreme event
happening by chance is ,0.0001. (ii) Al-
though 18 of 35 reported substrates fell
within the patch, 0 of 12 compounds re-
ported not to be substrates (17, 25) did so
(P 5 0.0010 by one-sided Fisher’s exact test
for the associated 2 by 2 table). (iii) It has
been reported (17) that Mdr-1 substrates
tend to be natural products, high in molec-
ular weight, and often cationic. We find by
linear discriminant analysis that these three
factors predict with a sensitivity of 78% and
a specificity of 84% which compounds will
be found in the blue patch (P , 0.0001).
These findings further validate the patterns
seen in Fig. 2.

Columns 76 and 77 in Fig. 2 are indices
of messenger RNA (mRNA) expression for
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Fig. 3. Relation between p53 pathway
molecular targets and patterns of ac-
tivity for clinically evaluated anticancer
agents. The compounds have been
grouped by their presumed principal
mechanisms of action. A number of
additional antitubulin agents have been added to
increase representation of that category. Color
coding indicates the Pearson correlation coeffi-
cient relating agent to target. A2, guanine-N2 al-
kylator; A7, guanine-N7 alkylator; AC, chloroethyl-
ating alkylator; D, DNA-RNA antimetabolite; PS,
protein synthesis inhibitor; R, RNA antimetabolite;
RF, antifolate RNA antimetabolite; T2, topoisom-
erase II inhibitor; TU, antitubulin (antimitotic)
agent. The data on p53 pathway parameters are
from (30).
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Fig. 4. Histograms
showing the relation be-
tween p53 status and
patterns of growth inhibi-
tion in the screen (A) for a
set of 86 phase II–evalu-
able clinical agents and
(B) for a set of 3989 mul-
tiply tested compounds.
Most of the clinical
agents appear more ac-
tive in the presence of
wild-type p53; the other
compounds show a
lesser trend in the same
direction. The parameter
calculated for each drug
has the form of a Wilcox-
on rank sum P value. P
. 0.5 indicates a com-
pound that tends in this
screening assay to bemore active in the cells with wild-type p53;P, 0.5 indicates the opposite tendency.
Values.0.975 or,0.025 would be required to reject the null hypothesis of equal median activities in p53
wild-type and mutant cells for any single compound. The data on p53 sequence are from (30).
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Mrp, another transport molecule associated
with multidrug resistance (18). There is
only a slight overlap between the Mdr-1–
and Mrp-sensitive families of compounds.
As indicated by columns 40 to 45, high
basal levels of heat shock proteins (Hsp60,
Hsp90, Hsc70, Grp75, and Grp78) correlate
positively with activity for a large set of
agents, including some of those in the group
sensitive to Mdr-1. This type of analysis
makes it possible to cross-compare multiple
targets for their expression levels and for

their apparent impact on the activities of
different classes of agents (26).

Activity Patterns and p53
Pathway Status

The p53 tumor-suppressor gene is mutated
in more than 50% of human tumors, more
than any other gene examined to date (27).
p53 functions as a transcriptional regulator
with the ability to both transactivate and
suppress gene transcription (28). It is acti-

vated in response to DNA damage and can
orchestrate a number of cellular responses
to genotoxic stress, including G1 arrest and
apoptosis (29). A large cluster of com-
pounds (numbers 2802 to 3309) is positive-
ly correlated with intact p53 pathway status
(as indicated by a large red patch in Fig. 2).
The indices of p53 status assessed in the
cells include p53 sequence, basal p53 pro-
tein level, p53 function in a yeast-based
assay, G1 checkpoint integrity, and g-ray
induction of the p53-regulated genes
p21CIP1/WAF1, MDM2, and GADD45 (30).
The activity patterns of most of these com-
pounds are inversely correlated with expres-
sion levels of p53 protein, as would be
expected given that the protein is overex-
pressed in most p53-mutant cell types (29).

Compounds 2802 to 3309 include a
large percentage of the familiar cytotoxic
antitumor agents. Of 86 agents considered
evaluable on the basis of phase II clinical
trials (31), 45 appear in this relatively small
region of the map, giving an odds ratio of
(45/41)/(463/3440) 5 8.2 :1 (P , 0.0001
by Fisher’s exact test). This odds ratio sub-
stantially understates the enrichment of
this region of the map with clinical agents
because the region is artificially enlarged by
the many analogs synthesized on the basis
of the clinical molecules (21).

The correlation of p53 pathway factors
with activity patterns for a subset of the
clinical agents with defined mechanisms of
action (6, 8) is shown in Fig. 3. Most,
although not all, of the agents damage
DNA, and in this assay they tended to be
more potent in p53 wild-type cells than in
p53 mutant ones (32). The principal excep-
tion was the set of antimitotic tubulin-
active agents, including Taxol, which gen-
erally do not show any clear correlation
with p53 status. Examination of a previous-
ly defined set (6, 8) of 123 standard anti-
cancer agents (which overlaps with the set
of clinical agents studied here) yields simi-
lar results (30).

The large majority of clinical agents ap-
pear in this assay to be more active on
average in the p53 wild-type cells (Fig. 4A).
In contrast, the p53 association is much less
pronounced for the set of 3989 multiply
tested molecules (Fig. 4B) or for all com-
pounds tested. We examined compounds at
the left of Fig. 4B for agents that might be
effective in p53-mutant human tumors. In
this search for ‘‘p53-inverse’’ (or at least
‘‘p53-indifferent’’) compounds, we used the
COMPARE and DISCOVERY program
sets to generate lists of candidates on the
basis of various sets of explicit criteria (20,
33). Selected compounds are being tested in
p53-isogenic human cell sets (34), and lead
compounds that perform favorably will be
further evaluated in vivo.
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Fig. 5. Four types of “clustered correlation” (ClusCor) matrices involving the S, A, and T databases.
(A) Activity vectors of the compounds were randomly permuted, and all calculations (including
clustering) were then done exactly as for Fig. 2. The lack of apparent pattern verifies that clustering
did not spuriously create the patterns seen in Fig. 2. (B) A normalized TzT* database, which
cross-correlates patterns of target expression. Targets with the most similar patterns of expression
appear side by side. Because a target’s expression is 100% correlated with itself by definition, all
values on the principal diagonal are color-coded red. Because of the clustering, targets positively
correlated in their expression produce red patches straddling the diagonal. (C) A normalized
(AzT*)z(AzT*) database, similar to (B) except that targets are characterized, not in terms of their
expression levels, but in terms of their correlations with activity patterns of the 3989 compounds. (D)
An S*z(AzT*) database. This database relates 2D substructures of the compounds (20) to targets
through the activity patterns of the compounds.
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Target-Target and
Target-Structure Correlations

As indicated by the ClusCor matrices
shown in Fig. 5, the databases on activity,
molecular structure, and targets have impli-
cations for basic biology and pharmacology
as well as for drug discovery per se. The
correlation of each target’s pattern of ex-
pression across the 60 cell lines with that of
each other target is shown in Fig. 5B. Val-
ues of the correlation coefficient on the
main diagonal are, by definition, unity be-
cause each target is 100% correlated with
itself. The red patches of high correlation
straddling the diagonal appear because the
targets are listed on both ordinate and ab-
scissa in cluster order on the basis of pat-
terns of expression. Clusters of targets relat-
ed to Mdr-1, heat shock proteins, and p53
function show high degrees of internal cor-
relation. In many instances (for example,
that of p53 and induction of the down-
stream genes p21CIP1/WAF1, GADD45, and
MDM2) this observation reflects the
known biochemical relationships (27, 29),
further validating the significance of pat-
terns seen in Figs. 2 and 5.

A similar pattern of correlation is shown
in Fig. 5C, which relates targets to each
other, not in terms of their levels of expres-
sion, but in terms of their relation to activ-
ity profiles for the 3989 compounds in the
database. Again, the same three families of
targets are highly correlated. As the cells
are characterized with respect to more and
more targets, these correlations will gener-
ate an increasing number of testable cell
biological hypotheses for further study. The
relation of targets to chemical substructures
of compounds through the database of ac-
tivity patterns is shown in Fig. 5D. Al-
though nonrandom patterns are apparent,
they are less pronounced, and other, non-
linear methods of analysis (including ones
based on genetic algorithm and neural net-
works) may prove to be better suited for
analysis of this type of relationship.

Hypothesis Generation in the
Molecular Pharmacology of

Cancer

The approach to drug discovery and molec-
ular pharmacology presented here serves a
number of functions. (i) It suggests novel
targets and mechanisms of action or modu-
lation. (ii) It detects inhibition of integrat-
ed biochemical pathways not adequately
represented by any single molecule or mo-
lecular interaction. (This feature of cell-
based assays is likely to be more important
in the development of therapies for cancer
than it is for most other diseases; in the case
of cancer, one is fighting the plasticity of a

poorly controlled genome and the selective
evolutionary pressures for development of
drug resistance.) (iii) It provides candidate
molecules for secondary testing in biochem-
ical assays; conversely, it provides a well-
characterized biological assay in vitro for
compounds emerging from biochemical
screens. (iv) It ‘‘fingerprints’’ tested com-
pounds with respect to a large number of
possible targets and modulators of activity.
(v) It provides such fingerprints for all pre-
viously tested compounds whenever a new
target is assessed in many or all of the 60
cell lines. (In contrast, if a battery of assays
for different biochemical targets were ap-
plied to, for example, 60,000 compounds, it
would be necessary to retest all of the com-
pounds for any new target or assay.) (vi) It
links the molecular pharmacology with
emerging databases on molecular markers in
microdissected human tumors—which, un-
der the rubric of this article, constitute clin-
ical (C) databases (35). (vii) It provides the
basis for pharmacophore development and
searches of an S database for additional
candidates. If an agent with a desired action
is already known, its fingerprint patterns of
activity can be used by COMPARE, DIS-
COVERY, neural networks, and other pat-
tern-recognition technologies to find simi-
lar compounds.

This approach to drug discovery and mo-
lecular pharmacology can be likened to a
clinical trial with 60 patients (cell types),
each profiled with respect to a variety of
molecular markers and each treated with
60,000 different agents, one at a time. It can
also be considered as a hypothesis generator
based on a set of 60,000 3 60 5 3.6 million
pharmacology experiments. The important
word here is ‘‘hypothesis.’’ Information from
the cell lines is fundamentally correlative
and subject to confounding influences. Hy-
potheses generated must be tested by means
of biochemical assays or isogenic systems
that differ, insofar as possible, with respect
to just one factor. Conversely, hypotheses
based on experiments with particular iso-
genic cell sets can be assessed for generality
according to whether they correctly predict
responses for most of the 60 cell lines in
the screen. For example, the overall im-
pact of p53 function on cellular chemo-
sensitivity can be affected by multiple ge-
notypic and phenotypic factors that deter-
mine the balance between p53-mediated
apoptosis on the one hand and G1 arrest
and DNA repair on the other (29); results
obtained for one parental cell type can be
misleading if generalized to others. The
target and activity databases have, in-
creasingly, provided us with a basis for
rational choice of parental and transfected
cell pairs to use in experiments addressing
particular biological questions.
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